DEADLOCK DETECTION FOR A CLASS
OF COMMUNICATING FINITE STATE MACHINES

Yao-Tin Yu and Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Autin
Austin, Texas 78712

TR-193 Feb 1982

ABSTRACT

Let M and N be two nonterminating communicating finite state
machines where each of them sends one class of messages to the
other. We develope a polynomial algorithm to detect whether M and
N can reach a deadlock. The time complexity of the algorithm is

3 3

O(m n) and its space is O(mn) where m and n are the numbers of

states in M and N respectively.

Keywords: Communicating finite state machines, communication

deadlocks, deadlock detection.

I. INTRODUCTION

The model of communicating finite state machines is an
abstraction of sequential processes which communicate exclusively
by exchanging messages. It can be wused to specify [4],[8],
analyze [11,121,13] and synthesize [5],17], [9] communication
protocols. In [2], it is shown that the problem of whether two
communicating finite state machines can reach a deadlock state 1Is
undecidable in general. The problem is shown [3] to be decidable
if each machine sends one type of messages to the other machine.
In this paper, we consider this same restricted class of machines
and give an efficient decidability algorithm which is polynomial
in both time and space.

There are practical motivations to consider this restricted
class of communicating machines. Let M and N be two communicating
finite state machines which exchange many types of messages. If H
and N are abstracted by two machines M and N, each of which sends
one type of messages to the other; and if the communication
between M and N is shown to be deadlock-free, then the
communication between M and N is also deadlock-free. (The reverse
is not necessarily true.) As an example, Figures la and 1lb show
two communicating finite state machines M and N which dimplement
an alternating-bit protocol [7] to transmit data messages from M
to N through a medium where messages can be <corrupted during
transmission. Informally, a directed edge in M or N corresponds
to either a sending or a receiving operation; an edge

corresponding to a sending (or a receiving) operation is labelled

S(d0oy

R(err

R{nack)

[

R{ack)

(a) M sends two types of data
messages ''d0" and "d1"

Wy
A
~

(¢) M: an abstraction of H.

Figure 1: An altermnating_bit protocol

S(nack

R{err)

R(d1)

R(d0)

Va

J 8

S(ack) N

A

(ep,-) f {naﬂi‘

(b) R sends two types of

messages ''ack" and

{(d) N:

"nack!"

an abstraction of H.

S{m) (or R(m) respectively) for some message type m. The two
machines M and N can be abstracted by M and N in Figures 1lc¢ and
1d respectively. Using ALGORITHM 1, discussed below, it can be
shown that the communication between M and N 1is deadlock~free;
hence, the communication between M and N is also deadlock-free.
Another application for this restricted class of communcating
finite state machines 1is in modeling some classes of self-timing
VLSI arrays. This leads to proving (or disproving) efficiently

that these arrays are free of communication deadlocks [6].

II. COMMUNICATING FINITE STATE MACHINES

A communicating finite state machine M is a directed labelled

graph where nodes are called states; each state in M is either

sending or receiving state. Each edge is labelled either "S" or

"R"™ depending on whether its tail state 1is a sending or a
receivng state. An edge labelled "S" (or "R") is called a sending
(or receiving respectively) edge. One of the states 1in M 1is

identified as its initial state; and all the states in M are

reachable by directed paths from 1its initial state. For
convience, we assume that M is "nonterminating", i.e., each state
in M must have at least one output edge.

Let M an N be two cimmunicating finite state machines. A golbal

state of M and N 1is an ordered tuple with four components

[v,w,x,y] where v and w are two states in M and N respectively
and x and y are two non-negative integers. Informally, a global
state [v,w,x,y] implies that if the execution of M has reached

state v, and the execution of N has reached state w, then the

imput channels of M and N have x and y messages respectively.

The initial global state of M and N is [v ,w ,0,0] where v and
0 0 0
w are the initial states of M and N respecively.
0
A golbal state [v,w,x,y] of M and N is a deadlock state iff (i)

both v and w are receiving states and (ii) x=y=0.

Let s=[v,w,x,y] be a global state of M and N, and let e be an
output edge of state v or w. A global state s’ is said to follow
s over e, denoted s-~e-=->s ", if the following four conditions are

satisfied:

#

1. If e is a sending edge from v to v’ in M then
’={V’,W,X,y+l]a

n

[S%]
.
jaul

f e is a sending edge from w to w in N then
s =[v,w ,x+1,vy].

3. If e 1is a receiving edge from v to v’ in M then x>1
and s’ =[{v ,w,x-1,y].

4., If e is a receiving edge from w to w’' in N then y>1
and s =[v,w ,x,y~-1].

#

Let s and s’ be two global states of M and N, s’ follows s if
there is a directed edge e in M or N such that s--e-->s’.
Let s and s’ be two global states of M and N. s° 1is reachable
from s if s=g’ or there exist states 8 ,8 ,...,8 such that s=s ,
1 2 r 1
s’ =g , and s follows s for i=1,...,r~1. The set of all global
r i+1 i

states which are reachable from the dinitial global state is

called reachable set.

Consider the following problem. "Given two communicating finite
state machines M and N whose reachable set is R, does R have a

deadlock state?” In [3], this problem is shown to be decidable.

The decidability algorithm creates a bounded tree called the
synchronization tree for M and N which is a finite representation
for the reachable set; the complexity of this algorithm is yet to
be determined. In this paper, we give a more efficient algorithn
to solve the problem, and show that this algorithm is polynomial

in time and space.

III. A SOLUTION

A global state[v,w,x,y] of M and N is called fair iff x=y.
Obviously, the initial global state of M and N is fair; also any
deadlock state is fair.

Let s=[v,w,x,x] bé a fair global state of M and N; and let d
and e be two output edges of states v and w respectively. A fair

global state s’ is said to fairly follow s over d and e, denoted

4

s==d,e==>s’, if the following four conditions are satisfied:

1. If d is a sending edge from state v to state v’ in M
and e is a sending edge from state w to state w' in N

.

then s’'=[v’ ,w’,x+1,x+1]}.

~

2. if d 1is a receiving edge from state v to state v’ in
M, and e is a sending edge from state w to state w in
N then s'=[v’ ,w ,%x,%x].

<

3. If d is a sending edge from state v to state v’ in M,
and e 1s a receiving edge from state w to state w’ in

s ’

N then s’'=[v’ ,w’,x,x].

4., 1f d is a receiving edge from state v to state v’ in
M, and e is a receiving edge from state w to state w
in N then x>1 and s’'=[v’,w’,x-1,x-1].

Let s and s’ be two fair global states of M and N. s’ fairly

follows s 1f there exist two directed edges d and e in M and N

z

respectively such that s==d,e==>s".

Let s and s’ be two fair global states of M and N. s’ is fairly

reachable from s if s=g’ or there exist fair global states

4

S ,8 ,+0+,8 such that s=s ,s’=s , and s fairly follows s for
1 2 T 1 r i+1 i
i=l,...,r—=1. The set of all fair global states which are fairly
reachable from the initial global state is called the fair set of
M and N.
For the next lemmas and theorems, let M and N be two

communicating finite state machines; and let R and F be their

reachable and fair sets respectively.

Lemma l: Let s and s’ be two fair global states of M and N. If s’

fairly follows s then s’ is reachable from s.

Proof: Assume that s=[v,w,x,x] and s’=[v’,w ,x",x"] and that
s==d,e==>s’. There are four cases to consider:

(i) Both d and e are sending edges:

Since s’ fairly follows s, then x'=x+1,
[v,w,x,x]-—d-->[v’,w,x,x+1] and

(v’ ,w,x,x+1]--e-=>[v’,w’ ,x+1,x+1]. So s’ is reachable from s.
(ii) d is a sending edge and e is a receiving edge:

Since s’ fairly follows s, then x’=x, [v,w,x,x)]-=d=-=>[v ,w,x,x+1]
and [v',w,x,x+1]--e~-=>[v’,w’ ,x,x]. So s’ is reachable from s.
(i1ii) d is a receiving edge and e is a sending edge:

Using a similar argument as in (ii), it can be shown that s is

reachable from s.

(iv) Both d and e are receiving edges:

r

Since s’ fairly follows s, then x>1, x"=x-1,
[v,w,x,x]-~-d==->[v’,w,x-1,x] and

[v',w,x-1,x]--e-=->[v’',w’ ,x-1,x-1]. So s’ is reachable from s. []

Theorem 1: Any deadlock state in R must also be in F, and vice

VEeETrSad.

Proof:

Part(i) Any deadlock state in F is in R:

Assume that s is a deadlock state in F. Then there exist fair

states 8 ,s...,8 ,such that s 1is the intial global state, s =s

0 r 0 T
and s fairly follows s ,i=0,...,r-1. From Lemma 1,if s
i+1 i i+1
fairly follows s then s is reachable from s . Therefore s is
i i+1 i

reachable from the initial global state, i.e., s is in R.

Part(ii) Any deadlock state in R is in F:

Let s be a deadlock state in R. Then there are states ,s8 ,...,8 ,

0 r
in R,such that s 1is the initial global state, s =s ,and
0 r

g =—-—f -8 ,i=0,...,r~1, where f is an edge in M or

i i+l i+1 i
N. Partition the sequence of edges F=f ,...,f , into two

1 r
subsequences of edges D=d ,...,d and E=e ,...,e where d (or
1 m 1 m’ i

e) is an edge in M (or N respectively). Since s 1is a deadlock

i T

state, the number of sending (or receiving) edges in D 1is equal

to the number of receiving (or sending respectively) edges in
E. So, m=m’=r/2.

Let 4 be from v to v in M, and e be from w to w in N,
i i i+1 i i i+1
i=1,...,m. Construct a sequence of fair states s’ ,...,s’” by the
0 m

following rules: (i) s’ is the initial global state, and (ii)

s’ =[v ,w ,x ,x] where x =x +1 if d and e are sending edges,
i i i i i i i-1 i i

X =X -1 if d and e are receiving edges, and x =x
i i-1 i i i i-1
otherwise. In order to prove that 8’ 1is fairly reachable from

m
s’ , 1t is sufficient to prove that each x is mnonnegative,
0 i
i=l,...,m. Since for 1=0,...,r-1, 8 1is not a deadlock state, so
i

the dith sending edge 1in D must appear 1in F before the ith

receiving edge in E. Also the ith sending edge in E must appear
in F before the ith receiving edge in D. This guarantees that for

i=l,...,m, x 20.
i

Theorem 2: Let s=[v,w,x,x] and s =[v,w,y,y] be two states in F
where x>y. If there exists a deadlock state which 1is fairly
reachable from s, then there exists a deadlock state which 1is

fairly reachable from s’.

Proof: Let s be a deadlock state which is fairly reachable from
d
s. Then there 1s a sequence of fair states s ,..,s8 such that
1 T
s=g , 8 =8 and s fairly follows s , i=1l,..,r-1. Assume that
1 r d i+1 i
s ={v ,w ,x ,x] where i=1,..,r, and x =x and x =0. Since x s
i i i i i 1 T i
decrease from x to 0, there should be a smallest integer k,

0<k<r, such that x =t and x =t—-] where t=x-y 1is greater than
N k k+1

zero. This implies that v and w are both receiving states, and

k - k
that for each x (i=1,...,k), x >t. Define s’ =[v ,w ,x -t,x -t],
i i i i i i i
i=1l,..,k. Hence s’ =s’, s’ fairly follows s’ , i=1,..,k~1, and
1 i+1 i

r

s’ =[v ,w ,0,0] is a deadlock state. Therefore a deadlock state
k k k

is fairly reachable from s’. [1

From Theorem 1, there is no need to generate all the reachable
states to check the existance of deadlock states; the fair states
are sufficient. From Theorem 2, there 1s no need to generate all
the fair states either; this 1s Dbecause after a fair state
[v,w,y,y] is generated then any fair state [v,w,x,x] where x>y
need not be generated. These remarks motivate the following
algorithm.

ALGORITHM 1:

Input: Two communicating finite state machines, M and N, and
two sets, called OPEN and CLOSE, of pairs (v,w) where v and w are
states of M and N respectively. (Initially OPEN and CLOSE are
empty)

Oﬁtput: If CLOSE has a pair (v,w) then [v,w,0,0] 1is deadlock
state of M and N else no deadlock state of M and N is reachable.

Steps:

1. for any state v of M and state Ww of N do MSGNO(v,w):="
endfor

2, if v and w are the initial states of M and N respectively

0 0

then MSGNO(v ,w):=0; add the pair (v ,w) to set OPEN
0 0 0 0

endif

3. while OPEN is not empty do
2. Remove one element from OPEN; let this element be (v,w);
b. Generate all fair states which fairly follow state
s=[v,w,MSGNO(v,w),MSGNO(v,w)];
c. if there are no such followers of s
then add (v,w) to CLOSE;
else

for each follower [v ,w ,x ,x] of s do

i i i i
if MSGNO(v ,w)>x
i i i
then MSGNO(v ,w):=x ;
i i i
if (v ,w) is not currently in OPEN
i i
then add it to OPEN;
endif
endif
endfor
endif
endwhile (]

IV. CORRECTNESS AND COMPLEXITY
The correctness of ALGORITHM 1 and its polynomial complexity

are established by the following lemmas and theorem.

Lemma 2: If CLOSE has a pair (v,w) at the termination of

ALGORITHM 1 then [v,w,0,0] 1s a deadlock state.

Proof: If a pair (v,w) 1is in CLOSE at the termination of
ALGORITHM 1, then a fair state s=[v,w,x,x], fairly reachable from
the initial global state of M and N, has been generated Dby
ALGORITHM 1 and that s has no followers. This implies that both
v and w are receiving states and that x=0;i.e., s 1is a deadlock

state. []

Lemma 3: Let MSGNO(v,w)=m, and MSGNO(v',w’)=m’ at the termination
of ALGORITHM 1. If fair state [v',w’ ,x’,x’] fairly follows fair
state [v,w,x,x] and x>m then either [v,w,m,m] is a deadlock state

or x'>m’.

10

Proof: From step 3.c., since MSGNO(v,w)=m at the termination of
ALGORITHM 1, the fair state [v,w,m,m] must have been generated in
ALGORITHM 1, and the pair (v,w) must have been added to OPEN
during the algorithm execution. If [v,w,m,m] is a deadlock
state, then the lemma is correct. Assume that [v,w,m,m] is not a
deadlock state; then all the fair states which fairly follow
[v,w,m,m] must have been generated in the algorithm. Since

7

(v ,w ,x",x"] fairly follows fv,w,x,x], a fair state
(v’ ,w' ,z",2z"], where z =m-(x-x"), must have been generated as a
follower of [v,w,m,m]. Since at the algorithm termination
MSGNO(v’,w’)=m’, then z'> m’. From z =m-(x~-x"),

4

z’> m’ and x2 m, so x'> m’. [1]

Lemma 4: If F has a deadlock state then CLOSE is not empty at

the termination of ALGORITHM 1.

Proof: Assume that s is a deadlock state in F. Then there are

fair states s ,...,s such that s 1s the initial global state of

0 T 0
M and N, s =s, and s fairly follows s , 1i=0,...,r~1. Let
T i+1 i
s ={v ,w ,x ,x] and let MSGNO(v ,w)=m at the termination of
i i i i i i i i
ALGORITHM 1. 1If for each i, i=0,...,r, [v ,w ,m ,m] 1is not a
S S D 1
deadlock state, then from Lemma 3, x 2>m , i=1l,...,r, since
i i
x >m =0. Since x =0 then m =0. Therefore [v ,w ,0,0] must have
0 0 T r r T

been generated in ALGORITHM 1; and because it has no followers,

the pair (v ,w) must have been added to CLOSE. On the other
r T

hand, if for some j, j=0,...,r , [v ,w ,m ,m] is a deadlock

j i 3 3

11

state (i.e., m =0) then (v ,w) must have been added to CLOSE.
| N
Therefore 1if F has some deadlock state then CLOSE must not be

empty at the termination of ALGORITHM 1. 1]

Lemma 5: ALGORITHM 1 terminates

Proof: It is sufficient to prove that the number of pairs added
to OPEN is finite; this is equivalent to proving the following
three assertions:
1. If a pair (v,w) is added to OPEN, then there exists a
nonnegative integer x such that [v,w,x,%x] is generated

in ALGORITHM 1.

2. For any fair state [v,w,x,x] generated in ALGORITHM 1,
the pair (v,w) is added to OPEN at most once.

3., If [v,w,x,x] is generated in ALGORITHM 1, then x<mn,
where m and =n are the number of states in M and N
regspectively.

Assertion{(l): From step 3.b., every global state generated in
ALGORITHM 1 is a fair state. And from step 3.c., a pair (v,w) is
added to OPEN only when [v,w,x,x] has been generated, where x is
a nonnegative integer.

Assertion(2): Assume that a fair state [v,w,x,x] has been
generated in ALGORITHM 1 and that the pair (v,w) is added to OPEN
at instant t. At this instant, MSGNO(v,w)=x. Since the value of
MSGNO(v,w) is monotonically decreasing (from step 3.c.), then at
any subsequent instant MSGNO(v,w)<x. If at a later instant
[v,w,x,x] is generated then (v,w) will not be added to OPEN (from

step 3.c.).

12

Assertion(3): Assume that s=[v,w,x,x] 1s generated 1in the
algorithm. Then there must exist fair states, s =[v ,w ,x ,x 1,

i i 1 i 1
i=0,...,r, generated in ALGORITHM 1 such that

1. s 1is the initial global state of M and N,

0
2. s =8,
r
3. s fairly follows s , i=0,...,r~=1, and
i+1 i
4. If for some j and k, 0<j<k<r, (v ,w)=(v ,w) then
j i k k
x >x (otherwise s cannot be generated in ALGORITHM I
i k

by this sequence).

Let P be the number of distinct pairs in {(v ,w),...,(v ,w)},
i 0 © i i
we prove that x <P which implies that x <mn, i=0,...,r~1 and
i 1 i
x<mn. The proof is by induction on 1.

- Initial step(i=0): x =0 and P =1; then x <P .

0 0 0 0
- Induction hypothesis(i<k): Assume that x <P .
k k
- Induction step{(i=k+1):
If (v , W Y=(v ,w) for some 3,0<3<k; then
k+1 k+l i
x <{x <P <P by condition 4 above. Otherwise, let
k+1 § § k+l1
(v s W Y(v ,w) for any 3, j=0,...,k;i.e.,
K+1 k+1 i3
P =P +1. Since x can be greater than x by 1 and
k+1 k K+1 k
x <p , then x <p . Il
k k k+1 k+1

Lemmas 2,4, and 5 establish the correctness of ALGORITHM 1; the

following theorem establishes its complexity.

13

Theorem 3: The time and space complexities of ALGORITHM | are
33

O(m n) and 0(mn) respectively.

Proof: (i)Time complexity

The number of followers for any global state is O(mn). Since for
each [v,w,x,x], the pair (v,w) is added to OPEN at most once, and
since x<mn by lemma 4, then the loop in step3 of ALGORITHM 1 1is

2 2
executed an O(m n) times. So the time complexity of ALGOTITHM 1

3 3
is 0(m n).
Notice that in order to achieve this time complexity OPEN should
be implemented as a boolean array "open" such that openl[v,w]=true
iff (v,w) is in OPEN, and a "counter" whose value is the current

number of elements in OPEN.

(ii) Space complexity

It is trivial to show that the spaces needed for MSGNO, CLOSE,

and OPEN are O(mn). []

14

V. CONCLUDING REMARKS

Detecting communication deadlocks for more than two
communicating machines where each machine sends one type of
messages to any other machine, 1s still an open problem in
general. In some cases, however, it can be shown that r
communicating machines (r>2) can reach a deadlock state iff any
two of them <can reach a deadlock state. In these cases,
ALGORITHM 1 can be wused to efficiently detect communication
deadlocks for the r machines. As an example, ALGORITHM 1 has been
used to verify that a number of VLSI arrays are free of
communication deadlocks [6].

In this paper, it is assumed that the outputs of any state in a
communicating finite state machine are all sending edges or all
receiving edges. Detecting communication deadlocks for two
mmachines where any state can have both sending and receiving

outputs is still an open problem.

15

REFERENCES
[1] G.V. Bochmann,"Finite state description of communication

protocols," Computer Networks, Vol 2.1978, pp.361-372.

[2] D. Brand, and P. Zafiropulo, "On communicating finite-state

machines," IBM Research Report, RZ 1053 (#37725) Jan 81.

[3] P.R.F. Cunha, T.S.E. Maibaum, YA synchronization‘ calculus
for message oriented programming,'" Research Rep. CS-80-43, Dept.
of éomputer Science, Univ. of Waterloo, Sep. 1980.

[4] A. Danthine, "Protocol representation with finite state

models," IEEE Trans on Comm., Vol.COM 28, No.4, April 1980,

pp.632-643.

[5] M.G. Gouda, and Y. Yu, "Designing deadlock-free and bounded
communication protocols," Tech. Rep-173, Dept. of Computer
Sciences, Univ. of Texas at Austin, June 1981.

[6] M.G. Gouda, "On proving that a VLSI array is free of

communication deadlocks,"”

in preparation.

[7] P. Merlin, and G.V. Bochmann, "On the construction of
communication protocols and module specification,”" Pub. 352,
Dept. dinformatique de recherche op’ erationnelle, Universit’e de
Montreal, Jan 1980.

[8] C.A. Sunshine, "Formal modeling of communication

protocols,”" USC/Inform. Sc. Institute, Research Report 81-89,

March 1981.
[9] P. Zafiropulo, et al., "Towards analyzing and synthesizing

protocols,”" IEEE Trans. on Comm., Vol. COM-28, No.4, April 1980,

pp.651-661.

