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ABSTRACT:

The capacity of an rth degree polynomial decision function has
been defined by Cover [1]. We extend the definition to hyperboxes (the
region {(Xl”"’XD)'aiSXLSbi})’ show it is a meaningful quantity, and
calculate the capacity as 4D/1n 2D where D is the number of dimensions

of the feature space.



Section 1. Introduction

A common problem in pattern recognition is the following: we have
two classes of objects and are given a number of points (of known
class) each corresponding to an object in a D-dimensional "feature
space'. We are then asked to classify new points whose class is
unknown. One method of solving such a problem is to use a decision
function. If possible, we can define a geometric figure (such as a
hyperplane) such that all the points of a given class are on the same
"side" of the figure. (We say the figure achieves a dichotomy.) New
points can then be classified by determining on which side of the
figure they fall. This method is not always feasible; for some
distributions of points there might be no figure of the given type

which separates the two classes.

The capacity of the class of rth-degree polynomial decision
functions has been defined by Cover ([1], [2], [9], see also [5]) as
follows: Given N points in a D-dimensional space, calculate the
fraction of the 2N dichotomies (one for each assignment of classes to
the points) that are achievable using polynomials of a given degree

(this fraction can also be viewed as the dichotomization probability;

i.e., the probability that a random dichotomy is achievable). As N
increases and D is held fixed, this fraction is first close to one,
then drops sharply to =zero. The point where this drop occurs 1is
defined as the capacity; it measures the number of points a function
can reasonably handle in a given number of dimensions. For rth-degree
polynomials, the capacity was found to be Z(Dgr). (Note that this is
twice the number of adjustable coefficients.) In particular, the

hyperplane has capacity 2D+2.



Cover’s work raises several questions: Is capacity a meaningful
quantity for other classes of decision functions? If so, what is their
capacity and how does iﬁ compare with that of the class of polynomial
functions? We discuss these questions for the class of hyperboxes (or
interval complexes [3], [4]) which is the region in D-space defined by
{xz(xl,...,xD)iaigxigbi}. (Note that the sides of the box must be
parallel to the axes.) The hyperbox is an interesting figure to study
because it is simple and natural and because it is an integral part of

the variable valued logic system of Michalski [3], [4], [8].

Empirical results were presented in [12] where a program was
written to calculate the dichotomization probability for small values
of N and D. The results indicated that the probability did drop

sharply, and a capacity of 1.4D+7 was conjectured.

In this paper we prove that the dichotomization probability for
hyperboxes does, in fact, exhibit the same behavior as it does for
hyperplanes. For a fixed D, it is initially one, then when N reaches
the capacity, it drops sharply to zero. Hence the capacity is a
meaningful quantity for hyperboxes. We show the capacity to be

asymptotically 4D/1n 2D (where "1ln" is the natural log).

This paper has the following organization: In Section 2 we
discuss how to decide when a dichotomy for a given set of points is
achievable. We also derive a formula for the dichotomization
probability and discuss informally how the capacity will  be
calculated. Sections 3 and 4 prove some technical lemmas, and Section
5 proves the main result. Section 6 is the conclusion and discusses

the significance of the result.



Section 2. An Equation for the Dichotomization Probability

In this section, we discuss how to determine if a given dichotomy
of a set of points is achievable. This is followed by some definitions
and an equation for the dichotomization probability. We conclude with

an informal discussion of how we will calculate the capacity.

We begin by defining a '"random" dichotomy of N points in D
dimensions. By "random”, we mean the following: the classes of the
points are independently chosen and each point has equal probability
of being in either class. The coordinates of the points are
independently chosen from an arbitrary continuous probability density,
and the value chosen for one coordinate of a point is independent of

its other coordinates.

It is easy to determine if a given dichotomy of a given
arrangement is achievable: we index through the dimensions. In a given

dimension, a class A (class B) point is said to be an outer A (outer

B) if it does not occur between the leftmost B (A) and rightmost B (A)
in that dimension. A class—A (class-~B) point is said to be active if,
in each dimension we have examined, it occurred between the leftmost B
(A) and the rightmost B (A) in that dimension. Once we find that a
point is an outer A or outer B in a given dimension, it becomes
inactive. Since an outer A (or outer B) can clearly be excluded from a
hyperbox containing all B’s (A’s), the dichotomy is achievable iff,
after considering all the dimensions, all the A’s or all the B’s are

inactive.



From this procedure it can be seen that only the order of the
points (from left to right) in each dimension determines if the
dichotomy can be achieved. It is independent of the exact coordinates
of the points, as long as their relative order remains the same.
Therefore, a distribution of N points can be described by D sequences
of length N, with the ith sequence listing the points from left to
right in dimension i. Since we assume the N points are independently

chosen, each of the N! orderings (sequences) is equally likely. This

holds for any probability density. Further, sequences for different
dimensions are independent, and since we desire the probability of
achieving a random dichotomy, each point is equally likely to belong

to a class A or class B.

Notation: N will always denote the number of points in the
arrangement, and D will denote the number of dimensions. Nearly all
the events and random variables we will define will depend on N and D,

but we will omit this to simplify notation.

Definition: The event CANBOX occurs if a random dichotomy of N points

in D dimensions is achievable.

Definition: Given an arrangement, let A, OA and OB be, respectively,
the number of class A points, outer A’s and outer B’s. (If a point is
"outer" in several dimensions each occurrence is counted.) Let the
events BOXAS (and BOXBS) occur if there is a hyperbox containing all

class A (class B) points but no class B (class A) points.

Since CANBOX occurs iff BOXAS or BOXBS occurs, we have the

following equation.



Prob(CANBOX) =
T Prob(A=n, OA=a, OB=b) * Prob(BOXAS or BOXBS|A=n, OA=a, OB=b)
n,a,b
= b Prob(A=n, OA=a, OB=b) *
n,a,b

[Prob(BOXAS|A=n, OA=a, OB=b) + Prob(BOXBS|A=n, OA=a, OB=b) -
Prob(BOXAS and BOXBS | A=n, OA=a, OB=b)] (2.1)

Now, note that for fixed values of A, OA, and OB, BOXAS and BOXBS
are independent events since BOXAS depends on the way the fixed number
of class A points are distributed among the fixed number of outer A’s
and BOXBS depends on the distribution of the fixed number of class B
points among the fixed number of outer B’s. Clearly, the way in which
the class A points are distributed does not affect the manner in which
the class B points are distributed. (Note that if A, OA and OB are
not fixed, the events are not independent; if BOXAS occurs, it is
likely we have a high number of outer A’s and, therefore a low number

of outer B’s, making BOXBS less likely.) Therefore, we have
Prob(CANBOX) =

b Prob(A = n, OA
n,a,b

a, OB = b) *

[Prob(BOXAS | A n, OA = a, OB = b) +
Prob(BOXBS | A = n, OA = a, OB =1b) -
Prob(BOXAS | A =n, OA = a, OB = b) *
Prob(BOXBS | A = n, OA = a, OB = b)] (2.2)

fi

i
ft

We now define an event which will approximate BOXAS and BOXBS but

will be more tractable.

Definition: Given n distinct objects, if ¢ choices are made with
replacement and each object is chosen at least once, the event

USEALL(n,c) occurs.



Lemma 2.1:

Prob(BOXAS | A

n, OA = a, OB =10 ) = Prob(USEALL(N~n, b))
and

Prob(BOXBS | A b) = Prob(USEALL(n,a))

il
i

n, OA = a, OB

Proof: We prove the first equation; the second is similar. We are
given N-n class B points and b outer B’s. We make the simplifying

assumption that the b outer B’s are chosen with replacement. This

allows the possibility of the same point occurring twice in the same
dimension. However since there are a very large number of class B
points (about N/2) and a very small number of outside B’s in a given
dimension (on the average 2, proven later) this assumption has only a

small effect on the probability. The result then follows because BOXAS

occurs iff all N-n class B points are used in b choices. [1]

From Lemma 2.1 and (2.2) we have

Prob(CANBOX) =

) Prob(A = n, OA = a, OB
n,a,b

i

b) *

[Prob(USEALL(N-n, b)) + Prob(USEALL(n, a)) -
Prob(USEALL(N-n, b)) * Prob(USEALL(n, a))] (2.3)



Having derived a tractable equation for the dichotomization
probability, we now discuss our strategy for calculating the capacity.
(The following is only a sketch of the proof which is given in
Sections 3, 4, and 5.) Our proof will rely heavily on the Law of Large
Numbers [13, p. 243]. With probability approaching one, we will have
about N/2 A’s and N/2 B’s. Further, we will show in Section 4 that the
expected number of outer A’s is 2D. The Law of Large Numbers will also
apply in this case and with probability approaching one, we will have
about 2D outer A‘s and 2D outer B’s. In Section 3, we will show that
Prob(USEALL(n, c)) is very close to zero if c¢<<n 1n n and very close
to one if ¢>>n 1n n. Hence we require about n 1ln n choices to use all
of n objects. Given N/2 A’s we will need about (N/2) In (N/2) choices
(i.e., "outer A’s") for every A to become inactive. Since we have 2D
choices in D dimensions and need (N/2) 1n (N/2), the capacity occurs

when 2D = (N/2) 1n (N/2) or when D = (N/4) 1n (N/2). In this case N =

4D/1n 2D, giving the capacity.

(Note that since we have a nearly equal number of A’s and B’s
that if we can (cannot) box the A’S, we almost certainly can (cannot)
box the B’s. Thus, the bracketed term in (2.3) {is 0+0-0*%0=0 or

1+1-1%1=1.)



Section 3. The Behavior of USEALL

In this section, we prove some lemmas about the behavior of

USEALL. We begin with an obvious one.

Lemma 3.1: If n1<n2 and c1>c2,

Prob(USEALL(nl,cl)) > Prob(USEALL(nZ,cz)) ]

For a given n, we will need to know how large c can be before
Prob(USEALL(n,c)) drops to approximately zero, and we must also prove
that Prob(USEALL(n,c)) drops sharply at this point. The natural
candidate for this point is the mean number of choices required to
choose all n objects. Let Tl’Tz""’Tn be the numbers of the choices
when an unchosen element 1is chosen, and let wizTi—Ti~1’ (where T0=O),
i.e. the "waiting time" between choosing the i-lst and ith unchosen
element. Clearly, E(Wi)=n/(n~i+1). Therefore the expected number of
choices required is

n n
E(W, + ..o + wn) = % n/(n=i+1) = I n/i T n 1ln n.
i=1 i=1

(We will refer back to this calculation in the conclusion.) We now

prove that Prob(USEALL(n,k)) does drop sharply at k=n 1ln n.

Lemma 3.2:

If ¢ < 1 then Prob(USEALL(n,cn 1n n)) --> 0
If ¢ > 1 then Prob(USEALL{n,cn 1ln n)) ——> 1.



k
Proof: Given n distinct objects, the number of the n sequences of

length k containing every object at least once can be easily
calculated wusing the Principle of Inclusion and Exclusion (see [11,
p. 101]) as

n i n k
y (=1) C ) (n-i)
i=0 i
n i n k
5o(=1) ) (n-1)
i=0 i
Hence Prob{USEALL(n,k)) =
K
n
Then for any ¢ > 0
n i n n-i ¢cn In n
lim Prob(USEALL(n,cn 1ln n)) = lim  (-1) ( Yy ) (1)
n ->© n =>w i=0 i n
n-i n i n -1
for large n, ( Y = (1 -") T e
n n
So (1) is approximately
n i n -i ¢ lnn
lim r (-1) ( ) e
n =->c i=0 i
n i n -ci
= lim T (-1) ( ) n
n =>® i=0 i
n n -1 i
= lim I ) €
n ~>o i=0 i n
1 n
= 1lim {1 - "¢ )
n =->x n

by the binomial formula. To evaluate this limit, set
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L = lim (1 - 7¢)
n =>w® n

then

1
In L = lim nln (1 - 7¢)

1 -c~1
=¢ (ecn )
1-n
= lim by 1°Hopital’s rule
n =>w
2
-1/n
cn
= 1im - ¢
n ->® n -1
c 1
= lim - ¢—=1 = lim ~7¢=1 again by 1’Hopital’s rule
n =>® cn n =)o n
Clearly,
if c<1l, InL ==-o0s0 L =20
-1
ifece=1, InL = -] soL =ce
ife>1, InL =0 solL =1 [
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We will require the following, now general version of Lemma 3.2

Lemma 3.3: Given a function g(n), let

L = %ig><n g(n)/(n 1n n) then

If L < 1 Prob(USEALL(n,g(n))) -> O

If L > 1 Prob(USEALL(n,g(n))) -> 1
Proof: We consider the case where L < 1; the other is similar.
Let L = 1 - x and choose any ¢ such that x > ¢ > 0. Then we have
two facts:
(1) There is an Nj such that for all n >Ny

gn)/(n Inn) <1 -x+ ¢

so g(n) < (1 - x +¢€)(n 1n n)

(2) There is an N, such that for all n > Ny

Prob(USEALL(n, (1 - x + €)(n 1In n)) < ¢

by Lemma 3.2 since 1 - x + ¢ < 1.

Then for all n > MAX(NI, Nz)
Prob(USEALL(n, g(n)))
¢ Prob(USEALL(n, (1 - x + ¢){(n 1n n))) by Lemma 3.1
<e

Hence Prob(USEALL(n, g(n))) -> 0

ey
[—
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Section 4. The Behavior of A, OA, and OB

In this section, we not only calculate the means of A, OA and OB

but show that with probability approaching 1 these random variables

are '"close" to their means.

Clearly, E(A) = N/2. By the Law of Large Numbers [13, p. 243],

for any €>0
Prob(|A/N - 1/2 | <€) ~> 1. (4.1)

To determine E(0OA), note that OA can be expressed as X}+..+X2D where
XZi—l is the number of A’s to the left of the leftmost B in dimension
i and XZi is the number to the right of the rightmost B. Clearly for

k>0
Prob(X; = k) T (A/M)K * ((N-A)/N)

we start at the leftmost (rightmost) position and choose points until
a B is encountered. Since N and A will be very large and E(Xi) will be

very small, we assume the points are chosen with replacement. This

gives very good approximation. For any given value for A, we have a
sequence of Bernoulli trials with probability of "success" (choosing a
class B point) equal to (N-A)/N. We require, on the average, N/(N-A)
choices to get the first success. Hence E(Xi)Z N/(N-A) - 1 = A/(N-A)
and E(OA)=2DE(X1): 2D(A/(N-A)). Since OA is the sum of random
variables with common distribution and finite mean, the Law of Large

Numbers applies and
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Prob{ |0A/2D - A/(N-A) | g ) => 1 (4.2)
for all €>0. Similarly

Prob(10B/2D -~ (N-A)/A | <€) =-> 1 (4.3)

Note that E(0A) and E(OB) are functions of A and that we cannot
simply plug E(A) into A/(N-A) in the formulas for E(OA) and E(OB). We
can, however, show that with probability approaching 1, A is "close"

to its mean and that E(0A) and E(OB) are in fact '"close" to their

means when A/(N-A) = (N~-A)/A = 1.

Definition: For any €>0 let the event T(g) be

g - gl < and 55 <1< e and (R -] <o
Theorem 4.1: For any © > 0, Prob(T(s)) -> 1.
Proof: For anv :+ > 0, define the following events:
U to be "I% - %ﬁ < % "
V to be ”]%%»» ﬁ%g‘ < % "
W to be ”}%%'» 1 < e
We show Prob(W) -> 1. From (4.1) and (4.2) we have Prob(U) -> 1 and Prob(V) - |

hence Prob(U and V) ~> 1. We now show Prob(W) > Prob(U and V) by showing that if
"U and V" occurs, then W occurs.

Given that U occurs,



<2"8)P‘~~A4<2+8)N
S0
1 £ 1 £
278 A 213
L, e-NA—1 0
2 8 2 8
Given that V occurs
A e 0A A ©
N-A 4 — 2D — N-A 4
SO
8-2¢ = OA _ 842¢ &
8+2¢ 4 — 2D — B-2¢ 4
Now W must occur because
5
8-2¢ € £ e £
el e L e - . - e >
8i2c ~ 4 ' "o ta a2
and (assuming < < 1)
842 .
s H H § {
e - - - .+, e e — @
gt T Pty gt

Therefore Prob (U and V) < Prob(W).

Similarly we can show

"
M
o,
o
=
i
|

< )y = 1

hence Prob(T(cg))

component events goes to 1.

o

4” ._} [ .,{,

2 8e-2e 4

Hence Prob(W) —

1

+ - ..4, B
] 15 I

as desired.

1 since the probability of each of the threc
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Section 5. Calculating the Capacity

In this section we use the results from Sections 3 and 4 to

calculate the capacity.

Theorem 5.1: Let D=c(N/4) 1n (N/2) then

If ¢ <1 then kig>&) Prob(CANBOX) = O
and
If ¢ > 1 then Jim = Prob(CANBOX) = 1

Proof:
Since Prob(CANBOX) =

Prob(T(€)) * Prob(CANBOX | T(e)) + Prob(~T(e)) * Prob(CANBOX | ~T(&))
(where ~T(g) is the complement of the event T(g))
we have

&19>m Prob(CANBOX) = kig>m Prob(CANBOX | T(e)) for all €>0 (1)
since Prob(T(c)) -> 1 by Lemma 4.l1. From equation (2.3) we have
Prob(CANBOX | T(g)) =
o5 p PTOb(A=n, OA=a, OB=b | T(£)) *

[Prob(USEALL(N-n,b) | T(€)) + Prob(USEALL(n,a) | T(g)) -

Prob(USEALL{(N~n,b) | T(€)) * Prob(USEALL(n,a) | T(e))]
Given that T(g) occurs

%-S)N‘i n ﬁ_(%+g)N
and

(1-e)2D < a,b < (1+€)2D
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Hence Prob(USEALL(N-n, b) | T{(e)) and Prob(USEALL(n,a) | T(g))

< Prob(USEALL((s-e)N, (l+e) ¢ (N/2) 1n (N/2))

by Lemma 3.1. Let u(N,¢) denote this last quantity. Hence Prob(CANBOX)

X
< n,a,b Prob(A=n, OA=a, OB=b | T(e)) * 2u(N,e)

= 2u(N,e) * g Prob(A=n, OA=a, OB=b | T(¢))

n,a,b

= 2u(N,€)
Hence

&i9>03 Prob(CANBOX | T(g)) < &19><» 2u(N,€) for all € > 0
Now

u(N,e) = Prob(USEALL(1/2-g)N, (l+e) c (N/2) 1n (N/2)))
making the substitution M = (1/2-g)N gives
u(N,¢e) = Prob(USEALL(M,g(M))) where

gM) = (1+e)e M (In M - 1In (1-2¢))/(1-2¢)

Hence

Jing o g0D/01 In 1) = (L+e)e/(1-2¢)

The limit is less than 1 if € < (l=c¢)/(24c). Therefore

lim u(N,e) = 0 if € < (1=e¢)/(2+c)
N ->x

(2)

(3)

Since ¢ < 1, (1=-c)/(2+c) > O hence an € > 0 exists for which (3) holds.

The result then follows from (1), (2) and (3).

[}
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Definition: We say f(N) = g(N) + o(h(N))
if £f(N) - 8(N) -> 0

Lemma 5.1: If D = (N/4) 1n (N/2) then

N = 4D/1n 2D + o(4D/1n 2D)

Proof:

N - 4D/1n 2D
4D/1n 2D

‘—‘—’""—“““N - ——
4D/1n 2D

N
NIn V2 /(ln VD) ¥ 1o In /2 ~ !

N In (N/2) + N In In (N/2) _ 1
N 1In (N/2)

Clearly, the N 1n (N/2) terms dominate and the limit is 1 - 1 = 0. []

Theorem 5.2: The capacity of a hyperbox is asymptotically 4D/1n 2D. []

Remark: 4D/(1ln 2D - 1n 1n 2D) gives an even better approximation
to the capacity since it will cancel N 1In 1In (N/2) term in the

numerator of the last equation in Lemma 5.1 and leave a lower order

term.
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Section 6. Conclusion

We have analytically calculated the capacity (as defined by
Cover) of the class of hyperboxes, an important component of the
variable valued logic system of Michalski and an interesting figure in
its own right. The capacity was found to be asymptotically equal to

4D/1n 2D (or, more exactly, 4D/(ln 2D = 1n 1n 2D)).

This calculation also revealed that the probability a dichotomy
of N points can be achieved using a hyperboxes has the same behavior
that for using hyperplanes. That is, it is close to one for a small
number of points and remains very close to one until N reaches the
capacity, where it drops sharply to zero. This, of course, was not

known a priori (the probability might slope very slowly down toward

zero). Therefore, capacity is a meaningful quantity for hyperboxes, a
figure very different from polynomial functions, indicating the

robustness of Cover’s definition.

For 1large D, the capacity 1is less than the capacity of
hyperplanes (which is 2D + 2). The case of small D is studied in [12]
where the capacity and efficiency of hyperboxes and hyperplanes is
compared and the hyperbox was found to be more efficient. A final
point of interest is the "law of diminishing returns" for hyperboxes.
For hyperplanes, each new dimension increases the capacity by a
constant amount. However, for a hyperboxes, successive dimensions
increase the capacity by smaller and smaller amounts (the derivative
of the capacity is [4 1n 2D - 4]/ln2 2D). This can be explained by our
calculation of the mean number of choices required to chooée all of n
distinct objects (see Section 2). The waiting times between choices of
unchosen objects (W;) get longer as more objects are chosen and it
becomes less likely an unchosen element will be chosen. Thus, later

dimensions are less and less affective in dichotomizing the points.



[13]
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