STORING MATRICES ON DISK FOR
EFFICIENT ROW AND COLUMN RETRIEVAL
James R. Bitner

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-195 April 1982



ABSTRACT:

We study the problem of storing a matrix on disk assuming that
the only accessing operation allowed is retrieving an entire row or
column. The cost for retrieving a row or column is the number of
different pages containing elements of that row or column. The cost of
a matrix is the sum of the cost for retrieving each row and column. We
give a non-obvious, non-trivial lower bound on the cost of storing a
‘matrix. We show the bound is tight by giving one algorithm that
asymptotically (for large matrices) achieves this bound if the page
size is in a given set of integers, and another that achieves it if
the page size is not in the set. We also analyze the asymptotic

fraction of disk space wasted by these algorithms.

ACKNOWLEDGEMENTS: I would like to thank Jay Misra and Andy Sherman for

their helpful discussions on this paper.



1. Introduction

This paper concerns methods of storing a matrix on disk such that
the “"cost"” of "accessing” the matrix is minimized. Early work on this
topic was done by McKellar and Coffman [1]. (Assume the disk 1is
divided into pages which can hold E_elements.) They considered two

methods of matrix storage:

(1) "row" storage where each row is stored on as many pages as
required. If the number of columns is not a multiple of s,
the leftover space is wasted.

(2) "submatrix” storage where the matrix is broken up into
submatrices of dimension W3] x V8|, and each 1s stored on
a separate page.

They evaluated both storage methods for performing the standard
algorithms for matrix traversal, transposition, addition,
multiplication and inversion and for Gaussian Elimination. Their cost
measure was the number of page faults incurred. They concluded that
submatrix storage was almost always much cheaper than row storage.
However, Moler [2] contested this conclusion because the pivoting
operation required in Gaussian Elimination drastically reduces the

advantage of submatrix storage.

Fisher and Probert [3] combined the idea of submatrix storage
with Strassen”s technique for matrix multiplication [4] to show that
multiplying two N x N matrices can be done using a total of O(Nz‘gl)
page fetches, only a constant times the number of multiplications

required. Thus, the page fetches are used very efficiently.



The previous work raises an interesting question: can we talk
about a matrix storage method that minimizes the "cost™ of "accessing”
a matrix? Can we prove that submatrix storage 1is "optimal”? This is

the question addressed by this paper.

Our result is to prove a non-trivial non-obvious lower bound on
the cost of accessing a matrix and prove that it 1s achievable by
demonstrating algorithms (similar to the submatrix storage method)

which attain the lower bound.

Naturally, for the problem to be tractable we must adopt simple
but realistic definitions for “cost™ and "accessing”. The cost
criterion will be the same as in [3], that is, the number of distinct
pages that must be fetched to do an "access”. This gives an
approximation to the number of page faults. An access will be defined
as retrieving an arbitrary row or column of the matrix with every row
and column having equal probability of being retrieved. Note that the
problem is not interesting if only rows (or columns) are to be
retrieved because the optimal method is trivially the row (or column)

storage method.

We now define the problem precisely.

Definition: The cost for retrieving a row or column is the number of
different pages that must be read in from disk to obtain all elements
of that row or column. The cost of a matrix is defined to be the cost
of retrieving each row and column, summed over all rows and columns.

This is motivated by the assumption that each row or column of the



matrix must be retrieved equally often. We also use the phrase "cost
of an algorithm” to mean the cost of a matrix stored according to a

given algorithm.

Notation: m and n will always denote respectively the number of rows
and columns in the matrix. s will denote the maximum number of matrix

elements that can be stored on a page on disk.

Definition: Let COST(m,n,s) be the cost of a given algorithm and let

COST*(m,n,s) be the optimal cost. Then the algorithm is asymptotically

optimal for s iff

1im COST(m,n,s)/COST (m,n,s) = l.
m,n=> o

Note that we are interested in an algorithm which is

asymptotically optimal for some fixed s.

Definition: Let WASTE(m,n,s) be the number of wunused locations 1in

partially full pages for a given algorithm. Then
lim WASTE(m,n,s)/mn is the asymptotic fraction of space wasted by
m,n->

the algorithm.

This paper has the following organization: Section 2 will give a
lower bound (approximately 2mn//S) on the cost of storing a matrix.
Section 3 will give an algorithm (Algorithm A) that asymptotically
achieves the lower bound for all s in a specified set (see Theorem
2.2). Section 4 gives Algorithm B, which is asymptotically optimal for
all s not in this set. The fact that two different strategies must be
used to achieve the optimum is dictated by the form of the lower bound

(see Theorem 2.1) which actually is the minimum of two quantities. One



quantity is minimized by Algorithm A and the other by Algorithm
B. Using the condition provided in Theorem 2.2 will allow us to easily
tell which algorithm will give the best results for a given s. We also
analyze the asymptotic fraction of space wasted by these algorithms.
For Algorithm A, it is at most 1/ /sl (which is 4 or 5% for reasonable
s), and for Algorithm B, it is zero. However, the storage scheme using
Algorithm B is more complicated, requiring more calculation to

determine which pages contain elements of a desired row or column.

Finally, we note that the following problem which is similar in
spirit to ours has been studied in [5, 6, 7]. Given an N x N array A
and a graph G, can the elements of A be mapped onto the vertices of G
such that the distance between the vertices of any two adjacent
elements of A is at most T? In other words, does there exist a mapping

that preserves the proximity of the elements of A?



In this section we prove a lower bound of approximately mn/2¥s on
the cost of storing a matrix. We begin by apportioning the cost of a

matrix.

Definition: The contribution (to the cost) of page 1 is the number of

rows in which an element of page 1 occurs plus the number of columns
in which an element of page i occurs. Let element (i,j) be on page

k. Then the contribution of element (i,j) is the contribution of page

k divided by the number of elements on page k.

Clearly, if there are k pages

k
COST = 7 contribution of page i (2.1)
i=1
. m n
" v 3 contribution of element (i,]) (2.2)
i=1 j=1

We proceed by bounding the contribution of a page, then of an

element. This will then bound the cost.

An m x n matrix can be viewed as an m x n chess board, where each
element occupies one cell. In considering the cost of a page, we can
assume (without loss of generality) that the elements of the page can
be contained in a rectangle where each row and column of the rectangle
contains at least one element of the page. This is because the row and
columns of the matrix can be permuted without changing the cost of the
matrix. If the rectangle has dimensions a x b, its cost is simply
a+ b, or, in other words, its semi-perimeter. The number of elements

in the page must be less than or equal to the rectangle”s area.



Thus, the problem of determining a lower bound on the
contribution of a page is the same as determining the rectangle with
minimum semi-perimeter having a given area (or greater). For kz
elements the answer is clearly a k x k square (with semi-perimeter
2k). If we have k2+1 elements, they no longer fit into the square,
and one of the edges of the rectangle must be pushed out a unit to
accommodate the additional element. Clearly, the best we can do with
k2+1 elements is to use a (k+1) x k rectangle (with semi-perimeter
2k+1, an increase of exactly one unit over the square). This is

sufficient for up to k2

+k elements. At this point we again have an
"exact fit". For k2+k+1 elements, we must expand to a (k+1) x (kt+l)
square which can be used for up to (k+1)2 elements, and so on. The

function for the minimal contribution of a page with t elements is

defined below.

Definition: Let t = k2+j with 1<j<2k+1

2k + 1
2k + 2

+IA

If 1< j
If k + 1

[

k, g(t)
j <2k + 1, g(t)

IAIA

Values where we have an "exact fit" are especially i1mportant,

motivating the following definition:

Definition: x is a square number 1iff it is of form kz

for some k.Z 1.

x is a rectangular number iff it is of form k2 + k for some k > 1.

(This notation 1is somewhat unfortunate; the sets of square and

rectangle numbers are disjoint.)

Notation: p will always denote the largest square or rectangle number

less than or equal to s.



Lemma 2.1: Let page i have t elements, then the contribution of page 1

is at least g(t) and at most 2t.

Proof: The upper bound is obvious since t elements can occur in at
most t rows and t columns. To prove the lower bound, suppose elements
of page i occur in a rows and b columns. The contribution of this page
is then a + b. Also, since each element occurs at the intersection of
one of these a rows and one of these b columns, there can be at most
ab elements and hence t < ab. We obtain a lower bound on the
contribution of this page by solving the following problem:

Minimize a + b
Subject to ab > t and a,b integer

Let t = k2+j where 1 < j < 2k+l. We consider two cases:

Case 1 (j € k): a=k and b=k+l is a feasible solution (i.e., ab > t)
with cost 2k+l. Suppose there is a solution with lower cost. Then at+b
< 2k. However t*ab2k2+j—a(2k—a)=(k—a)2 + j > 0. Hence t > ab, the

solution is infeasible, and the optimal cost is 2k+1l=g(t).

Case 2. (j>k): a=b=k+l is a feasible solution with cost 2k+2. Suppose
there is another solution with lower cost. Then a+b<{2k+l. However
since t—ab232+k+(j«k)—a(2k+1—a) = (k-a)(k-a+1) + (j-k) > O since j>k
and the product is non-negative for all integer k. Hence t>ab, the

solution is infeasible and the optimal cost is 2k+2=g(t). i

Lemma 2.2: The contribution of an element is at least min(g(p)/p,
g(s)/s) and at most 2, where p is the largest square or rectangle

number less than or equal to s.



Proof: The upper bound is obvious from Lemma 2.1. Consider the lower

bound. If an element occurs on a page with t total elements its

contribution is at least g(t)/t by Lemma 2.1. Hence, a lower bound of
min

the contribution of any element is 1<t<s g(t)/t. We now show that this

quantity equals win(g(p)/p, g(s)/s) which will prove the lemma.

Consider any j. If j is neither a square number nor a rectangle
number nor s, then g(j+l1) = g(j) and g(j+1)/(j+1) < g(3j)/j. Hence j
does not minimize g(j)/j. Suppose j is a square or rectangle number,
but not the largest one less than or equal to s. Let r be the next

largest square or rectangle number. We consider two cases:
Case 1. (j is a square number, say kz, and r is k2+k): Then

g(i)/3 - g(r)/r = 2k/k2 - (2k+1)/(k24k) = 1/(k%4+k) > 0

Case 2. (j is a rectangle number, say k2+k, and r is (k+1)2): Then

g($)/3 = g(r)/r = (2+1)/(Bk) - (2k+2)/(k#1)2 = 1/ (k%) > 0

In any case, g(j)/j > g(r)/r. Therefore, the only possibilities for

the minimum are s and p. []

This lemma has the following interpretation. We consider the page
containing the element in question and try to minimize the ratio of
the semi-perimeter to the number of elements enclosed. Clearly, if the
page does not have an "exact fit" (and is less than s), more elements
can be added to decrease the ratio. Hence we need only consider square

and rectangle numbers and s. To minimize the ratio, we make the area



as large as possible, so we use s or the largest square or rectangle
less than or equal to s. We have to consider s in case it is close
enough to the next higher square or rectangle number so that the
advantage of having a larger rectangle exceeds the disadvantage of not

having an "exact fit".

Theorem 2.1: The cost m x n matrix for page size s 1s at least

min(g(p)/p, g(s)/s) * mn where p is the largest square or rectangle

number less than or equal to s.

Proof: Since the cost of a matrix is the sum of the contributions of

its elements the result follows immediately from Lemma 2.2. [

The next lemma gives a simple test to determine which of g(p)/p

and g(s)/s is smaller.

Lemma 2.3: Let s = k2+j, 1<{j<2k + 1, let p be the largest square or

rectangle number less than or equal to s and suppose s#p. Then
(a) 1f p is a square number then g(p)/p < g(s)/s iff j<k/2

(b) If p is a rectangle number then g(p)/p < g(s)/s 1iff j <
k(3k+2)/(2k+1).

Proof:

]

Case 1. (p is a square number, say kz, and s k2 + j3; 1 <j<k~-1)

Then g(p)/p - 8(s)/s = 2k/k% - (2k+1)/(k2+j)

]

(23-k) [k (k2+3)
Case 2. (p is a rectangle number, say k2+k, and s = k% + R

k +1 < j < 2k): Then



10

il

(2k+1) / (k24+k) = (2k+2) /(k2+3)
[(2k+1)§ = k(3k+2)]/[(k2+k) * (kZ+]))

g(p)/p - 8(s)/s

In either case, the theorem is obviously true. []

Remark: Note that g(p)/p < g(s)/s for about half the values of s.

Finally, we show that to prove a storage algorithm is optimal, it

suffices to simply count the number of elements whose contribution is

non-optimal.

Definition: For a given algorithm for storing a matrix, let NO(m,n) be
the number of elements of an m x n matrix whose contribution is
non-optimal (i.e., greater than min(g(p)/p, g(s)/s)). Such an element

is called a non—-optimal element.

Lemma 2.4: An algorithm is optimal if

NO(m,n)
lim ———— = (0 for all s.
m,n => o mn
Proof:
Consider any s, then
COST(m,n)
lim 7 - 1

*
m,n => o COST (m,n)

COST*(m,n)+2NO(m,n)
< lim * - 1
T m,n <> w COST (m,n)




11

where to obtain COST(m,n), we charge each element the optimal
contribution and charge the non-optimal elements 2 additional units
(since their contribution is at most 2 by Lemma 2.2). By Theorem 2.1,
COST*(m,n)Zcmn, where ¢ is a function of s which does not depend on m

or n. Therefore this 1imit

2NO
< linm (mm) g
m,n => o cmn
COST(m,n)
Hence lim *

m,n => ® COST (m,n)



12

3. An Asymptotically Optimal Algorithm for g(p)/p < g(s)/s

In this section, we give an algorithm that is asymptotically
optimal if g(p)/p < g(s)/s, where p is the largest square or rectangle
number less than or equal to s. This algorithm causes a fraction (at

most 1/|/s |) of the disk space to be wasted.

The strategy we must employ is clear from the proof of Theorem
2.1; we must have the contribution of nearly all elements be g(p)/p.

This requires partitioning into rectangles of dimension a x b where a

and b are defined as follows:

Notation: Let s = k2 + j where 1 <j<2k+1 and let p be the largest
square or rectangle number less than or equal to s. If p=k2, let
a=b=k. If p=k2+k, let a=k and b=k+l. (Note ab=p and atb=g(p).)

Finally, let y=m mod a and z = n mod b.

Algorithm A:

Step 1: Partition the submatrix consisting of the first Lm/a_J* a rows
and Ln/bJ * b columns into blocks of dimension axb. (Marked "A" in

Figure 3.1.) Put each block on a different page on disk.

Step 2: If y#0, partition the elements in the last y rows into blocks

(marked B) of dimension y xl”s/x_. Put all the leftover elements (if

any) in a separate block (marked C). (If y=0 step 2 does nothing.)

Step 3: Partition the elements in the last z columns (except those in
the last y rows) into blocks (marked D) of dimension Lg/gj x z. (If
z=0, step 3 does nothing.) Again, put all the leftover elements into a

separate block (marked E).



13

Theorem 3.1: Algorithm A is optimal if g(p)/p < g(s)/s.

Proof: The contribution of each element in a type A block is (a+b)/ab
= g(p)/p. Thus, the only non-optimal elements are those not in blocks
of type A. There are at most mz + ny < ma + nb such elements. Since a
and b are constants for a given s, applying Lemma 2.4 proves the

theorem. {1

Theorem 3.2: Asymptotically the space wasted by Algorithm A is (s-—
ab)/ab which is at most 1/L/§J.

Proof: There are mn/ab type A blocks, each with waste s-ab. We can
ignore the non-optimal elements because the fraction of non-optimal

elements goes to 0. Finally, since s < (a+l)b, {(s—ab)/ab < 1/a =
/|5 |- [l

Note that the size of (s—ab)/ab depends on how close s is to the
next larger square or rectangle number. In fact, if s is a square or
rectangle number, the waste 1s 0. In any case, the waste is no more

than I/L/E_thich is 4 or 5% for reasonable s.

Finally, a desirable property of Algorithm A is that it is very
easy to compute which blocks need to be retrieved to obtain a given
row and then assign the proper elements from each block to the

appropriate positions in an array.



14

4. An Asymptotically Optimal Algorithm for g(s)/s < g(p)/p

We now discuss an algorithm that 1is asymptotically optimal if
g(s)/s < g(p)/p where p is the largest square or rectangle number less
than or equal to s. Asymptotically the fraction of space wasted 1is

ZeTO.

The strategy of the last section will not give an optimal result
here. Since g(s)/s < g(p)/p, the contribution of nearly every element

must be g(s)/s. This requires partitioning into rectangles of

dimension a x b where a and b are defined as follows:

Notation: Let s = k% + j where 1<j<2k+l. Tf j<k let a=k and b=k+l.
Otherwise let a=b=k+l. (Note: a and b are defined differently in
Section 3). We have ab>s and g(s)=a+tb. Finally, let y = m mod a and

z = n mod b.

Clearly, if s is not a square or rectangle number, there will be
elements inside of each rectangle that cannot be put in that page. In
order for the algorithm to be asymptotically optimal, these leftover
elements must also be assigned to pages in an efficient manner. The
algorithm does this by grouping all the leftover elements together and

recursively applying itself to the submatrix formed of these elements.
Algorithm B:

Step 1l: Partition the submatrix consisting of the firstl_m/gj a rows

and]_n/QJb columns (again, a and b are different from those in Section

3) into blocks (marked "A" in Figure 4.1) of dimension a x b. If ab#s



15

there will be leftover elements. Further partition each block so that
the last s—-ab elements in the last column are in a separate block
(marked "“B"). These blocks are grouped together to form a submatrix,
and Algorithm B is recursively called to partition it. (The algorithm
does not require that the submatrix it is partitioning be contiguous,
only that the coordinates of the elements of submatrix can be
described as a Cartesian product of indices. This is because permuting
the rows and columns of a matrix will not change its cost, and hence,

any such submatrix can be permuted into a contiguous submatrix.)

Step 2: If y#0 partition the last y rows as in Algorithm A (into

blocks marked "C" and "D").

Step 3: If z#0 partition the last z rows as in Algorithm A (into

blocks marked "E” and "F”).

Figure 4.2 gives a complete example of a matrix stored by

Algorithm B.

Theorem 4.1: Algorithm B is asymptotically optimal if g(s)/s < g(p)/p.

Proof: We obviously have
NO(0,0) 0]
NO(m,n) = mz + ny + NO((ab-s) L@/a Llﬂn/?l)

(which is hard to handle). Define a simpler recurrence NO”(m,n) by

il

NO7(0,0) 0

H

NO” (m,n) = (m+n)b + NO“(m, | n/b])
Clearly, NO” is monotonically non-decreasing with respect to m and
n. We now prove NO(m,n) < NO“(m,n) by induction on m and n. Clearly

NO(m,n) < NO"(m,n) if m=0 or n=0. Consider any m,n>0. Since



16

NO(m,n) = mz + ny + NO((ab—s)[_m/gJ,t_n/EJ)

(m+n)b + NO“((ab-s) | m/a |, LP/QJ) by induction
(m+n)b + NO’(m,l_n/QJ) by the monotonicity of NO~
NO“(m,n)

A A

The recurrence for NO” is easy to solve. By repeated substitution we

have (we get an upper bound by ignoring the floor signs)

NO"(m,n) < (min)b + (mn/b)b + ... + (m+n/bk)b where k = log, n
k i
=mb log n+ nb J 1/b
b i=0

< mb logyp n + nb * b/(b-1)

Hence  1lim NO(m,n)/mn < 1lim NO” (m,n) /mn
m,n —> o m,n —>

< lim [mb log n + nbz/(b~1)]/mn =0
—  m,n => ® b

and Lemma 2.4 is applied to prove the theorem. ]
Theorem 4.2: The asymptotic fraction of space wasted by Algorithm B is
Zero.

Proof: Every optimal element is stored on a full page and the fraction

of non-optimal elements goes to zero. [

Finally, we note that an algorithm to retrieve rows and columns

under this scheme is not prohibitively complicated.



17

5. CONCLUSION

We have shown that min(g(p)/p, g(s)/s) * mn is a lower bound for
storing an m x n matrix where s is the page size and p is the largest
square or rectangle number less than or equal to s. To prove the bound
is tight, we exhibited two algorithms: one which is optimal if g(p)/p
< g(s)/s and the other if g(s)/s < g(p)/p. We also analyzed the space
wasted by these two algorithms. One wasted almost no space and the
other only a small fraction. Further, neither scheme is so complex

that it cannot be implemented efficiently.



18

P4

1

W

D

s - - -

- - - v — —

por - -

e - . -

foe - - . - - o

w

w

M

m

%*
Y
L

X

Figure 3.1

A partitions a matrix

How Algorithm



19

\&L

1

)

E

B

e ey P

P e v — v - —

[l S TR

e S SN

- e - - -

- - - - - -

Figure 4.1

How Algorithm B partitions a matrix

(a and b are defined differently in Figure 3.1)



Assuming s = 5 (so a

04101410 1 1 1 2|1 2 2 {15115
WVO 0 1911 14192 {2 (1911515
3 3 31 4 4 4 5 5 5 116 167
3 3119 4 41190 51 5 21116} 16
6 61 6 7 7 71881811717
6 6 1201 7 7120} 8|8 |20}17 17
9 9 9 1011011011 111111818
9 g {20110} 10}20}|11¢11 21 1818
12 i2 12112 1241311311313 11314
Figure 4,2
A 9 X 11 matrix stored using Algorithm B.




21

REFERENCES

A. C. McKellar and E. G. Coffman, Organizing Matrices and Matrix
Operations for Paged Memory Systems, CACM 12 (1969)
153-165.

C. B. Moler, Matrix Computation with FORTRAN and Paging, CACM 15
(1972) 268-270.

P. C. Fischer and R. L. Probert, A Note on Matrix Multiplication

in a Paging Environment, Proc. ACM Natiomal Conf.,
1976, 17-21.

V. Strassen, Gaussian Elimination 1s Not Optimal, ﬁﬂﬂgiﬁ%gyi
Mathematik 13 (1969) 354-356.

A. L. Rosenberg, Preserving Proximity in Arrays, SIAM J. Comput. 4
(1975) 443-460.

R. A. DeMillo, S. C. Eisenstat and R. E. Lipton, Preserving
Average Proximity in Arrays, CACM 21 (1978) 228-231.

D. Bollman, On Preserving Proximity in Extended Arrays, SIAM
J. Comput 5, 318-323.



