PROVING TERMINATION FOR
DISTRIBUTED COMPUTATIONS
CH DAGs

Mohamed G. Gouda
pDepartment of Computer Sclences
University of Texas at Austin

Austin, TX 78712

TR-197 March 1982

ABSTRACT

We consider a computation where each node of a DAG is assigned a
state. If the states of two adjacent nodes (l.e., those placed at the
ends of a directed edge) do not satisfy some predefined condition,
then these two states can be changed in a predefined manner to satisfy
the condition. The computation terminates 1f the states of any two
adjacent nodes in the DAG satisfy the predefined condition. Many
algorithms in computer networks and VLSI systems can be stated in this
fashion. We discuss two sets of sufficient conditions which guarantee
that such a computation terminates on any DAG. Some practical
examples, e.g., sorting on a DAG and computing the longest path of a

DAG are used to illustrate the results.

KEYWORDS : Computer network, DAG, distributed computation,
termination, termination metric, VLSI systems.

I. INTRODUCTION

A computation in a computer network or a VLSI array is usually
associated with a directed graph. The graph establishes an adjacency
relationship between the different sites in a computer network or
between the different cells din a VLSI array. The computation
progresses 1in parallel along each edge of the graph until a global
termination state 1is reached, 1f at all, where every two adjacent
nodes satisfy some predefined condition. Examples of such computations
are adaptive routing in a computer network [3], and sorting in a VLSI

array [2].

In this paper, we present a simple model to specify a class of
these computations assoclated with connected, directed, acyclic graphs
{or DAGs for short). We also discuss two sets of sufficlent conditions
that these computations do terminate. The resulting specifications and
the sufficient conditions arve all independent of the underlying DAGs;
thus the considered computations can be correctly implemented on any

DAG regardless of its topology or size.

11. THE MODEL

A distributed computation C is a tuple of four components:
C=(Q,p,r,s)

where Q is a set of states,

domain and range are as follows

p ot QwQ-=> {true, false},

T is a function, called the backward next state of
C, whose domain and range are as follows

r: Q¢xQ -—>0Q, and

s is a function, called the forward next state of
C, whose domain and range are as follows

s : QxQ->Q.
The functions p, r, and s must satisfy the following one step
condition for any x and y in Q.

1 p(x,y) mopl(r{x,y), s{x%,y))

where ~11s the logical "not” operator, and
=3 is the logical implication cperator.

Let C = (Q,p,r,s) be a distributed computation; and let G = (N,E)
be a DAG where N is its set of nodes and F is its set of directed
edges. The state q of C on G is a function whose domain and range are
as follows

g : N =-=->Q
An edge {(i,3) in G 1is said to Dbe satisfied at state gq if

p(q(i),q(3)) = true; otherwise it is unsatisfied at q.

Let q and ¢~ be two states of C on G; and let (i,3j) be a directed

edge in G. g follows q~ satisfying (i,j), denoted q---(i,j)-->q~, if

the following four conditions hold.

1. Edge (1,3) is unsatisfied at q.

2. q7(1) = r({q(i), q(3))-

#

3..97(3) = s{q(d), q(i).

4. For any node k other than i or } in G, g {k) = q{(kJ.

Let q and q° be two states of C on G. g7 follows q, denoted

g-->q”, 1if there 1s a directed edge (i,3) in G such that

q-==(1,3)-->9".

Let q and q~ be two states of C on G. q” is reachable from q if

either q7=q or there exist states gqy,.-.,G; of C on G such that g¢=q;,

q"=q,, and for i=l,eee,r=1, q4==2q441-

Example 1. Sorting: Consider the distributed computation C whose four

components are as follows.

i

Q the set of real numbers, and
for any x and y in Q, p(x,y) true iff x > vy,
r(x,y) =y, and
s{X,y) Ko

it

Note that since ——pl{x,y) = x < ¥y,
p(r(x,y), s(x,y)) =y > x, and
x {ymDy > X,

then the one step condition is satisfied for any x and y in Q.

Starting from any state q, of C on a DAG G, a state qg must be
reached such that for any directed edge (i,3j) in G, qf(i)zqf(j).
Notice that for some G, there are two or more states which satisfy
this condition; and any one of them can be reached

nondeterministically. (1

Example 2. Longest Path Computation: Consider the distributed

computation C whose four components are as follows.

(= the set of natural numbers, and
for any x and y in Q, p{x,y) true iff y =oy x>y + 1,
r{x,y) y + 1, and
S(an) A

i

]

It is straightforward to show that the one step condition is

satisfiled.

Define a state 9, of C on a DAG G such that qo{i)=1 if node 1 has
no output edges in G, and qe(i)=0 otherwise. From q,» a state q. must
be reached such that for any node 1 in G, qf(i) = the length of the

longest path which starts from node 1. I

Example 3. Multiplication: Consider the distributed computation C

whose four components are as follows.

Q = the set of integers, and
for any x and v in Q, p{x,y) = § 1,
r(x,y) = x * y, and
s(x,¥)

|
rr
]
e
0]
b
i
)
e
il

it
-
B

It is straightforward to show that the one step condition is

satisfied.

A DAG G is called rooted 1f it has exactly one node io without
input edges and any node in G can be reached by a directed path from
i

o3 node 1. 1is called the root of G. From any state q, of C on a

rooted DAG G, a state qg must be reached such that

I
qf(i) = 5 in ¢ qO{j) se. 1f 1 is the root of G, and

i

1 .« otherwise. i

Let C be a distributed computation; and G be a DAG. Let § be the

set of all states of C on G. A termination metric m for C on G is a

function which satisfies the following two conditions:

1o m : § ~-> N, where N is the set of nonnegative integers

2. For any two states q and g, of C on G, if qy-->qp then
m(qy) > m(gy).

A distributed computation C terminates on a DAG G if there is a

termination metric for C om G. C terminates if for any DAG G, C
terminates on G. Notice that this definition of termination for a
distributed computation 1is similar to that of sequential program
termination [1]. In the next two sections, we discuss two sets of

sufficient conditions which guarantee that a distributed computation

terminates on any DAG.

TI1. WAVE TERMINATION

Let C = (Q,p,r,s) be a distributed computation; and assume that

p,r, and s satisfy the following three conditions for any x, y, and =z

in Q.
“p(x,y) A px,z) ™ plr(x,y),2) (1)
—1p0y) A ply.z) ™ p(s(x,¥).2) (2)
1 p(x,y) A plz,y) ™ plz, s(x,¥)) (3)

In this section, we prove that conditions (1), (Z}, and (3) are
sufficient to establish that C terminates on any DAG G. First, we

prove the following three lemmas.

Lemma 1: If gy---(1,j)-->q, then for any edge (i,k) in G, 1f {(i,k) is

satisfied at qy then (i,k) is satisfied at dge

Proof: Assume that (i,k) is satisfied at qq but not at q,. Thus node

k is different from node j.

i

since (i,j) is unsatisfied at qy, p(qy(i), q (1))
since (i,k) is satisfied at qq, pl{gi (1), qy(k))
since (i,k) is unsatisfied at qq, p(gq(1), qo(k)) = false.

false.

i

true.

since qp(1) = r(qy(i), q(3)) and qy(k) = qy(k), we have
—p(q (1), qy(II A play (1), q(k)IA—p(r(q (1), qy(D), qy(k)) = true
which contradicets (1). {1

The following two lemmas have similar proofs to that of Lemma 1.

Lemma 2: If q;---(i,j)-->q,, then for any edge (j,k) in G, 1f (3,k) is

satisfied at q; then (j,k) is satisfled at q,. i1

Lemma 3: If qi-——(i,j}~~>q2§ then for any edge (k,3) in G, 1f (k, i) is

satisfied at qy then (k,j) is satisfied at g-. [
1 YA

Let g be a state of C on G; and let M(q) denote the set of all
node pairs <i,3>, in G, which satisfy the following condition. There
is a directed path d, with at least one edge, from node 1 to node j
such that the last edge in d is unsatisfied at state q. Let [M(q)]| be
the number of node pairs in set M(q). For amy state g, OSJM(Q)!S the
total number of node palrs in G. Therefore, to show that M)l is a
rermination metric for C on G, it is sufficlent to prove the following

theoren.

Theorem 1: If gy-->q, then Mgl > Mgy |

Proocf: Since q;~—>q2, then there is a directed edge (i,3j) in G such

that q1~°~(i,j)-—>q2. The set ﬁ(ql) can be partitioned into two

M{qy) = Mo | My
{<k,j>| there is a directed path from node k
to node i in G}.

i

where Ml

From Lemmas 1, 2, and 3, any directed edge which is satisfied at

q; but not at q; must be of the form (k,i). Therefore, the set M(qy)

can be partitioned into two not necessarily disjoint subsets.

M(qp) = Mg |J M
{<k,i>| there is a directed path d, with at

where Moy

least one edge, from node k to node 1
in G such that the last edge in d is
unsatisfied at qz}.

For any node pair <k,1> in M,, there is a corresponding node pair
<k,j> in M;. On the other hand, the node pailr <i,j> in M; has no

corresponding pair in M,. Then, iM}i >]Mzi and M(qp 1 > iM(qz)]. [}

It is straightforward to verify that the distributed computations
of examples 2 and 3 satisfy (1), (2), and (3); then by Theorem 1, each

of them terminates on any DAG starting from any initial state.

From Lemmas 1 to 3, the three conditions (1), (2), and (3
guarantee that when an edge becomes satisfied, only edges preceding It
can become unsatisfied. In other words, a "satisfaction wave' c¢an
proceed backwards along the DAG edges wuntil all edges become
satisfied, i.e., a termination state. A satisfaction wave which
proceeds forward along the DAG edges will also lead the computation to
a termination state at which all edges are satisfied. To guarantee
this forward wave, condition (2) should be replaced by the following

condition for any x, y, and z in Q.

— p{x,y) A p(z,x)> p(z, r(x,y)) (&)
Using arguments similar to those discussed earlier, it can be shown
that conditions (1), (3), and (4) are sufficient to establish that a

distributed computation terminates on any DAG.

The distributed sorting of example 1 violates both conditions (2)
and (4). Therefore to establish 1its termination, another set of
sufficient conditions for termination 1s needed. This 1is discussed

next.

1V. SORTING TERMINATION

Let ¢ = (Q,p,r,s) be a distributed computation, and assume that

p, r, and s satisfy the following four conditions for any x, y, and z

in Q:

—p(x,¥) Ap(z,x) Dplz,r(x,y)) v [p(z,y) A p(z,8(x,¥))] (5)
—p(x,¥) A p(x,2) =>p(r(x,y),2) (6)
—p(x,y) Ap(z,y) =plz, s(x,¥)) (7)
—p(x,y) Ap(y,z) D pls(x,y),2) vy [Mp(x,z) A p(r(x,y¥),2)] (8)

In this section, we prove that these four conditions are sufficient to

establish that C terminates on any DAG G.

Let g be a state of C on G. A node palr <i,3> in G is said to be

potentially satisfied at g if there is a directed path from node i to

node 3 and p{g(i), q(3)) = true. In the following lemmas, Ilet

qz~~—(i,j)—->q2; and let k be any node other than i and j in G.

Lemma

4: If <k,i> is potentially satisfied at qy, then either <k,i> is

potentially satisfied at gq, or <k, j> 1is potentially satisfied at q,

but not at qj.

Proof:

at q

since
since
since
since

since

(by contradiction) Assume that <k,i> is potentially satisfied
but not at q, and that <k,j> is potentlally satisfied at g;.
(i,3) is unsatisfied at qy, p(qi(i), qi(j)) = false.
<k,1> is potentially satisfied at qq, p(qi(k), qy(i)) = true.
<k,i> is potentially unsatisfied at qy, p(qy(k), qy(1)) = false.
<k, 3> is potentially satisfied at qi, p(qi(k), ql(j)) = frue.

ap(k) = qy(k), and q(i) = r(q;(i), q;(3)), then

—p(qy (1), 91()) A play, k), qy(i)) A—pplap(k), rlqp(i), q1(3I) A
pla1{k), q1(3)) = true.

contradicting (5). Similarly, if <k,j> 1is potentially unsatisfied at

q,, then (5) is contradicted. 1]

The following three lemmas can be proved using proofs similar to

that of Lemma 4.

Lemma 5: If <i,k> 1is potentially satisfied at gy, then it 1is
potentially satisfied at qy. [1
Lemma 6: If <k,j> 1is potentially satisfied at g, then 1t is

potentially satisfiled at q,. [l

10

Lemma 7: If <j,k> is potentially satisfied at q;, then either <{j,k> is
potentially satisfied at qy or <i,k> 1is potentially satisfied at 95

and not at qq - {1

Let N{g) be the set of all potentially satisfied node pairs at
state q of C over G; and let P be the set of all node pairs in
G. Since for any q, N(q) is a subset of P; then O<|P|-IN(q)[<|P]. To
show that |[P|-|N(q)! is a termination metric for C on G, it is

sufficient to prove the following theorem.

Theorem 2: If q;-->q, then iP!—iN(ql)i > |PI-iN(q5)

Proof: Since N{ql) and N(qz) ave subsets of P, 1t 1is sufficient to
prove that iN(ql)I<§N(q2)§. This can be done by showing that every
element in N(ql) corresponds to a distinct element in N(qz), and that
there is an element in N(qz) which has no corresponding distinct
element in N(ql)e Since q1~~>q2; then let (i,j) be the directed edge

such that q1~—~(i,j)-~>q2.

Part 1. Every element in N(ql) corregponds to a distinct element in
N(qz): Let <k,1> be an element in N(g;). There are five cases to

consider.

a. Neither k nor 1 is 1 or j3:
Since <k,1> 1is in N{ql), then p(qi(k)g Q1<1)> = true. Then p(qz{k>,
qz(i}} = true since qz(k) = ql(k) and qz(l) = q2(1)° Then <k,1> is in

N(Qz}'

11

b. 1 is 1i:
<k,i> is in N(ql). If <k, 3> is also in N(ql), then <k,i> is in N(qz),

else <k, j> is in N(gy) by lemma 4.

c. k is {i:

<i,1> is in N(ql). Then <i,1> is in N{qz) by lemma 5.

d. 1 is j3:
<k, j> is in N(qq). Then <k, j> is in N{gy) by lemma 6.

e. k is jJ:
<,1> is in N(ql). If <i,1> is also in N(ql), then <j,1> is in N(qz),

else <i,1> is in N(qz) by lemma 7.

Part 2. Element (1,j) in N(q,) has no corresponding element in N{ql).

Therefore [N(q;)I<IN(qy)land|Pl=[N(qy)[>IPI-N(q)1. (1

1t is straightforward to verify that the distributed sorting of
example 1 satisfies conditions (5) to (8). Then by Theorenm 2 it is
guaranteed to terminate on any DAG. Also, the distributed
multiplication of example 3 satisfies these conditions and is
guaranteed to terminate on any DAG; this is our second proof that this

computation terminates.

V. CONCLUDING REMARKS

This paper demonstrates that ideas (such as termination metrics)
which were originally developed for sequential computations can be
applied to distributed computations given a "convenient” model for the

latter.

12

The proposed model in this paper separates between a distributed
computation and its underlying DAG encouraging one to reason about the
computation independently of 1its DAG. This has led to sufficient
conditions for termination which are independent of the underlying DAG

and the initial state.

The model can be extended to represent VLSI arrays with different
types of interconnections between cells. In this extension, the
underlying DAG has two (or more) types of edges. Each edge type has a
different predicate and different backward and forward next state
functions. With this extension, a distributed computation becomes

dependent on the topology of its DAG but not necessarily on its size.

ACKNOWLEDGEMENT : The author 1is thankful to K. F. Carbone for her
careful typing.

REFERENCES

[1] S. Alagic and M. Arbib, The design of well-structured and correct
programs, Springer Verlag, 1978.

[2] T. Chen, V. Lum, and C. Tung, "The rebound sorter: an efficient
sort engine for large files,” 4th VLDB Proceedings

1978.

[3] D. Davies, et. al., Computer networks and their protocols, John
Wiley & Sons Ltd., 1979.

