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ABSTRACT

Consider a system of two or more finite state machines which
communicate exclusively by exchanging messages. We discuss two
sufficient conditions to ensure that such a system is deadlock-free.
The first condition ensures that at any deadlock state of the system,
there exist exactly two machines which are deadlocked with one
another. The second condition ensures that no two machines in the
system can become deadlocked with one another. A number of VLSI arrays
satisfy these two conditions; therefore, their freedom of

communication deadlocks can be established based on our result.

KEYWORDS: Communicating finite state machines, communication
deadlock, verification, VLSI array.



I. INTRODUCTION

Systems of processes which communicate exclusively by exchanging
messages should be free of communication deadlocks. This has motivated
a number of methodologies [4,6] to prove that such systems are
deadlock~free. One methodology which has been widely used in the
verification of communication protocols [1,3,5,10] can be summarized
as follows. First, abstract each process in the considered system by
suppressing its internal data structures and internal operations and
by replacing each of its data-dependent decisions by a non-
deterministic (i.e., arbitrary) decision. The abstract process is
called a communicating finite state machine; and it contains only
sending and receiving operations. Second, prove that the resulting
system of communicating finite state machines is deadlock-free; this
is sufficient to establish that the original system is deadlock-free.

(The converse is not necessarily true.)

In this paper, we focus on the second step of the above
methodology; in particular, we discuss a technique to prove that a
system of communicating finite state machines is deadlock-free. The
technique is based on two sufficient conditions which if satisfied by

any system, then the system is deadlock-free.

The paper is organized as follows. Systems of communicating
finite state machines are defined in Section II. The first and second
sufficient conditions are discussed in Sections III and IV
respectively. In Section V, we state the result that these two
conditions are sufficient to establish freedom of deadlocks for any
system of communicating machines. In Section VI, two examples of a
vector multiplier and a rebound sorter are shown to be deadlock-free

based on our technique. Concluding remarks are in Section VII.



II. SYSTEMS OF COMMUNICATING MACHINES

A system is a set of two or more communicating finite state
machines (to be defined later). Let S be a system of r (r > 2)
communicating finite state machines Mj,...,M.. We reserve the two
variables i and j to be used as indices for the machines in S; thus,

1<1, j<r.

A communicating finite state machine My in S is a directed

labelled graph with two types of nodes namely, sending and recelving

nodes. A sending node to machine Mj (j # 1) has one or more output

edges; each of which is labelled s;. A receiving node from machine M.

3 3
(i # j) has one or more output edges; each of which is labelled rse

One of the nodes in My is identified as its initial node; and each

node in M; is reachable by a directed path from its initial node.

A state t of § is an v x 1 matrix. An entry tij in the ith row
and jth column of t is defined as follows. If 1 = j then tij denotes a

node in machine My else tij is a nonnegative integer.

0

The initial state t~ of § is a state whose entries are defined as

follows. If i = j then tijO denotes the initial node in machine My

0 =
else tij = 0,

Let t and t~ be two states of S. t” is said to follow t by Mi

sen@igg_gg'Mj (i#3) iff the following three conditions are satisfied:




1. Every entry in t~ equals dits corresponding entry in ¢
except possibly for tj4;” and tji"
2. tj; is a sending node to Mj; and there is a directed edge

from tiy

i to tii °

Let t and t~ be two states of S. t” is said to follow t by Mi

receiving from Mj (i#3j) 1ff the following three conditions are

satisfied:

1. Every entry in t~ equals its corresponding entry in t
except possibly for t;4;” and tij"

2. ty4 is a receiving node from M;; and there is a directed

J’
edge from tyy to ty; .

3- tij > O and tij’ = tij - lc

Let t and t~ be two states of S. t” is said to follow t if there

exists M; and Mj (i#3) in S such that t~

sending to Mj or by Mj; receiving from Mj.

follows t either by M;

Let t and £t~ be two states of S, t” is said to be reachable from

¢ if either t” = t or there are states tl,...,t? such that t = tl,

£7 = t?, and tX*! follows t% for 1 <k < n - 1.

A state t of S is said to be reacﬁégig if it is reachable from

the initial state of S.

k distinct machines Mil,...,Mik (k < 2) in 8 are sald to be

deadlocked at state t of S iff the following k + 1 conditions are

satisfied:



1. t, i is a receiving node from Miz.

2. tiziz is a receiving node from Mi3‘

ke t; ; 1is a receiving node from M; .
Ipiyg 8 i

k+tl. ¢ = 0.

. = f{f, . T s, = L
i1, 1yi4 ipig

A state t of S is said to be a deadlocked state iff there are k

(k > 2) distinct machines in § which are deadlocked at t.

System S is deadlock~free if no deadlock state of S is reachable.

In the next section. we discuss a sufficient condition to ensure
that t is a reachable deadlock state of S iff there are two distinct

machines in S which are deadlocked at t.

I11. BINARY SYSTEMS

The system graph G for a system S is a directed graph which

satisfies the following two conditions:

1. For each machine Mi in S8, there is a distinct node 0y in
G.

2. There is a directed edge from n; to n.

i i in G 1iff Mi has a

sending node to Mj‘

A system S is called binary iff any directed cycle with distinct

nodes in its system graph has exactly two nodes.



Many VLSI arrays can be represented as binary systems; Figure 1
shows the system graphs for four such arrays. For the reader’s
convenience, we have labelled the directed edges in these system
graphs to show the information being exchanged between different
machines; for example, in Figure la, machine X; sends x; values to
machine P; and receives acknowledgement "ack” messages from it. Two of
those arrays, namely the vector multiplier (Figure la) and the rebound

sorter (Figure 1d) are discussed in more detail in Section VI.

Theorem 1: Let § be a binary system. For any deadlock state t of 5,

there are two distinct machines which are deadlocked at t.

Proof: (by contradiction) Let t be a deadlock state of 8; and assume
that there are k (k > 2) distinct machines Mil’.‘.’Mik_ which are

deadlocked at t. Therefore, the following k conditions are satisfied.

1. tili1 is a receiving node from M; .

2. tigig is a receiving node from MiB.

ke t: 3 1is a receiving node from M; .
idy g i,

From 1 to k, there is a directed cycle, in the system graph of S,
which consists of the distinct nodes Ny 0y sese,Dy where k > 2.
1 *2 k

This contradicts that S is binary. {1

From Theorem 1 if no two machines in a binary system S can become
deadlocked with one another, then § is deadlocked-free. In the next
section, we discuss a sufficient condition to ensure that no two

machines in a system S can become deadlocked with one another.
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IV. MACHINE PROJECTIONS

A node in machine Mi is called an M.-node iff it is either a

sending node to Mj or a receiving node from Mj.

A machine My is said to be well-formed with respect to another

machine Mj iff the following two conditions are satisfied:

1. There exists exactly one Mj~node n in My such that if a

directed path from the dinitial node of My reaches an
Mj~node then it must reach n before reaching any other

Mj~node. Node n is called the initial Mi-node in M;.

2. There exists a directed path from any Mj~node to some

Mj—node in Mi.

Let Mi be a well-formed machine with respect to another machine

Mj. A projection Pij 9£.Mi onto Mj is a communicating finite state

machine constructed from My by the following two steps.

1. For any Mj—node in Mi
do add a corresponding node to Pij’ The node in Pij which

corresponds to the initial Mj~node in My is called the

initi§%>node of Pij‘

2. For any directed path, without internal Mj—nodes, from an

Mj—node m; to an Mj—ncde mo in Mi

do add a directed edge to Pij from node n; which
corresponds to m; to node ng which corresponds to myp
provided there is no edge from n; to ny already in Pij’
The added edge is labelled 41 (or rji) if m; is a sending

(or receiving respectively) node.



Let M; and Mj (1 < j) be two well-formed machines with respect to
one another; and let Pij and Pji be the projections of M; onto Mj and
of Mj onto Mi respectively. The set {Pij, Pji} is a system; its state
$ 1s a 2 x 2 matrix whose entries are defined as follows: 8§11 is a
Pji~node in Pij’ S99 1is a Pij-node in Pji’ and $1o and S9q are

nonnegative integers. The above definitions of initial state, follows,

reachable and deadlock sStates are all still valid in this case.

The concept of "machine Projection” is related to the concept of
"protocol projection” discussed in [2,8]. However, the development and

application of this concept in this context is unique to our work.

Theorem 2: Let M; and Mj (1 < j) be two machines (in a system S) which
are well-formed with respect to one another; and let Piﬁ and Pji be
-~

the projections of M; onto Mj and of Mj onto Mi respectively.

If S can reach a state t where:

1. t:4y is an Mj-node in M;, and

2. tjj 1s an Mj-node in Mj

then the system {P,

lj,Pji} can reach a state s where:

3. S11 1s the P..-node (in Pij) which corresponds to ty

ji i

4, S99 is the Pij-node (in Pji) which corresponds to tjj’ and

5. S99 = tij and Sy1 = tji'

Proof: Assume that system S can reach a state ¢t which satisfies
conditions 1 and 2. Therefore, there are states to,tl,tz,...,tn where
t0 is the initial state of §, P = t, and t**! £5170ws tk for

k=0,...,n - 1. The distinct nodes 1in tiio’tiil”"’tiin form a



directed path, in My, which starts from the initial node and ends at
the Mj-node t;;" in M;. This path should include the initial M j-node
in M. Let the Mj~nodes in this path be tiia’tiib""’tiic’tiin where
0<a<b... <c<n and tiil is the initial Mj—node in M;. From the

definition of P,

i Pij must contain a directed path whose nodes are

UgsUpyees,Uy,Uy where u, is the initial Pji~node (in Pij) which

corresponds to tiia’ up is the Pji—node (in Pij) which corresponds to

t..b

ij » and so on. Also, u_, is the initial Pji~node in Pij’ Similarly,

a
isti i R P A SPUPL R e
the distinct nodes in tJJ ’tJj N ,tjj ,tJJ where
X - 'y .
0<x<y ... <z <n and tjj is the initial M;-node in MJ Pji must

contain a directed path whose nodes are Vx’vy""’vz’vn where v, is

i i i LR Sand ) i QIX
the initial PlJ node (in le) which corresponds to CJJ > Yy is the

Pij—node (in Pji) which corresponds to tjjy"" and so on.

The two integers tijn and tjin can be computed as follows:
tijn = The number of sending nodes in (tjjn,tjjy,...,tjjz)
-~ The number of receiving nodes in (tiia’tiib""’tiic)
= The number of sending nodes in (vx,vy,...,vz)
~ The number of receiving nodes in (ua,ub,...,uc),
and
tjin = The number of sending nodes in (ua,ub,..,,uc)

- The number of receiving nodes in (VX’Vy""’Vz)

Therefore, if system S can reach state t", then system {Pij’Pji}

can reach a state s where, s;; =u,, S99 = Vs Sy9 = tijn’ and



Corollary 1: If system {Pij’Pji} is deadlock-free, then system S can

never reach a state at which Mi and M, are deadlocked.

i
Proof: (by <contradiction) Assume that the system {Pij’Pji} is
deadlock-free, and that system S can reach a state t at which Mi and
M. are deadlocked. State t must satisfy the following three

J
conditions:

l. ty; is a receiving node from Mj in M.

2. t.. 1 receiving node from M, in M..
i3 s a re g i in j

3. tij = tji = 0.
From Theorem 2, system {Pij,Pji} can reach a state s which satisfies

the following three conditions:

1. $11 is a receiving node from Pji in Pij‘
2. S99 is a receiving node from Pij in Pji'
3. 819 =897 = 0.

But state s is a deadlock state for {Pij’Pji}' Contradiction. [1

V. SUFFICIENT CONDITIONS FOR FREEDOM OF DEADLOCKS

The next theorem follows immediately from Theorem 1 and Corollary
1; it states sufficient conditions for freedom of deadlocks for a

system of communicating machines.

Theorem 3: Let S be a system of r communicating finite state machines

Mpyeee,Moe
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if
1. S is binary, and

2. for any i and j (1 < i, j<r, and i#j): M; and Mj are

well-formed with respect to Mj and My respectively, and the

system {P Pji} is deadlock~free.

ije

then S is deadlock-free. []

It is straightforward to verify that a system S is binary by
examining its system graph G. It 1is also strailghtforward to verify
that each machine Mi in 5 is well-formed with respect to each other

machine in $; and to construct its projection P; 4 onto each other

J
machine Mj in S. A recent polynomial algorithm [8] can be used to
verify that each system {Pij’Pji} is deadlock-free; its time is

3 3 ;
O(pij Py Y and its space is O(pij pji) where pij and pji are the

numbers of nodes in Pij and Pji respectively.

In the next section, we illustrate by two examples how to use

Theorem 3 to verify that a VLSI array is free of deadlocks.

VI. EXAMPLES

A. A Vector Multiplier:

Consider the vector multiplier whose system graph is in Figure
la. It consists of n Xi machines, n Yi machines, and n+2 Pi machines.

The machine Xy (i=1,...,n) 1s shown in Figure 2a. At each cycle, Xy

sends an Xy value to Pi’ then waits to receive an acknowledgement

2

ack” from it. Notice that an output of a sending node to P, 1is
labelled sP;; and an output of a receiving node from P; is labelled

rP;. The machine Y; in Figure 2c is identical to the machine Xy

(1Y

(i=1,...,n) except for one “implicit"” difference, namely X; sends x;

values to P while Yy sends ¥y values to Py



Initial node

aP

(a) Machine Xi (b) Machine Pi (¢) Machine Y

(i=1,...,n) (i=1,...,n) (i=1,...,n)

{(¢) Machine P

: Machine P,
(d) Machine 0 -

Figure 2. Communicating machines in the vector
multiplier whose system graph is in
Figure la,
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The machine Py (i=1,...,n) is shown in Figure 2b. At each cycle,

Py receives an X4 value from Xy, and sends an ack to it. Then, P

i-1
receives a partial sum s; = jgl xj* yj from Py_1, and sends an ack to

i

it. Then, Py receives a yy value from Yy and sends an ack to it. Then,

" - % s +
Py sends a partial sum S;.4 Sy + x;% yy to Pin and waits to receive
an ack from it. The two machines Py and P,iq shown in Figures 2d and

2e respectively are special cases of Py in Figure 2b.

To prove that this system is deadlock-free, it is sufficient by

Theorem 1 to prove the following three assertions:

(i) For i=l,...,n, the two machines Xi and P; can never beconme

deadlocked with one another.

(ii) For i=l,...,n, the two machines Y; and Py can never become

deadlocked with one another.

(iii) For i=1,...,n+l, the two machines Py_; and Py can mever

become deadlocked with one another.

By Theorem 2, assertion (1) can be proved by showing that for
i=1,...,n, the system {XPi,PXi} is deadlock-free, where XP, 1s the
projection of Xy onto Py and PXy is the projection of P; onto X
Figure 3a shows the two machines XPy and PX,, it is straightforward to

show that they are deadlock-free [81.

Similarly, assertions (ii) and (iii) can be proved by showing
that the two systems {YPi,PYi} and {PPi,PPi} in Figures 3b and 3¢
respectively are deadlock-free. This completes the proof that the

vector multiplier in Figure 2 is deadlock~free. [1



Initial node

sPX I rPX. rXP, isXP | rYP , | sYP, sPY rPy .
i i i i i ; i i i
PX, PY,
i i
(a) The system {XPi, PXi} (b) The system ?PY{, YP{‘
(i=1,...,n) (i=1,...,n)

PP
i-1
PP
i
rPP
q=

(¢) The system {PP, ., PP}
” i~} i

(i=1,...,n+1)

Figure 3. Three projection systems for the vector
multiplier in Figures la and 2.
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B. A Rebound Sorter:

Consider the rebound sorter whose system graph is in Figure 1d.
It comnsists of n Xy machines, and n+2 Pi machines. The machine Xy
(i=1,...,n) is shown in Figure 4a. At each cycle, X; sends an x4 value

to then waits to receive the ith largest value in the set of

P,
i

values {xl,xz,...,xn}.

The machine P; (i=l,...,n) is shown in Figure 4b. The two outputs
of node 5 constitute a nondeterministic decision which is an
abstraction of a data-dependent decision as discussed in Section

I. Machines Py and P4 in Figures 5c and 5d are special cases of Py

in Figure 4b.

Notice that the projections XP; and PXy {(i=l,¢..,n), of Xy onto
Pi and of Pi onto Xi respectively, for the rebound sorter are
identical to those in Figure 3a for the vector multiplier. Similarly,
the projections PPy 4 and PPy (i=1,...,0+1), of Py 1 onto Py and of Py
onto Py 4 respectively, for the rebound sorter are identical to those
in Figure 3c for the vector multiplier. Therefore, following a similar

argument as in the previous example, it can be shown that the rebound

sorter is free of communication deadlocks. {1

Vii. CONCLUDING REMARKS

We have presented two sufficient conditions which can be used in
conjunction with the algorithm in [8] to prove that a system of
communicating finite state machines is deadlock-free. This technique
has been applied successfully to a number of systems, including the

VLSI arrays whose system graphs are in Figure 1.



Initial node

rP

i+1

(a) Machine Xi (b) Machine Pi
(i=1,...,n) (i=1,...,0)

SPl rPn

) Maoh c b
(¢) Machine PO (d) Machine }n+1

Figure 4. Communicating machines in the rebound
sorter whose system graph is in Figure 1d.
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The technique is attractive for VLSI arrays in particular since
the resulting proofs are independent of the array sizes. For example,
the vector multiplier of size "n" (Figure 2) is shown to be deadlock-
free by showing that three projection systems of fixed sizes (Figure
3) are deadlock-free. Also, the rebound sorter of size "n” (Figure 4)

is shown to be deadlock-free by showing that two projection systems of

fixed sizes (Figures 3a and 3b) are deadlock—free.

Another attractive feature of this technique is that different
systems can have the same projection systems and so can be proved
deadlock-free by the same proof. For example, the projection systems
for the rebound sorter (Figure 4) are part of the projection systems
(Figure 3) of the vector multiplier (Figure 2). Therefore, proving
that the vector mulltiplier is deadlock-free implies that the rebound

sorter is deadlock-free.

The technique discussed in this paper 1s not applicable to
important classes of VLSI arrays, e.g., two-dimensional rectangular
and hexagonal arrays [7], since these arrays do not correspond to

binary systems. Other techniques to deal with such classes are still

needed.,
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