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Chapter 1

Background

The process of using a computer to analyze the morphology of the
cells during the freezing and thawing can be divided into two basic
steps: extracting the cell from the image background, and quantifying
the two-dimensional structure of the cell. The- cell extraction is
essentially an image segmentation problem involving partitioning of an
image into meaningful regions (in this case, the cell of interest is one

region, everything else is another region).

Previous work in this area has been done primarily by
presearchers interested in automated cell classification. Typically
there is reasonably good control over the appearance of the scene being
analyzed: the cells are well separated on a featureless background and
differential stains are used to give the cells predictable optical
densities. Under these conditions, a combination of isodensity contour
tracing and heuristic searching can effectively trace the boundaries of

the cells of interest [3, 4].

In a problem similar to the current one, yeast cells were
analyzed morphologically as they were frozen by Diller and Knox [7]. In

these experiments, as in ours, the cells are viable and cannot be
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stained. The image background is not featureless; rather, it becomes

very cluttered with ice boundaries. Diller and Knox used a boundary-
tracking approach to find the cells, but it was fairly sensitive to
contrast fluctuations from image to image, and significant preprocessing

of the image was required.

We will present and discuss a new system which can segment and
analyze images of freezing granulocytes more effectively than has been
possible previously. Scene segmentation is presented as a multi-phase
process of detecting and enhancing edges, recognizing shapes, and
tracing cell boundaries. Feature analysis of the extracted object is

discussed.

The computational system presented has five main steps. First,
there is the input and representation of the digitized image. Second,
an edge detector and enhancement scheme is used to find the edges of
objects in the digitized image. Third, we perform shape recognition by
using a Hough transform to separate edges belonging to the cell from
edges belonging to other objects in the image. Fourth, the outline of
the cell is completed using a Heuristic Search boundary tracing
algorithm. Finally, the two-d imensional features of the cell boundary
are analyzed. The individual steps of the analysis procedure are

described as follows.



Chapter 2

System Input/Output

Source Iimages are obtained as 35-mm black-and-white negatives
from a motor-driven camera mounted on the cryomicroscope [6]. The
negatives are digitized using a bellows close-up attachment coupled to a
video camera. The resulting 512 pixel x 512 pixel (a pixel is a picture
element) digital images are reduced by U-pixel averaging to 256 pixel x
256 pixel image frames; each pixel is represented as an eight bit (256)
gray-level value (O=very black and 255=very white). Input to the image
processing system consists of a sequence of digitized frames of the

freeze-thaw sequence under congideration.

Qutput from the image processing system consists of visual image
display as well as more traditional printed information. The image
display is viewed on a Grinnell System 512 pixel x 512 pixel color
monitor, and is comprised of the original black and white image frame
with the traced boundaries of the cell outlined in red. The printed
output consists of the results of the feature analysis: cross-sectional

area, perimeter, and shape descriptions for the traced cell.




Chapter 3

Object Extraction

The first stage of the analysis is the recognition of a specific
cell in the overall image. To this end the image is segmented into two
regions; "cell" and “hbackground”, This process takes place in four
phases, as explained in detail in the following =sections: edge
detection, noisy edge removal, shape recognition, and cell boundary

tracing.

Digital images take up a tremendous amount of computer memory:
a 256 x 256 pixel image requires 32K (32768) bytes of memory; associated
data arrays needed for processing bring the figure up to 128K bytes,
larger than the addressing capabililties of the computer which we are
using (a PDP 11/34). Processing the entire image therefore means keeping
most of the data on secondary (disk) storage and actively operating on
only a small portion of it at any one time. Becess times for disk
storage media are typically 3 to 4 orders of magnitude slower than for
primary memory; therefore processing images in this fashion 1is very
slow. If we focus the system’s attention on the neighborhood of the

cell, we gain substantial processing speed for two reasons:

1. The size of the window and associated data arrays are small




enough to Kkeep entirely in the core memory, saving data-

access time.

2. The amount of computation needed is greatly reduced since the

window is much smaller than the full image.

For this reason, the segmentation process for a particular cell
is confined to a localized area of the image, centered approximately
over the expected location of the cell. The size and location of this
window is set by the operator in the first frame of a freezing sequence;
in subsequent frames it may be set either by operator interaction or
pased on the size and location of the cell in the previous image frame,

with allowances for possible cell motion and size changes.

3.1 Edge Detection

The process of cell recognition begins with the detection of
edges in the image. A classical approach to edge detection is to
compute the intensity gradient (the first derivative of image intensity)
at each point in the image, and to designate as edges those points with
large gradients. The Kirsch operator [8, 14] is used to compute the
intensity gradient as follows: for each image point X, let a,D;C 0040
represent the image intensities at the points surrounding x, as shown in

Figure 1. The gradient, G(x), is then

right a+b+C
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left = e+f+g
down = g+h+a
G(x) = (max(lright-left!,!up-down!))/3 (1)

Figure 1: The Kirsch gradient locations around x.

Peaks in the first derivative are easily found by looking for
changes in sign of the second derivative. This method is extremely
noise-sensitive, however, as the slightest fluctuations in intensty will
produce local peaks in the first derivative. This sensitivity to noise
can be controlled by using the Laplacian operator to compute the two-
dimensional second derivative over arbitrary sized neighborhoods around
each pixel in the image [9, 14]. A square-wave approximation to the
Laplacian is computed for each image pixel, and the result is scanned
vertically and horizontally, marking as edges those pixels where the
value of the Laplacian crosses zero (the second derivative changes

sign).

I Sk(x) = sum of image intensities in the k x k neighborhood of

x, the Laplacian at x can be approximated by:




Lap(x) =[S, /K121=[ (S-S )/ (k22-k1%)] (2)
X Ki K2
Ki
K2
Figure 2: The Laplacian neighborhoods around X.

Figure 2 shows the relationship of the inner and outer
neighborhoods (k1,k2 respectively) around point x. The choice of values
for the k1,k2 parameters is an important one. Smaller neighborhoods will
give finer detail on actual object boundaries, but also have a higher
sensitivity to noise, with resultant false edges. Larger neighborhoods
will distort the object boundaries and have a greater loss of fine
detail. Figure 3 shows an image of frozen granulocytes; a 50 pixel x 50
pixel window containing a granulocyte is outlined in black, Figure 4 is
an expanded view of the window image; the Laplacian zero-crossing edges

(neighborhoods k1=3, k2=7) for the window are shown in Figure 5.

These processed images contain strictly binary edge-markers,
only indicating either edge or no-edge. They lack valuable information
about the edge, such as its strength and direction. The strength of an
edge is simply the intensity gradient at the edge; the direction of an

edge is the direction of maximum positive intensity change at the edge.



Figure 4: A 50 x 50 pixel window of the image.
In order to retain this useful information, we convert the binary edges,
detected by the Laplacian zero-crossing methed, to directed edges
composed of a strength,direction pair. The strength (intensity
gradient) is computed using the Kirsch operator (equation (1)); at the
same time, the edge direction is determined by finding the brightest
{i.e., highest gray level) 3-pixel bar of the four shown in equation
(1), and associating it with one of the four directions shown in Figure

6.



Figure 5: The Laplacian zero-crossing edges.

Figure 6: The four defined edge directions.

For example, if ‘right’ is the brightest bar, the edge direction

is 1; if “up” is the brightest bar, the edge direction 1is 2, and s©

forth.
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3,2 Noisy Edge Removal

The next step in extracting the cell from the background is to
clean up the initial edges. There are two types of unwanted edges as

typified by:

1. changes in intensity in the image that are detected as edges
by the Laplacian zero-crossing algorithm, but which are not

readily visible to the eye and do not represent "real" edges.

>. real edges that are part of objects other than the cell of

interest (e.g., ice boundaries).

Edges of the first type are weak edges, that is, they have a low
intensity gradient and they can be removed by an intensity gradient
thresholding scheme, Because we desire a system that is insensitive to
contrast fluctuations (from frame to frame), we need a relative rather
than an absolute definition of "weak"; for each image we must choose a
gradient tnreshold value below which edges are "weak". To determine the
relative threshold level, the edges are histogrammed by the magnitude of
their intensity gradient. A threshold value can be derived from this
histogram based on a specification of what fraction of edges to reject;
edge points with an intensity gradient less than the threshold value are
discarded. The relative rejection parameter can be specified a priori;
we have achieved good results with 0.6 (discard 60% of the initial
edges). Figure T shows the intensity gradient histogram for the edges

in Figure 5; T is the minimum gradient below which at least 60% of the



edges lie (the discrete 60th percentile).

thresholding at 60 percentile are shown in Figure 8.
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Figure 8:

The edges after thresholding at T.
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The edges remaining after
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3.3 Shape Detection

In order to separate edges that belong to the cell boundary from
edges that belong to other objects, techniques considerably more
sophisticated than thresholding are required. We have found a modified
version of the Hough transform [2, 5]to be useful in recognizing shapes

in the enhanced (post gradient thresholding) edge image.

The Hough transform [1, 12, 13] develops a two-dimensional space
(the Hough space) and labels each pixel with a value which is a measure
of the 1likelihood of the cell centroid being located at the
corresponding pixel in the image. The Hough space can be thought of as
a two-dimensional histogram corresponding to the two-d imensional image
window; each point h in the Hough space contains a count of the number
of edges which, were they to lie on a cell boundary, could consider h to
pe the cell centroid. Not knowing which edges correspond to cell
boundaries and which correspond to boundaries of other objects, we
assume that each edge in the binary image gould lie on the boundary of
the cell. Then, for each edge all of the Hough space points that
correspond to possible centroids for that edge are incremented by one.
For example, if we are looking for a circle of radius r, any given edge
x might lie on such a circle and would have its center r pixels away. In
this case we would increment all of the Hough space points corresponding
to image points in a circle of radius r (the "possible-center” line)
about edge-point x; each of these image points now has one more "vote"

for its selection as the center of the circle (Figure 9). Edges which
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actually do lie on a circle will have possible-center lines that are

coincident at the actual circle center, building a peak in the Hough
space (Figure 10). After all of the edges have been considered, the
largest peak in the Hough space corresponds to the most-likely centroid
of the object we are looking for: it has the most "votes" from edges

that could be part of the object if its centroid were at that location.

Figure 9: "pogssible-center” line for edge X.

g

Figure 10: Coincident "possible-center” lines.

Consider now a disc of uniform intensity having boundary edges
that form a circle. The Hough trgnsform technique can be refined

further to take advantage of additional xnowledge about the disc:
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whether it is bright or dark against the background. If the disc is

bright, then the intensity gradient at the boundary of the disc is
highest toward the interior, and the direction of a boundary edge will
point toward the half-plane that the center of the disc lies in, If the
disc is dark, then the direction of a boundary edge will point away from
the half-plane that the disc center lies in. We can now restrict the
possible-center lines to lie in half-planes, resulting in possible-
center semicircles. This constraint has two effects: it doubles the
speed of the Hough transform algorithm, and it improves the accuracy of
the Hough transform by eliminating the contribution of edges to centers

for which they could not belong.

In the present application we are looking for cell boundaries
which in general are roughly circular, but may have radii which change
as a function of position. In order to allow for this geometric
variation and still be able to identify the true boundaries, we have
whlurred" the semicircular possible-center 1ines mentioned above into
half-annuli possible-centroid masks, with inner and outer radii matching

the expected minimum and maximum cell boundary radii.

NMOEW

Figure 11: Possible-centroid masks.
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Figure 11 shows the half-annuli masks used for bright cells; ri

and r2 are the inner and outer radii, respectively; the arrows represent
the direction of the edge over which the mask is centered. Using these
hal f-annuli, the Hough transform will find round or deformed cells, as
long as their radii lie within the limits of the shape annulus. The
minimum and maximum radius limits of the cell, and whether it is bright
or dark may be supplied by the operator, or determined from the previous
frame in the sequence. Figure 12 shows the Hough space that is derived
from the edges in Figure 8 by specifying a minimum radius of 6 pixels

and a maximum radius of 10 pixels.

Figure 12: The Hough space.
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3,4 Cell Boundary Tracing

The highest peak in the Hough space represents the most-likely
cell centroid location. Using this probable centroid location, we can
determine which edges contributed té the Hough space peak and develop a
set of rough cell boundary edges (Figure 13). There still remain two
types of errors which may be associated with this rough outline:
discontinuities in the boundary that need to be closed, and edge points

that do not belong to the cell boundary.

Figure 13: Rough outline of the cell.

4 technique known as heuristic search [4, 11, 10] may be used to
determine the final boundary of the cell from the rough outline.
Heuristic search 1is a graph-searching technique that considers the set
of possible boundary points as a directed graph and finds a path through
the graph (develops a poundary) which minimizes a cost function. Terms
ijn the cost function have minimal values associated with desirable

boundary attributes, and weight the importance of one type of attribute
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over another. Our boundary cost function includes terms which favor {in

decreasing importance) boundaries which:

- follow edges in the rough outline.
- follow constant-radius arcs.

- follow isodensity contours in the image.

Heuristic information ("serving to aid discovery") is used
during the search to estimate which path shows the most promise as being
the minimal-cost path; this constrains the search for a cell boundary
and improves the computational efficiency of the boundary-tracing
process. The heuristic search technique closes discontinuities in the
rough outline, rejects spurious edge points remaining in the rough

outline, and yields a final best-boundary for the cell (Figure 14).

Figure 14: Final cell boundary.




Chapter 4

Feature Analysis

The final stage of the computational process is the analysis of
the cell’s morphological features. From the cell boundary we can
determine the cross-sectional area, perimeter, and shape descriptions
for the cell. If we assume a specific three dimensional morphology we

can determine the cell volume as well.

Tne final boundary of the cell is an outline: it lies adjacent
to the exterior of the cell. The perimeter is thus computed as the
count of pixels immediately interior to the traced boundary; the cross-

sectional area is the number of pixels enclosed by the traced boundary.

By tabulating the cell features for each frame in the sequence,
we can develop a history of morphology features for the cell; from these
we can compute additicnal measures such as total changes in perimeter,
area, and volume, maximum boundary deformity, optical properties such as
texture and contrast, and other feature changes germane to analysis and

interpretation of the freezing process.

18




Chapter 5

Conclusion

The problem of analyzing the two-dimensional morphology of
freezing cells has been shown to be one of extracting the cell boundary
from the image, and analyzing the features of the cell based on the

boundary .

In very noisy and/or cluttered images, simple thresholding and
isodensity contour-tracing techniques fail, and even basic Hough
transform techniques can fail to give satisfactory performance in the
extraction problem. The modified Hough transform scheme presented here,
together with the heuristic search boundary completion technique, has
proved to be quite sucessful at finding cell boundaries in images very

cluttered with ice boundaries.
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