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ABSTRACT

We consider the following problem concerning any two finite state machines M
and N which exchange messages via two one-directional channels. "Is there a positive
integer K such that M and N with K-capacity channels never reach a nonprogress
state?" The problem is shown to be undecidable in general. For a reasonable class of
communicating machines, the problem is shown to be decidable; and the decidability al-
gorithm is polynomial. We also discuss some sufficient conditions for the problem to
have a a positive answer; these sufficient conditions can be checked for the given M and
N in polynomial time.

Keywords: Bounded communication, communicating finite state machine, com-
munication deadlock, communication protocol, progress, unspecified
reception.



1. INTRODUCTION

The model of communicating finite state machines is an abstraction of sequential
processes which communicate exclusively by exchanging messages. The abstraction is
achieved by suppressing the local data structures and internal operations of the
processes, and representing each of them only by its sending and receiving operations
with other processes. This abstract model has been useful in the specification [4, 8],
analysis [1, 9, 10], and synthesis [6, 11] of communication protocols. But its major im-
pact has been in characterizing some communication progress properties such as
boundedness, and freedom of deadlocks and unspecified receptions [2, 11].

In this paper, we consider the general problem of communication progress between
two machines, and discuss its relationship to the above progress properties. We also
show that the problem is undecidable in general and present some special cases for
which the problem is decidable by polynomial algorithms.

The paper is organized as follows. The communication progress problem is defined
in Section II, and equivalent forms for the problem are presented in Section III. In Sec-
tion IV, the problem is shown to be undecidable in general; and in Section V, it is
shown to be decidable by a polynomial algorithm for a special class of communicating
machines called alternating machines. In Section VI, we discuss a set of sufficient con-
ditions to ensure that the problem has a positive answer; these conditions can be

checked by a polynomial-time algorithm. A summary of the results is given in Section
VII.

2. THE COMMUNICATION PROGRESS PROBLEM
A communicating machine M is a directed labelled graph with two types of nodes

- @ending and receiving nodes. One of the nodes in M is identified as its initial node; and
each node in M is reachable by a directed path from the initial node.

Each node in M has at least one output edge. An output edge of a sending (or
receiving) node is called a sending (or receiving) edge, and is labelled send(g) (or

receive(g) respectively) for some message g from a finite set S of messages. No two out-
puts of the same node in M have identical labels.

Let M and N be two communicating machines with the same set S of messages
and let K be a positive integer, K>0. A state of M and N with K-capacity channels is
a four-tuple [m,n,x,y] where m and n are two nodes in M and N respectively and x and
y are two strings of messages from the set S such that |x| <K and |y|<K where |x| and
|y| are the numbers of messages in x and y respectively. Informally, a state [m,n,x,y]
means that the execution of M has reached node m, and the execution of N has reached
node n, while the input channel of M has the message sequence x, and the input channel
of N has the message sequence y.




The initial state of M and N with K-capacity channels is [mO,no,E,E] where m

0
and n, are the initial nodes of M and N respectively, and E is the empty string.

A state [m,n,x,y] of M and N with K-capacity channels is called an overflow state
iff either m is a sending node and |y|=K or n is a sending node and |x|=K.

Let s=[m,n,x,y] be a state of M and N with K-capacity channels and let e be an
output edge of node m or n. A state s’ of M and N with K-capacity channels is said to

follow s over e, denoted s--e-->s’, iff s is not an overflow state and the following four
conditions are satisfied:

i. If e is from m to m’ in M and is labelled send(g),
then s’=[m’,n,x,y.g], where "." is the concatenation operator.

ii. If e is from n to n’ in N and is labelled send(g),
then s’=[m,n’x.g,y].

iii. If e is from m to m’ in M and is labelled receive(g),
and x=g.x’,
then s'=[m’,nx",y].

iv. If e is from n to n’ in N and is labelled receive(g),
and y=g.y’,
then s’=[m,n’,x,y’].

Let s and s’ be two states of M and N with K-capacity channels, s’ follows s if
there is a directed edge e in M or N such that s--e-->s’.

Let s and s’ be two states of M and N with K-capacity channels. s’ is reachable
from s if either s==s’, or there exist states SyaeeesS, such that s==8,, s’=sr, and Sii1 follows
8; for i=1,...,r-1.

A state s of M and N with K-capacity channels is reachable if it is reachable from
the initial state of M and N. The set Ry of all reachable states of M and N with K-

capacity channels is called the reachable set of M and N with K-capacity channels.

A state s of M and N with K-capacity channels is said to be a nonprogress state if
no state follows s. For instance, an overflow state is a nonprogress state.

In this paper, we address the following communicating progress problem. "Given
two communicating machines M and N, is there a positive integer K such that the
reachable set Ry of M and N with K-capacity channels has no nonprogress states?” If

an instance of this problem has a positive answer, then it is possible to determine the
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smallest K, denoted K,y for Wthh this instance has a positive answer. This is because,

in this case, the setg‘R-—I%;lRK fis finite as can be shown from Theorem 2 (below).
Therefore K . can be< uted as follows

55 Kmin [m,n x,yf(m R(IXI IYD

In the next section, we discuss two other equivalent forms for the communication

progress problem; then in section IV, we prove that one of these forms, and hence all of
them, are undecidable.

3. OTHER FORMS FOR THE COMMUNICATION PROGRESS
PROBLEM
Let M and N be two communicating machines. A state s=[m,n,x,y] of M and N

with K-capacity channels is a deadlock state if m and n are two receiving nodes in M
and N respectively and |x|=]|y|=0.

A state s=[m,n,x,y] with K-capacity channels is an unspecified reception state if
one of the following two conditions is satisfied

i. X=g,.85- ... -8, for some k>1 and m is a receiving node with no output
labelled receive(g,) in M.

ii. y=g,.89. .- .8, for some k>1 and n is a receiving node with no output
labelled receive(g,) in N.

An overflow or a deadlock state is a nonprogress state; but an unspecified recep-
tion state is not necessarily a nonprogress state. Nevertheless, the following theorem im-
plies that an unspecified reception state always leads to a nonprogress state.

Theorem 1: Let M and N be two communicating machines; and let Ry
be the reachable set of M and N with K-capacity channels. Ry has a non-
progress state iff Ry has an overflow state, a deadlock state, or an unspecified

reception state.

Proof: If Part: According to the definition of "follow", a deadlock
state or an overflow state is a nonprogress state. It remains to show that an
unspecified reception state leads to a nonprogress state. Assume that an un-

specified reception state s=[m,n,x,y] is in Ry There are two cases to consider:

L X=g,.89: « & for some k>1 and m is a receiving node with no out-



put labelled receive(g,) in M.

ii. V=889« i for some k>1 and m is a receiving node with no out-
put labelled receive(g,) in N.

Since the proofs for the two cases are similar, only case i is considered.
If a state s’ is reachable from s then there exist states 8yse+sS,, Such that s==s,,
s’=sr and Si-e>s g where e, is an edge in N, for i=1,...,r-1. (Notice that

no e, is in M from case i ).

Let the number of sending (or receiving) edges in {e,|i=1,...,r-1} be S (or
R respectively). Therefore, S<K-|x| and R<|y|. In other words, the number
of states reachable from s is finite; and a nonprogress state must be reachable

from s.

Only If Part: Assume that a nonprogress state s=[m,n,x,y] is in Ry

There are two cases to consider.

lock state. Otherwise, let X==g;. ... .g. Since s==[m,n,x,y] is a nonprogress
state, then no output of m is labelled receive(gl); and s is an unspecified

reception state.

ii. Either m or n is a sending node: If m (or n) is a sending node and |y|<K

(or |x|<K respectively) then there is a state following s; contradiction. There-

fore, |y|>K (or |x|>K respectively) and s is an overflow state. |

From Theorem 1, the communication progress problem can be equivalently stated
as follows. "Given two communicating machines M and N, is there a positive integer K
such that the reachable set Ry of M and N with K-capacity channels has no overflow,
no deadlock, and no unspecified reception states?”. This proves that overflows, dead-
locks, and unspecified receptions are the causes of nonprogress between two machines
which communicate via finite-capacity channels. Next we discuss a third equivalent
form for this same problem.

Let M and N be two communicating finite state machines with the same set S of
messages. A state of M and N with infinite-capacity channels is a four-tuple [m,n,x,y]
where m and n are two nodes in M and N respectively and x and y are two strings of




messages from the set S. Notice that in this definition the length of x or y is not re-

quired to be bounded by any constant. Hence, the concept of an overflow state is not
present in this case.

The initial state of M and N with infinite-capacity channels is [mo,no,E,E] where
m,, and n, are the initial nodes of M and N respectively, and E is the empty string.

Let s==[m,n,x,y] be a state of M and N with infinite-capacity channels and let e be
an output edge of node m or n. A state s’ of M and N with infinite-capacity channels is
said to follow s over e, denoted s--e-->s’, iff the four conditions i, ii, iii, and iv of the
above "follow-over" definition for K-capacity channels are satisfied.

From this "follow-over" definition, the definitions of "follow", "reachable from",
"reachable", and "reachable set" for infinite-capacity channels are similar to their
counter parts for K-capacity channels. Also the definitions for a "nonprogress state", a
"deadlock state" and an "unspecified reception state" are defined for infinite capacity
channels in a similar way as for K-capacity channels.

Let R be the reachable set of M and N with infinite-capacity channels; and let K
be a positive integer. The communication between M and N is said to be bounded by K
iff each state [m,n,x,y] in R is such that |[x|<K and |y|<K; the communication is
bounded iff it is bounded by K, for some positive integer K. The communication be-
tween M and N is said to be deadlock-free iff R has no deadlock states. The com-
munication between M and N is said to be without unspecified receptions iff R has no
unspecified reception states.

Theorem 2: Let M and N be two communicating machines, and let Ry
be the reachable set for M and N with K-capacity channels. The following two

statements are equivalent.

i. There is a positive integer K such that Ry has no overflow, deadlock,
or unspecified reception states.

ii. The communication between M and N is bounded, deadlock-free, and
without unspecified receptions.

Proof: i==>ii: Let K be a positive integer such that Ry has no
overflow, deadlock, or unspecified reception states. Since Ry has no overflow
states, each state in R is in RK; and the communication between M and N is

bounded by K. Also, no deadlock state or unspecified reception state is in R ;



and the communication between M and N is deadlock-free and has no un-
specified receptions.

ii====>i: The communication between M and N is bounded; so there is a
positive integer K such that for each state [m,n,x,y] in R, |x|<K and |y|<K.
We show by contradiction that Ry has no overflow, deadlock, or unspecified
reception states. Let s==[m,n,x,y| be an overflow state in RK; i.e. m is a send-
ing node and [y|=K. Since each state in Ry is also in R, there is a state
s’=[m’,n’,x",y’] which follows s in R such that |y’|=K+1; contradiction.
Therefore, Ry has no overflow state. Similarly, we can show that Ry has no

deadlock or unspecified reception states. |

From Theorem 2, the communication progress problem can be equivalently stated
as follows. "Given two communicating machines M and N, is their communication
bounded, deadlock-free, and without unspecified receptions?” In the next section we
prove that this problem is undecidable.

4. UNDECIDABILITY OF THE COMMUNICATION PROGRESS
PROBLEM
To prove the undecidability of the communication progress problem, we need first
to establish a mapping from Post machines into pairs of communicating finite state

machines. (A similar mapping from Turing machines into a slightly different model of
communicating machines is discussed in [2].)

Theorem 3: For any Post machine P there are two communicating

machines M and N which satisfy the following two conditions:

i. There is a node f in N such that P halts over the empty string iff there

is a state of the form [m,f,x,y] in the reachable set R of M and N with
infinite-capacity channels.

ii. For any state s in R, if s is not of the form [m,f,x,y], then s is neither a
deadlock nor an unspecified reception state. (Informally, this implies
that M and N cannot reach a deadlock or an unspecified reception
state before the execution of N reaches node f.)

Proof: A Post machine P is a finite directed graph with one variable z,

whose value can be any string over the symbols {0,1,#} [7]. Each vertex in



the graph corresponds to a statement which has one of the forms shown in

Figure 1.

The ASSIGNMENT statements allowed in P are to concatenate a sym-
bol, namely 0, 1, or # to the right of z.

The TEST statement checks the leftmost symbol of z, namely head(z),

and deletes it after making the decision.

A Post machine is said to halt over the empty string iff the computation

of P starting with z=E (where E denotes the empty string) eventually reaches
the HALT statement.

Given a Post machine P, we show how to construct two communicating
machines M and N with the set {0,1,#,$} of messages such that conditions i
and ii are satisfied. Machine M is shown in Figure 2. Informally, machine M
sends every message it receives. Notice that the nodes of machine M are
labelled 0, 1, #, and E (for the empty string); later we prove that variable z
of P can be written as a string y.m.x where y and x are two strings over

{0,1,#,$} and m is a level of a node in M.

Machine N is the finite labelled directed graph constructed by applying

four transformation rules to the different types of vertices in the given Post

machine P.

Rule T, illustrated in Figure 3a, transforms the START statement in P

to an arrow which indicates the initial node in N.

Rule T2, illustrated in Figure 3b, transforms the HALT statement in P
into the special node f in N. Notice that node f can be selected later as a send-

ing or a receiving node.



Rule T, illustrated in Figure 3c, transforms an assignment z<--z.a,

where "a" is in {0,1,#}, into a sending node with an output labelled send(a)
in N.

Rule T 4 is illustrated in Figure 3d. Informally, N simulates the test
empty(z)? by sending the special symbol $ to M, then it waits to receive from
M. If it receives the same symbol $, it recognizes that z is empty. If it receives
0, 1, or #, then it recognizes that z is not empty. In this case, M removes the
symbol $ then waits to receive the next symbol and depending on its type, the

execution of N proceeds along one of the three output branches.

Let T(v) be the resulting subgraph after applying the appropriate trans-
formation rule T to a vertex v in P. And let the entry node of the subgraph

T(v) in N be labelled v also.

Using induction, the following statement can be proven from the trans-
formation rules T, to T,. A vertex v in P is reached with the value of z being
w iff a state [m,v,x,y], where y.m.x=w, is in the reachable set R of M and N
with infinite-capacity channels. From this statement, conditions i and ii can
be proven as follows:

i. Node f in N is the one which corresponds to the HALT statement in

P. So, P halts over the empty string iff there is a state [m,f,x,y] in the
reachable set R.

ii. Since each receiving node in M or N, except possibly node f, has an
output labelled receive(g) for each message g in {0,1,#}, then if
[m,n,x,y] is in R and n#£ bhen [m,n,x,y] cannot be an unspecified recep-
tion state. Also, sincé the Post machine P only stops at the HALT
statement, so if [m,n,x,y] is in R andhen [m,n,x,y] is not a dead-
lock state. ) (]

Since the halting problem for Post machines is undecidable [7], the communication
progress problem is also undecidable as shown in the next theorem.

Theorem 4: Given two communicating machines; the problem of



whether their communication is bounded, deadlock-free, and without un-

specified receptions is undecidable.

Proof: (by contradiction) Assume that there is an algorithm, say algo-
rithm A, to decide whether the communication between two given machines is
bounded, deadlock-free, and without unspecified receptions. We show that al-

gorithm A can be used to decide whether any Post machine halts over the

empty string.

Let P be a Post machine; and let M and N be the two communicating
machines constructed from P as discussed in Theorem 3. Also let R be the
reachable set of M and N with infinite-capacity channels. From Theorem 3, P
halts over the empty string iff a state [m,f,x,y] is in R, where f is the special

node in N, discussed in Theorem 3.

Let N’ be the resulting machine from N by replacing node f by a con-
struct shown in Figure 4 which continuously receives a message then sends it.

Clearly, the communication between M and N’ is deadlock-free and without

unspecified receptions.

Apply algorithm A to machines M and N’ to decide whether their com-
munication is bounded, deadlock-free, and without unspecified receptions. If
the answer is "no" implying that the communication between M and N is un-
bounded, then no state of the form [m,f,x,y] is in R and P does not halt over
the empty string. On the other hand, if the answer is "yes" implying that the
communication between M and N is bounded, then the set R is finite and all
its states can be generated to check whether or not it has a state of the form

[m,f,x,y]; this in turn can decide whether or not P halts over the empty string.

[

From Theorem 4, there is no algorithm to answer the communication progress
problem in general. Still, there are two approaches to bypass this negative result. First,



identify special classes of communicating machines for which the problem is decidable.
One example of this approach is discussed in the next section. The second approach is
based on the observation that in most instances one is more interested in proving a posi-
tive answer for the problem. Therefore, in section VI we discuss some sufficient con-
ditions which if satisfied by two communicating machines then the communication

10

progress problem for them has a positive answer.

5. ALTERNATING COMMUNICATING MACHINES

A communicating machine M is called alternating if each sending node in M is im-
mediately followed by receiving nodes only. We show in the next two theorems that the
communication progress problem for alternating machines is decidable, and that its

decidability algorithm is polynomial.

Theorem 5: The communication between any two alternating machines

is bounded by two.

Proof: Let M and N be two alternating communicating machines and

let R be the reachable set of M and N with infinite-capacity channels. We

prove that the communication between M and N is bounded by two. Let

[mo,no,E,E] be the initial state. there are four cases to consider:

i

ii.

iii.

iv.

m, and n, are receiving nodes: R contains only the initial state.
Therefore the communication is bounded by one (and so by two).

m, is a sending node and n, is a receiving node: As shown in
Figure 5a, if the initial state is of the form [s,r,E,E|, where s (or 1)
denotes a sending (or receiving respectively) node, then any state in R
is in any one of the following five forms: [s,r,EE], [r,r,EE], [r,s,E,E]
[r,r,g,E] or [r,r,E,g], where g denotes a string which consists of only one

message. In this case, the communication is bounded by one (and so by
two).

m, is a receiving node and n; is a sending node: Using an ar-
gument similar to that in case ii, it can be shown that the communica-

tion is bounded by one (and so by two).

m and n, are sending nodes: As shown in Figure 5b, the initial

state is of the form [s,s,E,E], where s denotes a sending node, then any
state in R is in any one of the 13 forms in Figure 5b, where r denotes a
receiving node, g denotes a string which consists of one message, gg



11

denotes a string which consists of two messages. In this case, the com-
munication is bounded by two. (]

Theorem 6: There is a polynomial-time algorithm to solve the com-

munication progress problem for any two alternating communicating

machines.

Proof: Let M and N be two alternating communicating machines over a
set S of messages. And let R be the reachable set of M and N with infinite-
capacity channels. From Theorem 5, any state [m,n,x,y] in R is such that
[x|<2 and |y|<2. Thus, the number of states in R is O(uvw?), where u is the
number of nodes in machine M, v is the number of nodes in machine N, and
w is the number of messages in set S. Therefore, each state in R can be
generated and checked for being a deadlock or an unspecified reception state.
Clearly, this algorithm can solve the communication progress problem for M

and N and it requires polynomial time. (

In the next section, we discuss a set of sufficient conditions to ensure that the
communication progress problem has a positive answer.

6. COMPATIBLE COMMUNICATION

Let M and N be two communicating machines; and let p and q be two directed
paths which start with the initial nodes in M and N respectively. Paths p and q are
said to be compatible paths if for i=1,2,..., the ith edge in p is labelled send(g) (or
receive(g) ) and the ith edge in q is labelled receive(g) (or send(g) respectively). The
communication between M and N is said to be compatible if for any directed path p
which starts with the initial node in M, there exists exactly one directed path q which
starts with the initial node in N, and vice versa, such that p and q are compatible.

The reason for our interest in compatible communication is two fold. First, com-
patibility is a sufficient condition to ensure that the communication is deadlock-free and
without unspecified receptions as we prove in Theorem 7. Second, it is decidable
whether the communication between two machines is compatible, as we prove in
Theorem 8.

Theorem 7: Let M and N be two communicating machines. If the com-
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munication between M and N is compatible then it is deadlock-free and with-

out unspecified receptions.

Proof: Let M and N be two machines whose communication is com-
patible. And let R be the reachable set of M and N with infinite-capacity
channels. We show by contradiction that no nonprogress state is in R. Assume

that a nonprogress state s is in R, there are two cases to consider; each of

which leads to a contradiction:

i. s is a deadlock state: Since s is in R, there exist states Sgr++sSp Such
that S0 is the initial state, 5, =S, and S, 7€ >y for i=1,...,r. The set
of edges {ei=1,...,r and e, is in M} corresponds to a directed path p
which starts with the initial node in M. Similarly, the set of edges
{e,[i=1,...,r and e, is in N} corresponds to a directed path g which

starts with the initial node in N. Since s is a deadlock state, then
Ip|=|g|. There are two cases to consider:

a. p and g are compatible: In this case, if path p is extended in any
way into p’ in M, then no directed path q’ which starts with the
initial node in N is compatible with p’. This contradicts the as-
sumption that the communication between M and N is com-
patible.

b. p and g are not compatible: Since the communication between M
and N is compatible, there is a directed path@ which starts with
the initial,ngde in N such that p and@are compatible. Clearly,
]q[=|p]=—dgl}}and paths q an@are not identical. let e and(e>

be the first different edges in g and@respectively. Edges e and

/e~ >have the same tail node; and they are either the ith sending
edges or the ith receiving edges in their respective paths. There-
fore, they correspond to the ith receiving edge or the ith sending
edge of path p in M; i.e., they have identical labels; this con-
tradicts the fact that no two outputs of the same node in N have
identical labels.

ii. s is an unspecified reception state: Using a similar argument as in case
i can lead to a contradiction.

Theorem 8: There is a polynomial-time algorithm to decide whether

the communication between two communicating machines is compatible.



Proof: Let M and N be two communicating machines with a set S of
messages. Construct machin@fmm N by replacing each sending node by a
receiving node and vice versa, and by replacing each label "send(g)" by
"receive(g)" and vice versa. View machine M and@as two finite automata
over the alphabet {send(g),receive(g)|g is in S}; and assume that each node in
M or{N/is an accepting state. Each path p (or q) which starts with the initial
node in machine M (or\/,\f) corresponds to a word in the regular language
L(M) (or I@) accepted by the automaton M (org\/\}espectlvely) Therefore,
the communication between M and N is compatible iff L(M)= U Since
whether L(M)—L' is decidable in polynomial time [5], the problem of
whether the communication between M and N is compatible is decidable in

polynomial time. 0l

From Theorem 7, compatibility guarantees freedom of deadlocks and unspecified
receptions; however, it does not guarantee boundedness. Therefore, compatibility alone
does not ensure a positive answer to the communication progress problem; and an ad-
ditional condition is needed for that purpose.

Theorem 9: Let M and N be two communicating machines. Assume
that the communication between M and N is compatible and that each
directed cycle in M or N has at least one sending and one receiving nodes.
Then, there is a positive integer K such that the reachable set Ry for M and

N with K-capacity channels has no nonprogress states.

Proof: Since any directed cycle in M or N contains at least one sending
and one receiving nodes, define K to be the maximum number of successive
nodes of the same type (sending or receiving) in M or N. We show that any
reachable state s=[m,n,x,y] of M and N with infinite-capacity channels

satisfies the following three conditions:

i. s is not a deadlock state.

ii. s is not an unspecified reception state.
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iii. |x|<K and |y|<K.
Conditions i and ii are satisfied since the communication between M and N is
compatible (Theorem 7). It remains to prove condition iii. Let p and q be two
compatible infinite paths in M and N respectively. Neither p nor q contains
an infinite number of successive sending nodes or an infinite number of suc-
cessive receiving nodes. Therefore, p or q consists of a finite number of send-
ing nodes followed by a finite number of receiving nodes, followed by a finite
number of sending nodes, etc. All these numbers are bounded by K. Without
loss of generality, assume that p begins with a number of sending nodes;
hence q begins with the same number of receiving nodes. p can send up to K
messages before q receivés any of them. Then p waits until q receives all of
them and starts sending to p. In this case, q can send up to K messages, and
then it waits until p receives all these messages and starts sending to q. The
same argument can be applied to the rest of p and q. Therefore any reach-
able state [m,n,x,y] along p and q is such that |[x|<K and |y|<K. Since any
state must be reached along compatible paths, any reachable state [m,n,x,y] is
such that |x|<K and |y|<K. This completes the proof that Ry=R and that

no state in RK is a nonprogress state.

7. SUMMARY OF RESULTS
We have addressed the following communication progress problem. "Given two
communicating machines M and N, is there a positive integer K such that the reachable

set of M and N with K-capacity channels has no nonprogress states?"

the following

i

ii.

iii.

iv.

Nonprogress between two machines which communicate via finite-capacity
channels is caused by overflows, deadlocks, or unspecified receptions
(Theorem 1).

The communication progress problem is equivalent to the problem, "Is the
communication between M and N bounded, deadlock-free, and without un-
specified receptions?" (Theorem 2).

The problem is undecidable in general (Theorem 4).

The problem is decidable for a special class of communicating machines

We have shown
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called alternating machines; and the decidability algorithm is polynomial
(Theorem 6).

v. The problem has a positive answer if the communication between M and N
is compatible and each directed cycle in M or N has at least one sending and
one receiving nodes (Theorem 9). These two conditions can be detected in
polynomial time (Theorem 8).

We have also derived two results concerning Kmin’ the smallest K for which the
problem has a positive answer if at all.

i. If the given M and N are alternating machines
then k . =2 (Theorem 5).

ii. If the given M and N satisfy the two cited conditions in Theorem 9 then
Kmin = the maximum number of successive nodes of the same type (i.e.,

sending or receiving) in M or N (Theorem 9).

Other results related to the communication progress problem have appeared in
[3,6]. In [3], the communication progress problem is shown to be decidable if M and N
exchange one type of messages. The complexity of this decidability algorithm is yet to
be determined. In [6], a synthesis approach to the problem is taken; in particular, the
following problem is addressed. "Given one communicating machine M, it is required
to synthesize another communicating machine N such that the communication progress
problem for M and N has a positive solution." A synthesis algorithm is discussed in [6]
along with an algorithm to compute K_;, for M and N. Both algorithms are polynomial
in the number of nodes in M and N.



