TOWARDS A CHARACTERIZATION OF PROGRAMS

FOR A MODEL OF VLSI ARRA.Y—PROCESSORS1

I.V. Ramakrishnan, D.S. Fussell, A. Silberschatz
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-202 July 1982

lThis research was supported in part by the National Science Foundation
under Grant MCS-8104017.

ABSTRACT

This paper is concerned with understanding the properties of programs
correctly executable on a model of linear array procéssors suitable for
YLSI. Such a model has been proposed as an attractive architecture to
handle compute—bound problems in an efficient and cost—effective manner.
We provide a complete syntactic characterization for a class of programs
that are correctly executable on this model and show that among the
class of syntactically characterized programs the sub-class of programs
correctly executable without semantics is very limited. We then identify
the semantic properties required of programs in this entire syntactic

class inorder for them to be correctly executable.

1. Iotroduction

Interests in parallel processing were created by the emergence of
parallel computers namely ILLIAC. The recent advent of large-scale
integration technology has further stimulated interests in parallel
processing [2, 3, 4, 6, 8]. VLSI offers the potential of realizing
parallel computations in silicon. Such a realization can be made cost-

effective and modular provided:

1. The processors used are simple and uniform.

Z. The processors are connected by a modular, simple and regular
interconnection mnetwork and this implies that programs
executed on such a network exhibit simple and regular data
and control flow.

The realization is rendered efficient by extensive use of pipelining and
multiprocessing. These notions of simplicity and regularity will ﬁe made

more precise in the subsegquent sections.

In this paper we have characterized the properties of programs
correctly executable on a model of linear array processors for VLSI. We
have distinguished the roles of two types of properties in a correct

mapping (execution) of programs onto such processor—arrays, namely=
1. Syntactic - i.e, the structure of programs
2. Semantic = i.e., some knowledge of what the programs do

The main vresults in this paper are lemma 4.0-5, theorem 5.1-1,

theorem 5.2=1 and theovem 6.1-1. Our paper is organized as follows:

In section-2 we introduce the program and linear array models. In
section-3 we define the problem of correct execution of programs on a
linear array. In seﬁtion—A and section-5 we provide a syntactic
characterization of correctly executable programs and in section~6 we
demonstrate the importance of knowing the semantics of the syntactically
characterized programs inorder for them to be correctly executable. In
section-7 we illustrate the characterization by synthesizing algorithms

for two important computational problems.

2. Program and Linear—Array Models
In this section we will describe our program and linear-array models.
We will also make the notions of simplicity and uniformity of processors

more precise.

2.1. Graph and Set-Theoretic Preliminaries

Let A?{al, ay, o an} be a set of elements. Let R be a binary

relation on A. Let R+ denote the transitive closure of R.

Definition 2.1-1: R is total on A iff for any a; and a; in A, either

J

ay R+ aj or aj R+ aj.

Let S={sy, 89, e+, sm} be a set of binary relations on A.

Let GS=(V, E) be the directed graph induced by all the relations in S

on A with V=A and E={<ay, aj>l aj Sy aj for some s, in S}.

Let Gx=(vx’ Ex) be the subgraph of Gg induced by the relation s, in §

on A with V.=V and Ex={<ai’ aj>l a; 8y aj}.

Jo

Definition 2.1-2: S imposes a consistent order on A iff

1. there exists at least one relation Sy in 8 such that Sy is

total and G, is acyclic

2, for every sy in S there is a constant Cy associated with Sy

such that for any a; and aj in A, if a; sy ajy then

g%(aj)=ﬁé(ai)+cj where A, is the indexing function that maps
every element in A to its position in the total order imposed

1

by 2 toplological sort® on the vertices in GXe

We will call cy the consistency constant of s

@

y

Definition 2.1-3: A relation 8, in S imposes a linear chain on A iff

S imposes a consistent order om A and cy=l.

Ezample 2.1-1: Let A={a1, ag, ags aé} and S={sl, sz} such that a, sy

a3, @) By 8y, a4 Sy as, a, s, a, and ay s9 ag. Set 8,5y GS and Gy are

Figure 2.1~-1: Gy Figure 2,1=2: Gy
The indexing function ﬁﬁ is ﬁk(32)=19 RA(31)=2’ R, (a;)=3 and 7&(33)=4e

The consistency constants for 81 and 8o are 1 and 2 respectively. S

Lin this paper we will be assuming that if V is a set of vertices then

the total order imposed by a topological sort on V is a set of
consecutive integers ranging from § to |Vi-1.

imposes a consistent order on A and sy imposes a linear chain on A.

Example 2.1-2: Let A, s; and sj be defined as in example 2.1-l. Let

S={sl, S9s s3} where aj sg a3 and a; sg az. Gs‘is shown in figure 2.1-3.

Figure 2.1-3

S does not impose a consistent order on A as S3 does not have a

consistentcy constant.

Definition 2.1-4: Consider a labelled directed graph G=<Vg, E;, S0,

8Igs Lgs Gg» GIO> where:

1. VG, S0¢q and SIG are three distinct sets of vertices with SOG
as the set of source vertices, SI; as the set of sink

vertices and Vo as the set of remaining vertices called

computation vertices.

2, Eg is a set of edges

3. L; is a set of labels

4, Gy and GIO are two many-one functions such that:

as GE H EG ""'_> LG

be {;IO H SEG%OG e LG

G is a uniform graph iff it satisfies the following properties

1. Every vertex in SGG (SIG) has exactly one edge directed from
(to) it to (from) some vertex in Vge The labels of any vertex

in 80, {SEG) and the edge directed from (to) it are the same.

2. For any vertex in Vo all the edges directed to {from) the
vertex have distinct labels and the number of edges directed

to (from) the vertex is equal to Lale

e e

Example 2.1=3:

Figure 2.1=4: Uniform Graph
LG&{Eiﬁ 12} and VG:{vj | 1343 §.
Byp=ledyy 1 Ii<5 3, Byp={edyp | 1<1<4 } and Eg=Eq,lE;,.
STyp={ij;y | 1<3<2 }, SIyp={il;,} and sIg=s1, U1y,
803={odyy | 1<3<2 }, S05,={ol;,} and 504=50,,Us0,,.

The label of edges in By, the vertices in 80y, and SIy; is 1l. The

label of edges in Ey,, the vertices in S0y, and 819 is 12.
Henceforth G will always denote a uniform graph.

Definition 2.1=5: For any label 1 in G, a major path labelled 1 is a
directed path from a source vertex v, to a sink vertex vy such that the

label of Vgs V

y and all the edges in the path is 1.

Let ry be a binary relation on major paths where 1 is some label in

Definition 2.1=-6: For any pair of major paths 9% and g, in G, 94 T
q, iff there exist computation vertices v, and vy in 4p and q,
respectively such that there is an edge labelled 1.directed from v, to

Vy.

We will illustrate all the above graph-theorectic definitions by two

examples.

Example 2.1-4: In example 2.1-3 the major path labelled 11 is the
path directed from il;; to olj; through vertices vy, v3 and v, in that
order. The edges in this path are ely;, eZj;, e3;; and e411. There are
two major paths labelled 12. One path is directed from il;, to 0112
through vertices v; and v, in that order. The edges in this path are

elyp, €2y, and e3y9. The other major path is the path directed from

i2,, to 02y, through v4. The edges are e412 and e512 in this path.

Example 2.1-5:

Figure 2.1-3

In figure 2.1=5, Lgx{li,12}, the set of computation vertices VG={V19
vy, v3}, the set of source vertices 80g=1{iyy, ily5, 1245, i3y} and the
set of sink vertices SEG={011, 0112, 0212, 0312}. The vertices i1 and
¢y; are labelled 11 and the vertices illz, 1212, 1312, olyq, 0212 and
©3y, are labelled 12. The horizontal edges are labelled 11 and the
vertical edges are labelled 12. The major path labelled 11 is the
horizontal path and the major paths labelled 12 are the three vertical

paths. The relation ry; is non-empty while ryo is empty.

Definition 2.1=7: Two computation vertices v, and v, are transitively

£ ¥

directed from W to v iff there exists a

related by an edge e, - y

computation vertex v, and two edges such that one edge is directed from

V4 to v, and the other edge is directed from v, to Vye

Example 2.1-6:

Figure 2.1-6

In figure 2.1-6 e, relates v, and vy transitively.

Definition 2.1-8: Two major paths 9p and q, are identical iff:

1. the computation vertices in 9p and q, are identical.

2. for any computation vertex v, in qp and q,, its index in any
topological sort of the vertices in 9p is the same as its

order in any topological sort of the vertices in Qe

Example 2.1-7:

In figure 2.1-7 Vys Vg and vy are computation vertices, i;; and i1, are

source vertices labelled 11 and 12 respectively. 077 and oy, are two

sink vertices labelled 11 and 12 respectively. The edges above the

10

dotted line are labelled 11 and the edges below the dotted line are
labelled 12. 9p is the major path labelled 11 and is directed from iy
to oy; through edges shown above the dotted line. 4, is the major path
labelled 12 and is directed from i1 to 019 through edges shown below

the dotted line. q_ and g, are identical.

B

Z.2. Program Model

Let Yig ng e Y% be n sets of scalar elements. We do not wish to
provide a formal definition of scalar elements. Suffice it is to say
that a2 scalar element is a typical value held in a memory location of a
machine like IBM/36f. Let T=Y; x ¥y x oo x ¥y be the cartesian product

th

of k sets. Let x; denote the 1 component of a tuple x in Y and so ®y

ig in Yi*

Definition 2.2-1: A program is a one—~one function E;: D ~—-> R where

DEY, R&Y and

L. for any pair of tuples x and z in D, xi%zi
Z. for any pair of tuples x and z in R, xi%zi

3. for any pair of tuples x and z where x is in D and z is in R

and 1V (x)=z then x4z,

[Note: (1), (2) and (3) are not restrictive as multiple occurrences

can be replaced by distinct elements.]

Let Eixixi I %4 is the jth component of tuple % in D } and Ri={xi |

x; 1s the ith component of tuple x in R }. Let Bi ={xi] xiéﬁi and

il

projection function of == i.e., if W (x)=z then,Q&(x)=zi.

Let G be a uniform graph and \(be some program with domain D and

range R. Let D and R be subsets of the cartesian product of k sets. Let

Le={11, 12, .., 1k}.

Definition 2.2-2: A program 1is transformed to G by a set TR={TR;,

TR,, TRg, TR,} of ome-one functions where:

10 TR}. : D "'_"> VG.

2. TRy ¢ OURNONRHOV o UDWUR) ===> Ege If x;6{DURs}

and if TRz(xi)=ea then GE(ea)=li.

3- TR3 H DIUDZU e o UDk "'"-'> SOG. 1f XieDi and if TRB(Xi)‘_;VX then
be TRy : RlURZU oo URy ===> 8Ig. If x4€R; and if TRA(X1)=VX then

GIO(vx)=li.

5. for every x and z if Y(x)=z and TRl(x)=vx, TR3(xi)=ea and

TR3(zi)=eb then e, is directed into Vy and ey is directed out

of Vo

TR always transforms Q’ into a uniform graph. For any 1, every
element in Yy is assigned either an edge labelled 1li or a source or sink

vertex labelled 1i by the transformation functions. Henceforth we will

12

refer to uniform graphs as program graphs and we will denote a program
graph as G. Our program graphs are restricted versions of data—-flow

graphs. Unlike in program graphs the computation vertices in data=flow

graphs represent different computable Ffunctions. In the following

example we will illustrate a program and it’s transformation into a
program graph.

Example 2.2-1: Consider the problem of multiplying a band matrix M

by a vector X as shown in figure 2.2=1,

s anean

’3 a& TR r A
kS R qu x%
) a
> T Raa ag, X
Y = x
9 Ras ay; as aug %
Yg g3y Qgeq AaAcge Ao
%Q QLQ q‘s
e e — J— S

Figure 2.2-1: Band Matrix Multiplication by a Vector

The elements in the product vector Y can be computed by the following

racurrences:

1
2k

%
ik

This recurrence can be rewritten as:

y{6FD) =y 06 4 (D (1)

Ethrcughaui

this paper

mentioned otherwise

‘%’ denotes multiplication

unless

explicitly

13

Define Y;, I; and 0; as follows:

1. v, =y {8 | 116, 1gkg2HL for 1gIE3 and 1-2€kg6 for 4gICE)

2. Ilz{y§1) and ng—z) | 1§i¢3 and 4§j<6 }. Every y§1)=yg3—z)=¢

3. Olz{}’j(_2+i) and ygé) | 1gig4, 5£3¢6 }. For every y§2+i)

(6) (2+1), (6)_
Y3 in 0y, ¥4 =y; and y3EY

and

Define Y5, I, and 0, as follows:

1. v=a{f) 1 143€2, 1gig6, Igkgitl for IGIE3 and 1-2¢k(5 for

4€ig6 }

2. 12={a§i) | 1 and k vary as in ¥, }. For every agé) in

(L)
Iy, ajp =a4k°

3. Ozﬁ{a§§) | i and k vary as in Y, }.

Define Y3, I3 and 04 as follows:

ov=(x{) 1 1gks, A3k for igkq2, 2ig6 for k=3 and

k-1¢ig7 for 4¢kgS}.

2, 13={x§1) and xgjul) | 1gkg2, 3£3¢5 }- For every xﬁl) and

14

xijwz> in Iq, xg }*x and x<j 1)~xj.
J =4

3. Og={xy (3+) and x§?> [1gkgs e

Define \, Yi» ¥o and ¥ 5 as follows:

(k) §§)9 Xéi}>) - <y§k+l) (2) K§i+1)>

- (<yy s 24ic

2.8, (0, a{D), x5y = y{FD) L 00 4 (D) 4 (D)

ik

3., (8, a{l), x5 = af® = &)

4, % ((yik} a§i), xéi}>) = x§i+l) = xéi)

Define D={<y§k)s &§é>» x§i>>} where the tuple exists iff y§k), a§§),

{i} are all defined in Y;, Y, and Y4 respectively.

Now Y;=DURy, Y,=D,UR,, Y3=DB@RB. Also Dy=I;, Ry=0;, D,=I,, R,=0,,

Define a2 uniform graph G as follows:

Le={11, 12, 13}.

Ve={vy, | 1i¢6, Igk{i+l for 1{i¢3 and i-2¢k¢5 for 4¢ig6 }.
Eg=EY \EYNEY; where:

1, EY, {eyik} | 1 and k vary as in Yl } and for every

oo g, 4«v-

) (k
ey k’§ GE(ey;k}):il,

15

2. EY2={ea§£) | i, k and j vary as in Y, } and for every
ea§g>, GE(eagg))=12.

3. EY3={exéi) | 1 and k vary as in Y4 } and for every

exﬁi), GE(exéi))=13.
8$05=80 1\)302U803 where:
(1)

1. SOl={vyi
every vy§1) and vygj°2), Gp

and vygj’z) | i and j vary as in I; } and for

oy $ty=6ro(uy {37211,

2. SOZ={va§é) | 1 and k vary as in I, } and for every

vagi), Glo(vagé))=12.

3. SO3={vxé1) and vxgj—l) | k and j vary as in Ij } and for

every vxﬁl) and vxgj'l),_GIO(vxél))=G10(vxgj-l))=13.

SIg=STUSI VST where:

1. Sll={vy§2+i) and vy§6> | 1 and j vary as in O; } and for

every vy§2+i) and vyg6), GIO(VY§2+i)) = GIO(Vyg6)) = 11,

2. SIZ={V8§-12()

vagi), GIO(vagi))=12.

| i and k vary as in O0,} and for every

3. 813={vxé3+k) and vx§7) | k varies as in Oy } and for every

vx§3+k>, GIO(VX£3+k))=GIO(VX§7))=13.

Define TRy, TRy, TRq and TR, as follows:

i6

- 7 !3 2
Lo TR (5§, afl), w{E)=vy
Za Tﬁzi}?gi‘:)}:@yik}s ng(aég})=ea§£) and TRZ(Xlgi))_,__:exlgj_)e

s mn (ot yauy 1) ({3720 yaue (372 (1)yaua (1),
3. iﬁgiyi); vy% and TR3(yj3)“vyjJ : TR3<aik)*vaik :

4, TR {y{z 1>)-vy{2+i} and TRé(y§é)>‘Vy(6>» TR453§§>)=V3§§)3

¢)
Tgé(x§3+k)}gvxig%k’ and TRé(x§7))=vx§7).

The resulting program graph is shown in figure 2.2-2.

Figure 2.2-2

In figure 2.2-2 ‘o’ vrepresents computation vertices and ‘@®°
represents source or sink vertices. The horizontal, vertical and oblique
edges are labelled 11, 13 and 12 respectively. If a source or sink
vertex is connected Co a computation vertex by a horizontal, vertical or
oblique edge then that source or sink vertex is labelled 11, 13 and 12

respectively. A computation vertex in figure figure 2.2-Z is shown in

17

greater detall in figure 2.2=3,

s, s &
‘i

& .

(&%) g 1e0 @

T

Figure 2.2-3

We will be often referring to the contents or the element represented
by an edge or a source vertex or a sink vertex with the explicit
understanding that the contents or the element represented refere to the
element in some domain -- say Yj that has been transformed to either an

edge or a source vertex or a sink vertex by the transformation

functions.

2.3. Processor and Linear—Array Models

A general-purpose processor model consists of an addressable-memory,
a control-unit and an instruction-set. During a cycle the processor
executes an instruction from its instruction-set where a cycle is the
total time taken starting from the time to fetch an instruction to
completion of the instruction. In every cycle the processor fetches an
instruction from memory, decodeé the instruction, fetches the operands
from memory, executes the instruction and stores the results in memory.

Obviously the processor needs decision-making ability to:

18

1. execute different instyuctions in different cycles

2. to access different operand addresses in memory during

instruction execution

This decision-making ability is achieved by having states and making
state-transitions. In every cycle the control=unit of a processor
receives control-inputs (dinstruction and operand addresses) and
determines on theﬁ%&sis of the control-inputs the state the processor

should be in.

In this paper we will be using a very simple model of a processor.
Our processor-model does not have any decision-meking ability. The

implications are:

1. the processor must execute the same instruction in every

cycle

Z. the operand addresses for the dinstruction is the same in

every cycle
We give a formal definition of a processor in the following:

Definition 2.3-1: A processor is a 8=tuple P=<IP, Ops Dp, Lp, Fr,

£

~
WA

s ¥D§§§?> where:

i Ip is a set of input ports

2. Op is a set of output ports

19

3. Dp is a set of non—zero positive Integers
4. Lp 1s a set of labels

5. Fis Fo and Fj are three one—one functions such that:

G FI H IP — LP
b. FO M OP """"> LP
Ceo FD : DP — LP

6.\(P is a [Lp |-ary function computed by the processor in every
cycle, .i.e., 1f IN, is the input to P in cycle c and OUT, is
the output computed by P in cycle ¢ then\'(P(INc)=OUTc and IN,

and OUT, are both |Lpi-tuples.

Let Lp={11, 12, .., 1k} for a processor P. If XEDP and Fp(x)=1j then
we will denote x as dlj and refer to it as the delay associated with
label 13j. HNow !LPI=ka Every input-port in Ip is assigned a unique label
from Lp. Similarly every output-port in Op is also assigned a unique
label from Lp and so [Ipi=|0pi=k. The function VP is the dinstruction
executed by P in every cycle. \% is a ‘simple’ function, .i.e., it can
be computed using a ‘few’ instructions from the instruction—set of a

machine like IBM/360.

Let the k-tuple IN, be the input to processor P in cycle c¢. The

processor computes the k-tuple OUT_=%p(IN.) in cycle c. Wp can be

20

decomposed as the cross=product of K functions, sdeea,
OUT =<¥; (IN,) X %E(INQ} X oo X %k(INC)>. Now each component of IN, and
OUT, 1is a scalar value, .i.e., a value typically held in a memory
location like IBM/360. Processor P receives every component of IN. from
a distinct dnput-port and outputs every component of O%TC onto a
distinct output-port. Let IN =<in;;, injy, .., in;y> and OUT . =<outqyy,.

outyg, e, Outlk}» Now iﬁlj is the jth

component of IN. that is received
by the processor at the input-port labelled 13 and outlj is the jth
component of OUT. that the processor outputs on the output—port labelled

17 after a delay of dy; cycles, .i.e., in cycle eo+ds:. Also
1j 13

eﬁtiéz%%{INc)s However in every cycle between ¢ and C+&lj & new output~

(%3

uple is computed by the processor. Now each of these output=tuples is
comprisaed of a component labelled 13 (outlj) and so the number of such
components produced beteween ¢ and c+dlj is dlj' Each of these output
component produced is outputted from the output—port labelled 1j only
after cycle c+dlj and so all these values need to be buffered in a
queue. For every label 13 such a queue is implemented by a shift-
register of length dy471. The rightmost end (output of ghift-register)
of the shift-register is connected to the output port labelled 13.

During every cycle ¢ processor P does the following:

1. compute GﬁTcx%;<iNc>

2. for all 13, shift the contents of the shift-register to the
right by one position. This creates & vacant position at the

leftmost end (input of shift-register). Place outyy in this

vacant slot.

21

Example 2.3-1:

4 CTH—>«

fa——> COITH > 42
L €3

Figure 2.3-1: A Processor

Definition 2.3~2: Two processors are identical iff:
1. the label—-sets are the same

2. the functions computed are identical

3. identical labels in both the processors have the same delays

Let PR be a totally ordered set of identical processors. The
processors are numbered {f#, 1, .., [PRi-1 }. We will refer to a
processor in this set by its index number in the ordering. For every

label 13 let Blj be a binary relation on PR.

Definition 2.3-~3: For any pair of processors m and n in PR, m Blj n

iff the output pdrt labelled 1j of m is connected to the input port

labelled 1] of n.

Blj is a neighbourhood relation on processors. If two processors are

22

related by By, then they are neighbours with respect to the label 1j.

13

Definition 2.3=4: Bl’

5 is empty 1iff there exists no pair m and n in

PR such that m By . n and is non-emptv otherwise.

Definition 2.3~53: A linear—array of interconnected processors is a

b=—puple LA=<PR, L?§§§?3 Np> where:

1. PR is 2 totally ordered set of identical processors
2. Lp is the label-set of every processor in PR
3@15? is the function computed by every processor in PR

4 N?ménlj iff Blj is non—empty} is a set of constants such that

every nj4 is only one of {+1, -1, #}.

if nljai then it means that for all processors m its neighbour with

respect to label 13j is processor mtl.

if ﬁljawi then it means that for all processors m 1ts neighbour with

regpect to label 13 is processor m—l.

If ﬁéjxﬁ then it means that for all processors m its neighbour with

respect to label 13 is processor m itself.

The linear array of processors is driven by & single~-phase global
clock. In every clock pulse all the processors cemputeigPs The cycle

time for a processor is the width of the clock.

23

pre(€B8sevs
The input=ports and output—ports of some prsc{RN@ are designated to

interact with the external environment. Communication with the external
environment occurs only through these ports. These input-ports and
output-ports are the distinguished input-ports and output-ports
respectively. Data is driven into the array only through the
distinguished dinput-ports and the results are obtained through the
distinguished output—ports. For every label 1j this designation depends

on Blj’ namely:

1. if Blj is empty the input-port and output-port labelled 1j of
every processor is the distinguished input-port and output-

port respectively.

2, if nlj=1 then the dinput-port 1labelled 1j of processor
numbered #® and the output—port labelled 1j of processor
numbered |PRi~1 are the distinguished input—-ports and outpﬁt—

ports respectively.

3. if n1j=“1 the the input—-port labelled 1j of processor
numbered |PR|=1 and the output-port of processor numbered §
are the distinguished input-port and output=-port

respectively.

4, if nlj=¢ then there are no distinguished input—ports and

output=ports labelled 1j.

Example 2.3-2:

[
L

?@4 Loy
i%é e{
Lo o L. 4
4 Z
s
H & 42 2a
2 fq ret 2%% s

Figure 2.3-2: Linear Array of Processors

In figure 2.3-2 |PRi{=4 and Lp={11, 12, 13, 14}. By, 1s empty and so
N?xénzia N9, ﬂ13} and nyy=l, nyy=-1 and n13=@. I,; and 0y are the
distinguished input-ports and output-ports for 1ll. Iy, and 05 are the
distinguished input-ports and output-ports for 12. Iy, and Oy, are the
distinguished input=ports and output—ports for 1l4. 13 dces not have any
distinguished input-ports and output—ports. A simple register serves as

the input/output port labelled 13.

3. Mapping Programs on Linear-Arrays
In this section we formally define the problem of mapping programs on

linsar arrays. We first provide an intuitive view of mapping.

Consider a pregrami whose domain D and range R are subsets of Y; X
Tq X oo X Y. Let G be the corresponding program graph 0§§§ which is
chbtained by transforming i{:into G using the set TR={TR;, TRy, TRg, TR, }
of transformation functioms.. Let Lg={11, 12, .., Ik}. In particular

consider a path in G as shown in figure 3.1-1 and whose path-label is

1 . . s .
‘we use the same notations as in section=2

13.

Figure 3.1-1: Path labelled 1]

In figure 3.1-1, Vis Vo, e, Vg are computation vertices. Vg and Vg
are source and sink vertices respectively and are labelled 1j. eg, €1,

e, & are edges whose labels are 1j.

m

Let Zgs Z]s ees Z(g-1) and Wis W, eey Wy be tuples in Y such that
for every i , ILigm , (z(i_l))=wi and TRl(z(i—l))=vi‘ Let X(4-1)
" denote the jth component of Z(i-1) and hence TRZ(X(i—l))=e(i~l)‘ Also

let TRB(XQ>=VS and TRA(xm)=vf.

Let zi(~j) denote z; without its jth component, .i.e., if
zi=<u1, UZ, 6y uj"l’ Xi’ Uj+1, ° 04 uk> then

Zi(“”j)‘:<ul9 U»z, s vy uj_l, uj+1, ey uk>.
Now Xi+1 =Y-j(Zi(—j), Xi)
=Wz (=D, Uylagag, W5 ons Wylzg(=D), xg)) ..).

So xy41 is the result of an i-fold composition of wj on the sequence
of arguments Zgs Zps e Zge In a sequential processing of the program

‘(a register 1s associated with every labelled path. In particular for

26

the path in figure 3.1-1 the location is initialized with the element
represented by the source vertex vy which is Xg and at the end of the
computation the location contains the element represented by the sink
vertex vy which is x,. If any veretex vy is computed then the element
represented by edge ey which is x4 is stored in the location and is held
there till the computation of Vigl for which the tuple zy is the input

h

.
and x; is the i** component of z

iO

A& mapping of ig on a linear—array of processors 1s an execution of
every computation vertex in G by some processor in the array. However

this execution is performed under some constraints.

Let LA be a linear-array of processors with LP={11, 12, .., 1k}. Let
Wand G be defined as in the beginning of this section. Let
T={f,c,2C,.0000s} be a sequence of time steps where c¢ is a basic

& r
processor cycle time. Let SO; and SI; be a subset of (SOG}X(T} and

(SEQEE{EE respectively.

Definition 3.0-1: A mapping of G onto the processors in LA is a 4-
tuple %?Gﬁ<TA, PA, I0A> where TA, PA and IOA are many—one functions such

that:

1. TA:Vg ===>T
i
2. PA:Vg=—=>N

3. iﬁéziﬁGgﬁgicsw““>§

if Vo is a source vertex such that 10A<vg, t>=s then it means that v,

27

is mapped onto the input-port of s at time t and if v, is a sink vertex
such that IO0A<v, t>=s then it means that vy is mapped onto the output—

port of s at time t. SOz, SI;, and I0A are constructed as follows:

1. Initially S04 and SI; are empty.

2. For all 1j if v

x 1s in SO and there exists an edge labelled

1j directed from v, to vy then S0,=S0, k){(vx,t>} where t=
* 2 * * ‘
TA(vy)—m dlJ for all m such that PA(vy)fm ny 5 is a processor

index. Define IOA(vx,t)=PA(vx)—m*nlj

3. For all 1j if Vy is in SI; and there exists an edge labelled

1j directed from v, to v, then SI=SI, k’{(vx,t+dlj>} where

X y
= % *
t TA(vy)+m ny for all m such that PA(vy)+m nlj is a

processor index. Define IOA(vx,t+d1j>=PA(vX)+m*nlj

Let tg and tg denote the start time and finish time respectively of a

computation graph G that has been mapped onto LA.

t, is less or equal to the minimum over all t in all tuples <v,,t> in

SOé and for all labels 1j such that GIO(VX)=lj and nlj#ﬂ.

tg is greater or equal to the maximum over all t in all tuples <v,,t>

in SI; and for all labels 1j such that Gyo(v,)=1j and nlj#ﬂ.

Definition 3.0-2: MP; is syntactically correct 1£f:

1. Y =4,

28
2. the three functions satisfy the following:

z. For every label 1j if Vg and v_ are computation

¥
vertices and there exists an edge labelled 1j directed
from v, to vy then PA{vy}x?A(vX)+nlj and
?A(vy}xTA{vX}+dlje

be IE Vg and Vy are computation vertices and if

PA{VX)=PA(vy) and TA(vx)zTA(vy) then Vg e

¢co LE Vy and v, are either source or sink vertices and if

y
L0A<v,,, t>=IOA<vy, t> and GIO(VX)=GIO(V§) then v =v_ .

y
i, for all 13 if ﬁij=@ and PA(VX)=PA(VY) then there must be a
major path labelled 13 that passes through these two vertices
{i.e., 8 rvegister is associated with the computation of the
vertices in the path labelled 1j and this register serves as

the input/output port labelled 13j for the processor) .

For any tuple <v,t > either in SI; or in 80;, let t (v,) denote the

contents of vy at time t .

Definition 3.0=3: MP, correctly computes WiEs:

1. MP; is syntactically correct

2. For any palr of tuples <vx,tm> and <vx,tn> either in SI; or

#

') 4 f N
in 80g, t, (v} *n<vx)

29

Intutively if there exists more than one tuple vy, t> either in soé
or in SIé it means that v, is mapped onto the input/output ports of two
distinct processors more than once. Hence the contents of the source and
sink vertices that is mapped more than once must be invariant after

every such mapping.

4, Preliminary Results

Let G be the program graph for some program . Let the label set
LG={11’>12’ .o, lk}. Let LA be the linear array of processors whose
label set Lp is the same as Lg and the function VP computed by any

processor in LA is the same as Y.
For any label 1j in Lg let Elj={major paths labelled 1j}.

Definition 4.0-1: For any label 1i and 1j, Eq4 is identical to Elj

iff for every major path in Eli there is an identical path in Elj and

vice=versa.

1

Let H={Eljl ry5 is not empty and for any Elj and Ey; in H, Elj is

not identical to Eli}‘

Let F={Elj! rlj is not empty and for every Elj in F there exists some

Eqy in H such that Elj and E,; are identical}l.

Let D={Elji T3 is empty}.

ldgefinition 2.1-6, page 7

30

%

;7 be a uméireciedz path from a computation vertex v,

Let

L3

to another

computation wvertex v, such that all the vertices in the path arve

h4
e@a@&%ati@ﬁ vertices and all the edges in the path have the same label.
Let 17 be the label of the edges in g. A directed edge imposes an order
on the pair of vertices it connects. If there is a directed edge from
v, to vy then the order of v, is less than the order of Vye A path
imposes an order on the vertices it vists. If the path vists v, before
Iy then the order of v, is less than the order of éyg In a directed
path the order of wvertices imposed by the path is consistent with the
order imposed by the edges. In a undirected path there could be edges in
the path such that the order imposed by these edges on the vertices is
not consistent with the order imposed by the path. Let k; and ky be the
number of edges in & undirected path that iwmpose an order that is
consistent and not consistent respectively with the order imposed by the
undirected path. If v, and v, are two computation vertices in this path
then the‘pfocessezs computing vy, and v along with the time at which

y

‘they are computed can be easily related.

Proposition 4.0-1: In any syntactically correct mapping

Fﬁivy}m?éivx}+(kzwk2)*nij and TA(Vy)=TA(vX)+(k1¢k2}*éij@

Let g be a major path labelled 1j. Let v, and vy

5 to vy is k.

be two computation

vertices in g such that the distance from v

rollary 4.0~13 in any syntactically correct mapping,

2in a undirected path the direction of edges in the path are ignored

31

PA(VY)=PA(VX)+k*n1j and TA(vy)=TA(vx)+k*dlj.

Proposition 4.0-2: If a major path has k computation vertices then
the indices of these computation vertices in the ordering imposed by a

topological sort on the vertices in the major path range from 1 to k.

Proof: A topological sort on a directed path from v, to vy
containing m vertices in the path (vX and vy included) imposes
an ordering on these vertices and assigns indices to the
vertices in the ordering ranging from # to m-1. Index § is
assigned to vy and index m-l is assigned to Vy and indices

ranging from 1 to m=2 are assigned to all the m-2 intermediate

vertices in the path (vX and vy included).

In any major path the source vertex is vy, the sink vertex is

vy and the intermediate vertices are computation vertices.

Proposition 4.0-3: G must be acyclic for any syntactically correct

mapping.

Proof: Suppose G has a cycle. Then there must be a
computation vertex v, such that there is a directed path from vy

to 1tself and hence in any syntactically correct mapping

TA(vX)>TA(vy).
Proposition 4.0-4:

If there are two major paths in G such that the computation vertices
in these two major paths are same then these two major paths must be

identical for any syntactically correct mapping.

32

Proof: Let 9y and q; be the two major paths such that the
computation vertices in these two major paths are the same.Let k
be the number of computation vertices in q, and q,. The range
of the indices of the computation vertices (.i.e., 1 to k) in
the ordering imposed by a topological sort on 4, is the same as
the range of the indices of the computation vertices in the

ordering imposed by a topological sort on Qg

Suppose g, 1s not identical to qge It can be easily shown

that there must exist two computation vertices vy, and vy such

that q, vists v, before v before v, and hence

¥y y
in any syntactically correct mapping TA(VX) > TA(vy) in q and

and qg visits v

TA{V?) > TA(vy) 1in q,.

Proposition 4.0-5:

For amy 1j im L; if ry. is not empty then in any syntactically
G 13

correct mapping mn, . must be one of {1, -1, @}.
13

Lemma 4.0~1:

For any 1i and 13 in LG if Eli and Elj are in H then in

syntactically correct mapping nli=nlj%ﬂ.

Proof: if Eli and Elj are in E then Eli and Elj are not
identical. Consequently there is a major path q, in Eli that is

not identical to any major path in Elj and this is because of

one of the following:

l. there is a major path qg in Ey; such that the computation

any

33

vertices in qg and in g, are the same but there exists a
computation vertex vy such that its index in the ordering
imposed by a topological sort on q, is different from its
index in the ordering imposed by a topological sort on

qg- But by propositionm 4.0-4 q, and q must be identical.

2. there does not exist any major path Qg in Elj such that
the computation vertices in q, and q are the same and

hence,

a. there exists more than one major path in Elj and

each of these major paths pass through a subset of

the computation vertices in q..

b. there exists a major path qg in Elj and a subset of
the computation vertices in qg 1s the same as the

computation vertices in q..

First let us consider (2a). Without loss of generality let

there be two major paths qg and qy in Elj that pass through

computation vertices in q, as shown in figure 4.0-1.

Figure 4.0-1

34

if ﬂii“§1§g$ then PA(VX)WPA{Vy)g By definition of a
syntactically correct mapping a single major path labelled 1j

must pass through v

X

and Vg But in figure 4.0-1 v,

and vy are

on distinct major paths qg and q, respectively.

Next consider (2b). Let gqg be the major path in Eij that
passes through all the computation vertices im q,. as shown in

figure 4.0~2.

Figure 4.0=2

The major path q, is directed from v, to vy through edges

shown below the dashed line. qg is the major path that visits
Vi Vg and v, in that order. All the vertices in the path of dg

from v, to vy is the same as the vertices in g, . The edges in

the path of q_. from v, to v, are through edges shown above the
I 4 8 z g g

b

dashed line. Now v, is a computation vertex in the path of 9

which is also in the path of another major path 9 that is
labelled 1i. Now g, 1is distinct from q.. So if nli=n1j=® then
?A{VK}%Pé{vy}zPA(vz}e But in a syntactically correct mapping
there must be a single major path labelled 1i which passes

through v, and v_. But in figure &4.§=2 v

y - y and v, are in

distinct major paths 9, and 9y respectively.

35

Proposition 4.0-6:

In any syntactically correct mapping if v, and v are the source and

sink vertices of a major path then IOA<vu, t>=I0A<v, t>.
Proof: There must be at least one computatién vertex in

between the source and sink vertex and hence the result.

Let Te, 1> be a binary relation on computation vertices that have
¥

been mapped onto processors by some mapping MPj.

Definition 4.0-2: vy Tey py vy LfE

1. PA(vy)=PA(vx)+a and PA(vy) is a processor index.

2. TA(vy)=TA(vx)+b.

So T%a,b> is the k-=fold composition of T(a,b) and hence if

Vg TEa,b) vy then PA(vy)=PA(vx)+k*a and TA(vy)=TA(VX)+k*b.

Now consider a mapping M that satisfies all the properties of a
syntactically correct mapping except (2c¢c) . The conditions under which M

satisfies (2c¢) is stated in the following two lemmas.

Lemma 4.0-2:

For any label 1j such that nlj=¢ if GIO(vu)=GIO(vW)=lj‘for any v, vy

in SIYSO; and IO0A<v,t>=I0A<v,t> in M then v, =v_.

Proof: Suppose the hypothesis is true but vu¥vw. Then by

proposition 4.0-6 v, and v, must be in distinct major paths

36
lzbelled 13j. This means theres exists a computation vertex v, in

X

the major path in which v, 1s a source vertex and another
computation vertex Vy in the major path in which v, 1s a source

vertex respectively. n1§=@ and hence PA(VX)=PA(vy}a But this

%)
violates §rﬁpe§ty&of a syntactically correct mapping and we have

assumed that M satisfies this property.
Lemma 4.0-3:

For any label 1j such that nlj%ﬁ 1f Gyolv)=Grolvy,)=1] for any v, and
v, in SEGSSQG and EGA<vu,t>zIOA<vw5t> in M then v, =v. 1ff for any pair
of computation vertices v, and vy if vy T%a,b) Vy where a=n 5 and bzdlj

then there must be a major path labelled 1j passing from v, to vy in

that order and the distance from v, to vy in this path must be k.

Proof:
Hacessity:

Suppose there exist computation vertices vy and Vy and a

Eabe} 13 such that Vo T%a,b) vy in ¥ and there does not exist a

single major path labelled 13 passing through Vy and v_. Let qp

y

and qg be two distinct major paths labelled 13 such that Vy is

in q, and Yy is in q respectively. Let v, and v be the source

vertices for 9. and q respectively. Let k1 and kz be the

distances from Vi, to v, and from v to Vy respectively, Let
Pa(vy)=s and TA(vy)=t. Consequently v, 1s mapped onto the input
, . N P 1 <

port of processor s kp*ng 4 at t-ky dlja Similarly v, 1s mapped

ounto the input port of s+(kwk2)*nlj at t+(k—k2)*d1js Without

37

loss of generality let (s—kl*nlj)<(s+(k~k2)*nlj). Since ny 4 is
one of {1,-1} there must exist a k3 such that
s«kl*nlj=s+(k~k2—k3)*nlj and so k1=—(k—k2—k3). Now by our
construction of SIé there must exist a tuple
<vw,t+(k-k2~k3)*d1j> in SI; such that IOA(vw,t+(k—k2-k3)*d1j>=
s+(k—k2—k3)*nlj=s—kl*nlj and hence

IOA(VU) t“kl *dlj>=IOA<VW 3 t'-kl *dlj> and vu-—.vw,

Sufficiency

Suppose there exist vertices v, and v, in SI; S04 and a label
1j such that IOA<v,,t>=IOA<v_,t>=s in M, GIO(vu)=GIO(vw)=lj and
vu#vw. By proposition 4.0-6 v, and v, must be in two distinct
major paths labelled 1j. v, and v in combination must be one of

the following:

1. both are source vertices
2. both are sink vertices

3. one 1is a source vertex and the other is a sink vertex

Consider the first case where Va and v,, are both source

vertices. By lemma 4.0-2 nljfﬁ. Let q,. and q 4 be the two major

paths labelled 1j such that Va is the source in q, and v, is the

1

source in q . Let v, be the first™ computation vertex in q, and

lthe first computation vertex in a major path is the vertex adjacent

to the source, .il.e., the edge from source vertex is directed into this
vertex.

38
Vy be the first computation vertex in qg.

Let PA(v)=s;, TA(vy)=ty, PA(VY)=32 and TA(VY)=tzg By

&

construction of 80; there must exist tuples <vu9t1>,
{%?ﬁ?i};“%hz%dlj}, <“fw9t2> and <sztz“’k2§‘dlj> such that
ixt}.”kiﬁéijgtzmkzﬁdlg
10A<v, ,t1»®s; and I0A<v,ty0=s
1§é<vu§t>mIGA<vW9t>3s%si-k1*n1j=sz—k2*n1j
and hence, siﬁs+ki*n1j

Szxg%’“}&z*ﬁl'

tizt.i-kg.kdlj
and hence, 8,%s,+k “gz)*nlj

and so Vg, T§a3b> vy where a=nj 5, bgélj and k=kz°kge But v,
and v, are in distinct paths 9y and qq respectively and we have
assumed that they both are in the same major path labelled 13,

We can obtain a similar contradiction in the other two cases

also.
Lemma 4.0=4:

In any syntactically correct mapping of G and for any Eq; and Elj in
] @ﬁii%% then éli%dlj*

Proof: Since Eii and Elj are in H they cannot be identical
giving rvise to the two cases similar to the two cases consldered

in the proof of lemma 4.0=1. For reasons similar to the one

given in proof of lemma 4.0-1 case (1) cannot arise in any

syntactically correct mapping.

Consider case (2a). Let the distance from v, to v, in figure

% 7

39

4.8-1 be k. Now PA(VY)=PA(VX)+k*nli and TA(vy)=TA(vX)+k*dli.
Suppose dlizdlj and hence PA(vy)=PA(vX)+k*n1j and
TA(vy)gTA(vx)+k*dlj and hence vy T%a,b) vy where a=ny and b=dlj
and so by lemma 4.0—3 there must be a single major path labelled
13 passing‘through Vi and vyg But in figure 4.0-1 Vg and v_ are

y
in qg and q, respectively and q; and q; are distinct major paths

labelled 13 .

Consider case (2b). We can similarly show that vy T%a,b) v,

where a=nyy and b=djj. But vy and v, are in distinct major paths

q, and q¢ labelled 1i.

Definition 4.0-3: A maximally-connected subgraph of a uniform graph

1. ng, SOSG, SISG, ESG and LSG are subsets of Vo SOG, SIG, Eq

and Lg respectively.

2. and 5G satisfies the following:

a. the edges in Eg, are labelled with labels from Lgg,

b. SG is connectedl

c. there exist no pailr of vertices v, and vy such that v,

is not in 5G and vy is in SG and there 1s a undirected

lthere 1is an undirected path between every pair of computation
vertices in SG such that the edges in the path are all from Egqe

path from v, to vy through edges whose labels are in

Lgg

Exsmple 4.0=1:

Figure 4.9-3

G is a uniform graph. Computation vertices are denoted by ‘o’, source
and sink vertices are denoted by ‘®°. The horizontal, wvertical and
oblique {(curved edges in G) are labelled 11, 12 and 13 respectively.
The source and sink vertices attached to horizontal, vertical and
oblique edges arve labelled 11, 12 and 13 respectively. SG1 and 5G2 are

the two maximally-connceted subgraphs with Lggi=Lgpp={11, 12}.

Let 1i and 13 be any two labels in Ly such that Eyy and Eij are in
H. Let SG be a maximally-connected subgraph with Lge={1i, 1j}. Let
5Gyy={major paths in S5G labelled 1i} and SGlj={major paths in S8G

labelled 13}. Now SG?i and SGlj are subsets of Eli and Eij respectively.

Let Szizézgzil is a label and ry is binary relation on major paths in

‘recall definition 2.1-6, page 7

41

§Gy;}. Since LSG={1i, 13} and hence Sli={r1j}' Similarly Slj={rli}. For
any mapping of G to be syntactically correct ryy and 1y must impose a
structure on the major paths in SGy; and SGlj which is stated formally

in the following lemma.

Lemma 4.0-5:

For any mapping of G to be syntactically correct rlj in Sli and T4

in Slj must impose a linear chain on the major paths in SGyy and SGlj

respectively.

Proof: We will first show that r1j in 8;; must impose a
linear chain on major paths in 8Gyy. Inorder to show this we

must first show that S;; imposes a consistent order on major

paths in 5Gy4.

Let G4 and Gy be the directed graph induced by all the
relations in S8;; and by the relation ry respectively on the
major paths in SGyj. Slig{rlj} and hence G =G . Consequently
inorder to show that Sli imposes a consistent order on the major

paths in 5Gy; we must show that r1j is total on 8Gj; and Gy 1is

acyclic.

Suppose rlj is not total. This means there exist atleast two
major paths qg and Q¢ in SGli such that neither qq rIth nor q,
rqus. Now SG is connected and hence G, is connected and so

there must be a major path qp in SGyy such that one of the

following two cases hold:

e
1. qq ?éngs q¢ fijqk and there does not exist any major

) . + + +
path g, in Sgii such that qg rquW9 Qe rijqw and 9y zquk

]

. qy zgjﬁgg Q. ?éjqi and there does mot exist any major

3 . z + -+ 5 A+
path q in 5Gy4 such that q, SR 9y rqus and q. rqut

Consider the first case. Let g, and q be two major paths in

two distinct major paths. q, ryj q and so there must exist a
pair of computation vertex vy and vy, in q, and gy respectively
such that there is an edge ey labelled 1j directed from vy to
Vig® Similarly since q, T1y 9k and hence there must exist a pair
of computation vertices Vy and v, in q, and q respectively such

that there is an edge ey labelled 13 directed from vy to v,.

This is illustrated in figure 4.0—4 below:

o e e s e Gmee Dusmm | SSS SSSs

Figure 4.0-4

in Figure 4.@=4 each of the shaded boxes denote a major path
labelled 1i. Let the distance from v, to v, in q be ©h and

hence in any syntactically correct mapping,

43

PA(Vu)=PA(vw)+h*nli

and TA(v)=TA(v)+h*dy 4

Now v, 74 Vi and hence,
PA(VW)=?A(VX)+nlj

and TA(VW)zTA(VX)+dlj

Also Vy T35 Vy and hence,
PA(v,)=PA(vy)+ny 4
TA(vu)=TA(vy)+dlj

From the above equations we obtain,
PA(vy)=PA(vX)+h*nli

TA(v,) =TA(v,)+h*dy 4

Hence Vg T%a,b) vy where a=nj; and b=dyy. If n1j=ﬂ then
PA(VX)=PA(VY) and by definition of a syntactically correct
mapping v, and vy must both be in the same major path labelled
1i. If nij#ﬁ then by lemma 4.0-3 vy, and vy must both be in the
same major path labelled 1i. But v, and vy are in distinct

major paths qp and q,. We can arrive at a similar contradiction

in the second case also.

We must next show GX is acyclic. Suppose there is a cycle in

Gy - Let qy, Qg «¢5 dp be the set of the m major paths in 8Gyy

that form a cycle in Gy as shown in figure 4.P=-5.

Figure 4.9-5: a cycle in G,

This cycle implies that there are two computation vertices Yy

and vy in q; such that there is a undirected path from v, to Vy

that passes through computation vertices in each of g¢5, g3, =,

q, and through edges labelled 11 or 1j as shown in figure 4.8-6.

Figure 4.0=6: a cycle in G

Let ky and k, be the number of edges labelled 1i in this path
gsuch that the order on the vertices imposed by these edges arve
consistent and not consistent respectively with the order on the
vertices imposed by the undirected path. Let k1«k2=he The number
of edges in this path that are labelled 13j is m~1 and clearly

{m=1)>1. By proposition 4.0=-1,

F&{vy}ﬂ?é(vx}+hﬁnli+(mwi}*nlj

and

Let the distance from vV, to v

hence,

and

45

TA(vy)=TA(vX)+h*dli+(m-l)*dlj

y in the major path 9 be k and

PA(vy)=PA(v, JHk*ng

TA(VY)=TA(VX)+k*dli

and so,

k*ﬂli=h*n1i+(m“l)*nlj oooocoaonoacc(a)

k*dli=h*dli+(m‘l)*dlj .oo.ooooooooo(b)

Now Eli and Elj are in H and hence by proposition 4.0-5 each

of mny; and nj § ’must be one of {1, =1, @}. By lemma

4,0-1 n1i=nlj4¢ and so the possible values that the tuple <ny4»

nlj> can assume are: <1,8>, <1,1>, <1,=1>, <~1,0>, <-1,1>,

<=1,=1>, <P,1> and <@,-1>.

1.

Consider the set of wvalues <1,1> and <~1,-1>. From (a)

and (b) dys=dy ;. But by lemma 4.0=4 dq:=dq:.
117415 1147 5

Consider the set of values <P,1> and <P,~1>. From (a)

aijgﬁe

Consider the set of values <1,0> and <~1,#>. From (a) and

(b) dij=ﬁs

Consider the set of wvalues <=1,1> and <1,~1>. From (a)

and {h) dliz“dlje

Lastly we must show that the consistency comstant of r1y in

o

14 is 1. Suppose otherwise. This means there exist major paths
p ; . R m "
q, and q. in Sgii such that qg rqut and qg rij Qe in Gy and m>l

as shown in figure 4.90-7.

Figure 4.0=7

Now q r14 9 and hence there must exist computation vertices
v, and vy in qg ané 9 respectively such that there is an edge
e, labelled 1j directed from v, to V. Also qg r?th and so
there must exist maijor paths dg1s 9525 °°s Yg(m-1) in SGli such
that dg T3 Ag1s 9gi Ilj dg2s *°s Yg(m~1) rij Qe and hence there

must exist an undirected path from v, to vy through computation

vertices in each of dg1s 9g2s °°s Gg(m=1) and through edges

foonsh

labelled 11

<

r 15 as shown in figure 4.0-8.

Ve

%ﬁ» N .@i et

Wge I

%{5&;3;‘ §

Figure 4.0-8

Let ky and ko be the number of edges labelled 1i in the

&7

undirected path from vy to vy such that these edges impose an
order on the vertices in the path that are consistent and not
consistent respectively with the order imposed by the path on

these vertices. The number of edges labelled 1j in this path is

m and hence,

PA(vy)=PA(vX)+m*nlj+h*nli
and TA(vy)=TA(vy)+tm*dy jHh*dy4
also qg ryg ¢ and hence
PA(vy)=PA(v)+n; 4
, TA(vy)=TA(vX)+dlj
and so, h*nli=(m~l)*nlj

and h*dli-*-(m—l)*dlj

By reasons similar to that used in showing Gy is acyclic we
conclude that the consistency constant of the relation r1j in
Sy; must be l. Hence T1j in S;; must impose a linear chain on
the major paths in SGy4- Similarly we can prove that ry4 in Slj

must impose a linear chain on the major paths in SGlj'

5. Syntactic Characterization

In this section we provide a characterization theorem for a class of
program graphs such that there exists a syntactically correct mapping
for every member in this class. As a prelude to the main result (theorem

5.2-1) we establish some preliminary results.

48

Let MG be a2 uniform graph such that LMGa{li,lj} and ryy and ryy are

both non-empty.

Definition 5.1=1: MG iz 2z mesh graph 1ff there is 2 cone-one function

FiVye ===> I x I where:

1. 1T is a set of integers

2. Vyg is the set of computation vertices in MG

3. Fyy and Fij are projection functiong of F, .l.e., if

F(vy)=<{m,n> then in{vx}ﬁm and Flj(vy)=n

e
&

for any v, and vy in Ve

a. 1f there exists a major path labelled 11 passing

through v, and v

5 such that the distance from Vy to v

v
in this major path is k then Fy:(v)=F.{v_)+t aund
13 g iv¥x

(v }aF?j{VX} and conversely sol

be 1f there exists a major path labelled 13 passing
through v, and vy such that the distance from Vg to Vy
in this wmajor path is k then Flj(vy)=Flj(vx)+k and

Fiii?y}gFii(vK> and conversely so.

Eaiaeag 1f Fyslvg)=Fy, (v)k and Fyslv)=F1j<Vx> then there must exist
a major path labelled 11 passing throagh v, aiid v, and the distance from

v, to Vg in this path must be k. 4

49

We will denote F{vx) by the tuple <Xli’xlj> where Fy;(vy)=x;; and

Flj(vx)zxij' We can think of X14 and le as the horizontal and vertical

co-ordinates of the computation vertex v,

Example 5.1-1:

Figure 5.1-1: Mesh Graph MG

In figure 5.1-1 ‘o’ denote computation vertices and ‘@’ denote source

and sink vertices.

F(v1)=<$,¢>, F(v2)=<1,@>, F(v3)=<ﬂ,l>, F(V4)=<1,1>, F(v5)=<2,1> and
F(vg)=<8,2>.

We can characterize a mesh graph in terms of the relations ryy and
r}4 om the major paths in Elj and Ey4 respectively. Consider a uniform

graph MG with LMG={1i,lj} and ry; and ryy are non=empty.
 Proposition 5.1-1:

MG is a mesh graph iff each of the following two conditions hold:

1.]y imposes a linear chain on the major paths labelled 1li in

MG

50

2. vyy imposes a linear chain on the major paths labelled 1j in

If MG satisfies proposition 3.1=1 then the major paths in E;; are
totally ordervsed and similarly the major paths in El§ are also totally
ordered. So if v, is a computation vertex in MG then F(vx)z<m,n> where m
ig the index of the maljor path in Elj which passes through Vg and n is

the index of the major path in E., that passes through v_.

Using proposition 5.1-1 we can characterize the property of any
maximally-connected subgraph of a uniform graph G inorder that any

mapping of G is syntactically correct.

Theorem 5.1=1: For any pair of labels 1i and 1j in Ly of a uniform
graph G 1f 8G 1s any maximally-connected subgraph of G with Lgg={11,13}
then SG must be a mesh graph in order for any mapping of G to be

syntactically correct.

Proof: TImmediste from lemma 4.0=5 and propositionm S.i=1.

In any syantactically corrvect mapping of a mesh graph we can easily
relate the processors computing any pair of computation vertices and

also the times at which they are computed.

Proposition 5.1=-2:

In any syntactically correct mapping of the mesh graph MG and for any

pair of computation vertices v, and Vys

PALv)=PA(v)+ (y 37273) %0y 1 +(yy 57%g) %0

