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Definition 5.1-2: A diagnol in a mesh graph MG is a 2~tuple D=<Vp,k>

where

1. Vp is a set of ordered computation vertices from MG and the
ordering ranges from 1 to iVDl and if Vo and vy are in VD
such that 15 is less than Y13 then the index of Ve in the

ordering is less than the index of v

v in the ordering

2. k is such that

a. either for every vy in Vp, xli+xlj=k

b. or for every v, in Vs xli-xlj=k

Let Dlm{D such that every v, in Vj satisfies (2a)} and Dr={D such
that every v, in Vp satisfies (2b)}. Augment Vy of every D in Dy by a
dummy1 source vertex labelled 11, a dummy sink vertex labelled 1l and a
set of dummy directed edges labelled 11. Assign the index § to the
source vertex and the index |Vpi+l to the sink vertex. For every pair of

adjacent vertices vy and Vy in the ordering of all the vertices in the

augmented V5 if the index of v, is greater than the index of v, by 1
D X

y

then direct a dummy edge labelled 11 from v, to Vg Consequently every D

in Dy is a major path labelled 11. Similarly augment every D in D, by a

dummy source vertex labelled lr, a dummy sink vertex labelled lr and a

‘not part of the original graph
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Example 5.1-2: Consider the mesh graph MG of example 5.1-1. D, and

Dy in MG is shown in figure 5.1-2 below:

Figure 5.1-2

In figure 5.1=2 the dummy source and sink vertices are denoted by
‘e’.

Let ﬁgaag denote the mesh graph MG augmented by the set of dummy
edges, dummy source and sink vertices in Dy and D.. Let A be the set of

major paths in MG,

aug such that for any pair of computation vertices v,

7
different major paths of A then PA(VX)%PA(VY)E Let B=E,, if A=E,; and

and wv_ in any major path of A, PA(VX)=PA(Vy} and if v, and v, are in

Py £ A=F., ,
gvizj if A 174

Lemma 5.1=1:

In any syntactically correct mapping of MGaug the pair <4,B> must be

one of {48,

13°F157s <D1uEpp>, <Dp.Epy>, <EppEplhe
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Proof: Let x and y be the value assumed by mn4 and o4
respectively. Now by lemma 4,0-1 nli=nlj#¢ and hence <x,y> must
be one of {<1,8>, <1,1>, <1,-1>, <B,1>, <=1,8>, <=1,1>, <~1,~1>,
B,-1>. If ﬁl is the mapping that results from <nli’nlj>=<x’7>
then the mapping Mo that results from <n1i,nlj>=<~x,-y> is the
same as M, with the array in My reversed from end to end. Hence
we need to consider only the four different mappings that result
from <x,y> assuming each of {<1,8>, <1,1>, <1,-1>, <@,1>}. By
forming A for each of these four different values the lemma

follows.

Let la and 1b denote the label of edges, source and sink vertices in

A and B respectively. Clearly la must be one of {1i, 1j, 11, 1r} and 1b

must be one of {1i, 1j}.
Lemma 5.1=2:

In any syntactically correct mapping of Mcaug’ nyy, must be 1 and ny,

must be B.

Proof: mny, must be § follows from definiton of A. From lemma
5,1=1 <A, B> must be one of {(Elj,Eli>, <D1,E13”> <DrsE147s
<Eli’E1j>}‘ It can be easily verified that B=Ey; if ny=1 and

B=Elj if nlj=l and hence LTS must be 1.

Now any maximally-connected subgraph SG of MGaug with LSG={la,lb} is
a mesh graph and consequently the relations 1y, and ryy impose a linear
chain on B and A respectively and hence the major paths in A and B are

also totally ordered. Now for any computation vertex Vg, Xiy and xy, are
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its horizontal and vertical co-ordinates. Also X1p and Xy, are the

indices of the major path in A and B respectively that pass through v.
Lemma 5.1-3:

If Ves V.

SR and v, are any four computation vertices in Mﬁaﬁ such
Y J

g
that yyp~X1p=Wip~uy, and if in any syntactically correct mapping of

MG, TA{VF}wTﬁ(vX}ﬁTA(vw}wTA{va) then yq =Xy,=wy,~uy, -

g

Proof: Immediate from proposition 5.1-2.
Lemma 5.1-&:

1f v, and v, are any two computation vertices in Mcaug such that

yiéwxiﬁwk%m. and yiawxlaxk*ﬂ where k, m, n are integers then in any
k

syntactically correct mapping of MGaug’ Vy T<m’0> vy where

Gﬂ<ﬁ%é za%ﬁé%é }:ﬁ:} ®
Proof: By proposition 5.1-2,

PA(vy)=(y1p=%1p)*r1pt (T 12751 0) ¥y o PPA(YY)

and Tﬁi?y}g{yi%mxiﬁ}%dib%<?1awxla}*dia+TA{vx}

By lemma 5.1-2 ﬁiawﬁ and nyy=l and hence

?A{v?)mk*ﬁ%?ﬁivx}
and Téé?y)xk%a+fﬁ(vx)

and hence the lemma.
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5.2. Main Result

We will examine the syntactic properties of a class CL of program
graphs such that there exists a syntactically correct mapping for every
member of this class. In evéry program graph G in CL there exists at
least a pair of labels 1i and 1j such that the number of maximally--
connected subgraphs SG with LSG={li,1j} is 1. Hence all the major paths
in Ey4 and Elj are in this subgraph. By theorem 5.1-1 SG must be a mesh
graph. Augment the subgraph SG with the two sets of diagnol paths Dy
and D.. Define the sets A and B as for the augmented SG as done earlier
“in this section . Let SAé{rlpll Tlp is a binary relation on the major
paths in B and Elp is in H} . Let SBg{rlp‘rlp is a binary relatiom on
major paths in B and Elp is in H}. By lemma 5.1-1 the pair <A,B> must
assume only one of {<Elj’Eli>’ <Dy,E142, <Dy,E14”s <Eli’Elj>}' Let us

denote this set of four tuples as H.
Theorem 5.2-1:

There exists a syntactically correct mapping for anmy G in CL iff
there exists at least one tuple in H assumed by <A,B> such that each of

the following condition is satisfiled:

1. 8, imposes a consistent order on the major paths in A and the

consistency constant of every relation in S, in the ordering

imposed by S, is onme of {1, -1, #}.
A

2. Sp imposes a consistent order on the major paths in B.

1refer definition 2.1-6, page 7
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for any palr of computation vertices v, and v in G and for

X b

any label 1f yib“xibxk*aip and yla"xlaak*blp where a1p and
bi@ are consistency constants of relations rlp in the order
imposed by S, and Sy respectively then there must be a single
major path labelled 1lp that passes through Vo and vy such

that the distance from v, to v, in the major path is k.

y

for any velation i in 8, if a1p=@ then there cannot exist a

traﬁgigiﬁe adge labelled lp.

Prooi:

Necesaity:

% and vy be any

palr of computation vertices in any two major paths in A

1. Consider any relation rlp in S,. Now let v

such that there is an edge labelled 1p directed from v
Lo vge Now PA(VY>=?A(VX)+HIP where 3, is one gf
{+1,-1,8}. Also ?A(Vy)=ylb and PA(v, )=xy;, and hence

Y15 %15 1p and hence condition (1).

2. Again consider any relation Tip in S, and Sy. Comsider
any two palr of computation vertices <vx,vy> and <vung>
such that there is an edge labelled 1lp directed from v,

to v, and also another edge labelled lp directed from v

v u
to Vi How dlp is a constant and hence
?éivw)mTéivu}sTA(vy)uTA(vx) and hence

T T A TS 2 TR ST A P T A TS PRl POACS P

But by condition (1) Y1~ E¥1p"W1p~u1p and  hence
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¥1a~¥15"W1a~U1, and hence condition (2).

We first show that nyp=a), and dlp=alp*dlb+blp*d1a'
Consider any pair of computation vertices v, and v, such
that there is an edge labelled lp directed from v, to V.
Now by condition (1), Y1pTU1p=21pe Also PA(v,)=w;, and
PA(v,)=ujp, and hence PA(VW)—PA(vu)=n1p=alp. Also
TA(VW)—TA(vu)=d1p=(wlb—ulb)*dlb+(wla~ula)*dla. From
condition (2), Wla-u1a=blp and hence dlp=alp*dlb+blp*d1a‘
Now nyy=1 and ny,=# and hence iPA(vy)=PA(vx)+k*alp and
hence PA(vy)=PA(vx)+k*nlpe From condition  (2)
dlp=alp*dlb+b1p*dla and hence TA(vy)=TA(vX)+k*d1p and
hence v T%m,n> vy where m=ny and n=d1p. 1f nlp=ﬂ then
by definition of a syntactically correct mapping
condition (3) follows. If nlp#ﬁ then by lemma

4,0-3 condition (3) follows.

Supposing there existed a Elp in H such that n1p=ﬂ. By
condition (3) Elp must be ddentical to A and hence

dlp:dla’ We show that if Elp exists then dlb must be some

multiple of dlp'

Consider two consecutively indexed major paths q; and qy

in Elp as shown in figure 5.2-1 below:



38

oy v

s b 8

Figure 3.2-1
Let PA{(v )=p and hence PA(vy)=p+1. Let TA(v )=t; and
?A(w?}gtz and  hence t2=dib+(yla_xla>*élp+ti° Let
ylawxlagk and hence t2=t1+k*dlp+dlb. The start time
tg<{ty. Besides there must be two tuples <vg;,t.,> and
<§SZ§E§> in 504 such that IOA(VSl,tS>=p and
EGA(vszﬁts>=p+i and - hence
témki%dlpgtg”"t1+k%d1p"§”dlb“’k2*dlp and hence

dyp=(ky=ky=k)*dy,

Hext we will show that dyy cannot be a integral multiple
of éiyé Conslder two consecutively indexed paths q; and
qy in Eip and a transitive edge e

g in q; as shown in

figure 5.2-2 below:

€.

q,
Figure 5.2-=2
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Let “la“zlaak where k 1is some integer and hence
Wla"zla=k+lf Let PA(v,)=p and hence PA(v,)=p and
PA(v )=p+l. Let TA(v,)=t,, TA(vy,)=t, and TA(v,)=t,. 1In
any syntactically correct mapping these times must be

related by the following set of five equationms:

a. tz>tu

c. € z"'tu="'k*d1p'{“d ib

€e tw°t2=(k+1 ) *dlp—dlb

Using the above equations we can . show that

k*élp<dlb<(k+1)*dlp and hence dy; cannot be an integral

mgitiple of dlp'
Sufficiency:

Let ig be the program transformed to G. Let [A|=n and so the
major paths in A are totally ordered with indices of the major
paths in A ranging from ¢ to (n-1). Construct a linear—array LA

with\4z§@, Lg=Lp and |PR|=n and comstruct a mapping as follows:

Set nlazﬁ and nlb=1. For every T1p in 8, set n1p=alp. If A=Dq

then set dla=2 else set dla=l. If the consistency constants of
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all the relations 1in S are > @ then set dyp=l else set
éiézéiaﬁébi?z%i where bi? is the minimum among all the
consistency comstants of all the relations in Sgz. For every Elp
in B set éipmgzp*dlb+ﬁi§*dia* This completes assignment of 135
and éz§ for every label lp such that Elp is in H. Next for every
Eig in F 4if Elg in B is identical to some Elq in H then set
nyp= Mg and éipgélg* For every relatiom Elp in § set Blp as
empty. This completes assignment of i, and dip for every label
in G. Next comstruct the functions PA and TA. For every vertex
v, in a path ia A whose index is 1 set PA(VX)=1a For every
computation vertex vy set TA(Vy)=t¢+ylb*dlb+yla*d1a where tg is
the time at which the computation vertex whose co-ordinates are
<P,#> (i.e., the computation vertex on the major paths in A and
B whose indices in the ordering of the major paths in A and B
are ®. ) 1s mapped. This completes the construction of the
mapping. We next show that this mapping 1is syntactically

correct.

§§a>%@ Hence no two computation vertices in any major path in
A are simultaneocusly mapped onto the same processor. The
computation vertices in diséinct major paths in A are mapped
onto distinct DroCe8sS0YB. Henée no two computation vertices in G

are mapped simultaneously onto the same processor.

Next consider any two computation vertices v, and v, such
o

that there is an edge labelled lp directed from v, to Vye
Now, ?é{vy}=?§(vx}+(y1wa1b)*n1b+(yla—xla)*nla
=PA(v +H(y1mxy)
=PA{v_)+a
x’ “lp
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and 0y, is one of {1,~1,8} as 21p is one of {1,-1,0}.

Also TA(V )"'TA(V )+(y E"'le) d b+(yla Xla) dla
~TA(v Ytaq *dq,tb
ip “1v ' "1p d1a
-—TA(V )+dlp

Next consider any two computatiom vertices Vg and vy and any
label 1p such that ylb_xlb=k*alp and ylanxlazk*blp‘ It can be
verified that v, TEm,n>vy where m=aj, and n=dlp‘ 1f nlp=¢ then
by condition (3) Elp is identical to A. In our comnstruction no
two distinct paths in A are mapped onto the same processor and
hence no two distinct paths in Elp are mapped onto the same
processor. ILf nlp%ﬁ then by lemma 4.0-3 there must be a single

path labelled 1j passing through v and v, which is condition

X y
(3) .Hence no two source or sink vertices are simultaneously

mapped onto the input port labelled 1lp of any processor in the

array.

6. Semantic Issues

In the previous section we characterized a class CL of program graphs
such that for every program graph in this class there exiéts a
syntactically correct mapping. Recall that a syntactically correct
mapping of a program graph G computes the program ((represented by G
correctly iff the contents of every source and sink vertex in G that is
mapped onto the inmput ports or output ports of processors more than once
remains invariant. More formally in a syntactically correct mapping of G
if there exists a pair of tuples <vx,tm> and <v,,t, > either in SI& or

&
SOG then the contents of vV, at th must be the same as the contents of v
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at t,. For the contents to remain invariant the program ¥ represented by
the program graph G which is the same as the function q% computed by
every processor in the linear array needs interpretation. However in a
syntactically correct mapping of G if there does not exist any pair of
tuples <?X%Em} and <VX§tn> either in Slé or SOé such that tm%tn then
clearly the progranm %ﬁmee&s no interpretation. But we demonstrate in
rheorem H.1=1 that this sub-class of program graphs in CL is very
iimited. We then examine some semantic properties required of programs

in L for them to be correctly executable.

6.1, Uniterpreted Characterization

Herein we will examine the structure of program graphs in CL that can
be computed correctly without interpretation of the programs represented
by the program graphs. We establish a few preliminéry results of a
general nature which we subsequently use to prove the main result,

edl.e., theorem 6.1l-1l,

3

Lemsa 6.1l-1:

if = Sygtaaticaily correct mapping of G (not necessarily in CL)
computes the program Wtransformed to G correctly without interpretation
of ¥ then for amy label 1lp if Eip 1s in H and nlpfﬂ then all the major
paths in EE? must have the same path-length.

Proof: Let q and 99 be the two major paths in Elp such that

the path-length of gq; is greater than that of q3. Let the path-
length of ¢y be k. Now nlp?@ and hence there must be at least k

processors in the linear—array. Let v and vg¢ be the source and
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sink vertices in gqg. Let vy and vy be the first1 and the 1ast2
computation vertices respectively in q5. Let PA(vx)=p1,
PA(vy)=p2, TA(vy)=ty, TA(vy)=t2. Since the path-length of q; 1s
less than the path-length of gq; either omne of the following

cases must be true:

1. there exist atleast two tuples <vs,t1—dlp> and <vs,t1> in

S0g such that IOA(vs,t1°d1P>=pl and IOA(VS,t1>=p1—1

2. there exist at least two tuples <Vf’t2+dlp> and
<vf,t2+2*dlp> in SI; such that IOA(vf,t2+d1p>=p2 and

In both cases interpretation is needed.

Lemma 6.1-2:

1f a syntactically correct mapping of G (not necessarily in CL)
computes the program %’transformed to G cotrectly without interpretation
of k{thﬁn for any palr of labels 1lp and 1lq if Elp and Elq are both in H

then njy = 1 ==> nlq=¢ and n 4= 1 ==> nlp=¢ (.i.e., g, and njq cannot

both be non-zero simultaneously).

Proof: Without loss of generality let n1p=n1q=1. By theorem
5,1=1 any maximally-connected subgraph SG with LSG={lp,1q} must

be a mesh graph and hence the major paths labelled 1p in 5G are

lihe edge labelled 1i from vg is directed into vy

Zthe edge labelled 1i from vy is directed into vg
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totally ordered and similarly the major paths labelled 1q in S§G

are also totally ordered. Let q, denote the major path with

index & in Eyp and g, be the major path with index P in Eiqe Let
v, be a computation vertex in g, and q, as shown in figure 6.1-1
below: R -

Figure 6.1-1

Let v, be a computation vertex in q and v, a source vertex

v ]

labelled 1p. Let PA(v )=p and TA(v,)=t. n1p=n1q=1 and hence
PA(v,)=p+l and TA(ﬁy}3t+&1qu Consequently there must exist a
tuple <vsgt%d3q> and <vsst> in 80 such that IOA(vs,t>=p and

E@éévgﬁi%@g@>ﬁ§%i and hence interpretation is needed.

Let G be any program graph in CL. Let SG be the only maximally--

connected subgraph of G with Lgp={11,1j}.

If a syntactically correct mapping of G in CL computes the program

s

G correctly without interpretation of ¥ then there must

(2
o
o
=
o
by
5
1]
Il
4]

be at most two sets of maj@f paths in H (.i.e., H can have atmost Eiq
j} and the path=lengths of the major paths in the same set must be

identical to one another {(.i.e., the path-lengths of major paths in Eli
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must be identical to one another and similarly the path-lengths of major

paths in Ep4 must also be identical to one another).

Proof: We first show that H must have atmost Eq; and Elj'
Suppose H={E;;, Eljg Eip}' By lemma 6.1-2 n;y and ny 4 cannot
both be non-zero. Let nli%@ and n1j=@s Also by lemma 6.1=2 mnyy
and nip cannot both be non—zero and hence nlp=@. But by lemma

4 s0=1 nlj=n1pz§ﬁe

We next show that the path-lengths of the major paths in Eqy
are identical and the path lengths of the major paths in Elj are
also identical. By lemma 6.1=2 ngy and ng j cannot both be non=-
zero. Without loss of generality let ny;¥) and so nlj=¢. By
lemma 6.1=1 the path lengths of the major paths in E;; are

identical.

Suppose there exist major paths in Elj such that the path
lengths are nol same. Let qj and qp be two consecutively
indexed major paths in the total ordering of the major paths in
Eij whose path lengths differ. Without loss of generality let

the path length of q; be greater than that of go as shown in

figure 6.1-2 below.

%, %,

Figure 6.1-2



[#aY
£75

In figure 6.1=2 v is a sink vertex labelled 1i and v, and v,
e o
are computation vertices. Let PA(VX)=p and TA(VX}=t¢ Now nlix@

and aijgﬁg Without loss of generality let nqy=1 and hence

?ﬁ{?y}@§%i@ Consequently there must exist two tuples <vg,t+dy4>

&

and <¥~?z%2%§ii> in  Si; such that IGA(Vf,t+§ii>zp and

Theorem H.1l=L1:

A syntactically correct mapping of 6 in CL computes the program

Kg cransformed to G correctly without interpretation of Y iff there is
only one set of major paths in E (.i.e., E is either E;; or Elj} and the
path length of all the major paths in this set are identical to ome

another.

Proof: HNecessity:

Suppose Exéﬁii,ﬁij}a Let ny4=1 and  Thence by lemma

6.1-2 mﬁjxgé By lemma 6.1=1 the path lengths of all major paths

g&a
g
i
ot
o)
Y
s

same and the path lengths of all wmajor paths in

Ey; are the saume. How let gq; and g, be two major paths in E?j

5
H

indexed O and 1 respectively as shown in figure 6.2~2 below:

Figure 6.2-2
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In figure 6.2-2 v, and v, are computation vertices. v, is a
source vertex labelled 1j. Let PA(VX)=p and TA(vx)=t.
Consequently PA(Vy)zp+l and TA(vy)=t+d1i. Now t{t, where tg is
the start time. Hence t+§li>ts and hence there must be at least
the two tuples <vg,tz> and <Vw’t+dli> in SO& such that

IOA(vw,ts>=IOA<Vw,t+dli>=p+1 and this needs interpretation.
Sufficlencys

Let H? be the program transformed to G. Assign unique
indices to the major paths in Eqje (#={E{4} and hence there is
no edge directed from a computation vertex in some major path in
Eq4 to another computation vertex in some other distinct major
path in Eyy and hence the indices can be assigned unique indices
arbitrarily). Let Eliz{qﬁ’ qys =o» q,} where qj 1is the major
path assigned index 1. Let V<r’w> denote the computation vertex
at a distance w from the first computation vertex in the major
path gq.. Let ihe the number of computation vertices in any
major path be n. Comstruct a linear array LA with@?=@%, IPRI{=n

and Lg=Lps Construct a mapping MP, as follows:

For every Eip in F set nlp=ﬂ11=1° For every Elp in S set Blp
as empty. Define PA(V{Q’¢>)=@, TA(V(@,¢>)=tg, PA(v<r’w>)=w and
TA(v<rgw>)zt$+r+w. It can be easily verified that such a
mapping is syntactically correct and every tuple in SOé and SIé
are mapped only onto the appropriate distinguished input ports

and ocutput poris.



o
[s:0]

From thecrem 6.1=1 it is clear that the subclass of program graphs
that can can be computad without any semantic information is very
limited. Herein we will examine three simple semantic properties of a
program  and demonsirate their significance in ensuring the correctness
of computation of a syntactlcally correct mapping of any program graph
in L. The notations used are similar and hence have the same meaning as
those used in definition 2.2-~1 and definition 2.2-2 of a program and

its transformation to & program graph.

[+

Example 6.2-2: Let wz<w§g Wys ees Wegl1Ys W(i4l)s oo W(k)> denocte a

(k=1)=tuple where % j,1{j¢k and j¥i, wj%on W is an identity vector for

W, iff for any x€¥, and for any z in Y if
(o . Woe v eKs oWis s 7,05 )=z the =%
Q%;%W{i' w& &% 5 M{imé}sﬁlgwiz%i}j’ I W{k}'} Z b%}eﬁ zl Kie

Example 6.2-3: In example 2.2-1 w=<P,0> is an identity vector for

Definition 6.2-2: Let wyfY;. wy is a fixpoint element for %% 1ff for
any z in Y, eny x. in Yj and ¥ j, 1€i¢k and j4i, if W(x;, =9, -

N

K(i=1)s Wis X(i+1)> *°» % )=z then z;=w.

Example 6.2-4:; Let Y=Y¥; x ¥,. For any x and z in ¥ if W(x)=z then

=min(x;, x,) and zo=max(x;, %),



+oe is a fixpoint element for min and —oo is a fixpoint element for

maXe.

Let 1D=ID,UID,U..VID, where ID;g¥; % il 1gigk .  ID; contalns
elements that are fixpoints of the functionﬁ¥i or some elements from Yy

that are components of an identity vector for some Wj, 1{i¢k and j¥i.

Let MID be a function from ID to a subset of T (T has the same
significance as used in definition 3.0-11) such that if MID(x)=t and if
x is in ID; then the element x is mapped onto the distinguished input

port for label 1i at time t.

Lemma 6.2-1: If MID(x)=t and x is in ID; and x is a fixpoint element
of Qg then the element at the input port of processor indexedvp+k*n1i at
t+k*dli is x where p is the processor index whose input port labelled 1i

is the distinguished input port for label 1i.

A transformation of a program to a program graph assigns to every
element in each of the sets Y;, Y3, .o, ¥y either a labelled edge or a
labelled source vertex or a labelled sink vertex. Consider a
syntactically correct mapping of a program graph G. For every source oOr
sink vertex v, let SX={<VX,t>E <vx,t> Sié or <vx,t> SO& }. In every S,
there is a tuple <v,,t_ . .> such that for every other tuple <v,,t> in S
t(tmaxa Let EOA<vx,t>=p. Let ID(X,t) denote the elements at the other

input ports of p at time t. Let IDX={ID<X t>}
k]

page 26



Theorem 6.2-1: A syntactically correct mapping of a program graph G

computes correctly if for amy label 1li one of the following holds:

1. Y; is an identity function

2. for any source aor sink vertex labelled the element in ¥,

that has been transformed to vy is a fixpeint for Yy

3. every Iﬁ<x £ in 1Dy is a identity vector for %ﬁ
k4

7. Iiltustration
In this section we illustrate the syntactic and semantic

characterization developed in the previous sections by two examples. In

by

the first ezample we consider the problem of multiplying a band matrix
by a vector. We will use our characterization to synthesize the solution
to this problem proposed in [5]. In the second example we consider the

problem of sorting and we will again use our characterization to

synthesize the rebound sorter [1].

Example 7.0-1: Multiplication of a Band-Matrix by a Vector

Herein we will use matrix ¥ and vector X used in example 2.2-1. For
the program graph (figure 2.2-2) in example 2.2-1 H={E;;, Ej3}, P={{}
and S*{Elzéa The number of mazximally-connected subgraphs B5CG with
@S@méiiszéé is 1 and hence the program graph is in CL. Augment SG by the

of diagnol paths. The resulting augmented program graph is shown



E

71

Bo
R, «
B
By S
o
ke B
L,
B¢ M, - 3
- \\» Aa.
-, ) A,
LAY

‘Figure 7.9~1

In figure 7.f=1 the dashed lines denote the diagnol paths. Dl={Aﬂ,
Al, Az, A3} and El}.:{B@’ Bl, Bz, BB’ B4, Bs}- Let A=Dl and hence B=Ello
So SA={E11, Eq3 } and SB={D1, Eqq }. It can be verified that this
program graph satisfies theorem 5.2-1. The consistency constants ajy and

ajy for Eyy and Ej3 in S, are 1 and -1 respectively. The consistency

constants b11 and b13 for Dl and E13 in SB are both 1.

We demonstrate a mapping of this program graph using the construction
used in the sufficiency of theorem 5.2-1. nla=¢ and nyy=l. B is Ey; and
hence nj;=l. Set nyj3=a;3=l. A 1s D; and hence set dj,=2. Set djp=1 and
hence dyy=l. dy3=djp*ajstd;_ *by3 and hence dj3=l. Set t¢=¢. Map every
computation vertex in A; and B, onto processor i at time i+2*j. The

J

mapping is shown in figure 7.0-2 below:



e f
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Figure 7.0-2

In figure 7.0-2 we have omitted most of the source and sink vertices
from the program graph for clarity. I;; and 0y are the distinguished
imput port and output port for label 11, ;0 and Olé are the
distinguished input port and output port respectively for label 12. and
Iy4 and Oy5 are the distinguished input ports and output ports
regpectively for label 13, 111 the computation vertices in any shaded
box avre mapped onto the same processor to which the shaded box is
connected. The time at which a computation vertex is mapped is shown by
the side of the computation vertex. vg3 1s the only source vertex
labelled 12 that gets mapped onto the input ports labelled 12 more than
once. However 4 is an identity function and hence the contents of Vg3

ey e 4 v o f wanrey ot vy S b 2 -
remains lovariant t©ill 1t reaches processor 2. Vals Vgzs Vi and Vgog

(5

re the only source and sink vertices labelled 11 that get mapped onto

5

input ports labelled 11 of processors more than once. Now  has the
F4
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vector‘<x,$> as its identity vector where x can be any element from Ys.
Map the element ¢’onto port Iy, of processor § at times P and 2 and onto
port Iy, of processor 1 at time 1. This ensures that the contents of vg;
and vg o remain invariant till it reaches processor 2 and 1 respectively.
Similarly map the element $ onto the input port I, of processor 2 at
time 12 and inpﬁt port I;o of processor 3 at times 11 and 13. This

ensures that the contents of vgy and vgy remain invariant till they

reach 011 s
Example 7.0-2: Sorting

We wish to sort the set of elements {2, 1§, 5, 6}. A program graph

iv,za  Avaste iz b Ly =g

“:c\,z&C'g & T bl OC.‘ :
. e,

Figure 7.$-3: Program Graph for Sorting

In figure 7.§~3 ‘o’ denote computation vertices and '@’ denote either
source or sink vertices. Each computation vertex computes the minimum
and maximum of the two input elements denoted by the incoming horizontal
and vertical edges. The outgoing horizontal and vertical edges denote
the minimum and maximum respectively of the two input elements computed

by the computation vertex. The horizontal edges are labelled 11 and the



e
e

source and sink vertices connected to horizontal edges are all labelled
11. The vertical edges are labelled 12 and the source and sink vertices
connected to vertical edges are all labelled 12. The set of horizontal
source vertices is {ihig ihy, ihg, ih,} and the set of horizontal sink
vertices is {@hE? Ghzg GﬁE, Ohé}s Similarly the set of vertical source

vertices is éi?éy ivzs iv39 iv&} and the set of vertical sink vertices

hy, ihg and ib, are all initialized to oo. It can be verified that ohj,

oh., onh, and oh, are 2, 5, 6 and 10 respectively.
27 3 4 ¥y

E;y={set of horizontal paths} and Ejo={set of vertical paths}.
%ﬁ{iii? 532}$ Fﬁ{@} and S=ﬁ$}. The number of maximally-connected
subgraphs 8G with isgxélig 12} dis 1 and hence the program graph is in
CL. Augment 8SG by the set Dy of diagnol paths. The resulting program

graph is shown in figure 7.0=4 below:

Ay, A, 53§ and E}ES{B($ By, By, Bg}e Let A=D, and hence B=E,,. So
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5,={E¢y> Elz} and Sg={Dy, Es5be It can be verified that this program
graph satisfies theorem 5.2-1. The consistency comstants aj;; and aj,
for Eqq and B in SA, are 1 and =1 respectively. The consistency

constants bll and blz for D1 and E12 in SB are both 1.

We next construct a mapping of this program graph. Set nla:ﬁ and
nyp=l. B is Eq4 and hence nll=1. Set n12=a12=1. A is Dy and hence set
dla=2a Set d}.b=1 and hence d11=1. d12=dlb*alz+dla*b12 and hence d12=1.
Set t@=7. Map every computation vertex in A4 and Bj onto processor i at

time 7+i+2%j. The mapping is shown in figure 7.0=-5 below:

Ao A A\ AJ

—

Figure 7.0-5

The time at which a computation vertex is mapped onto a processor is
shown by the side of the computation vertex. We have to ensure that the
contents of ivy, iv, and ivg remain unchanged till they reach processors
#, 1 and 2 respectively. Wl is the min function and‘l’z is the max

function. oo is the identity element for ; and =—ao is the identity



element for wmax function. Map =oo onto Iy at times 1, 3 and 5.

t
Q Lo
=]
ims
Jousd
o
4
’.mm?;

v to ensure invariance of the contents of ohy, oh, and ohy map

00 onto Ij5 at times 12, 14 and 16. This mapping is a synthesis of the

8. Conclusions
In this paper we characterized a class of uniform graphs that are
correctly computable on a model of linear array processors for VLSI. We

illustrated our characterization by synthesizing published algorithms

Y

for two lmportant computational problems. Obvicusly not all program
graphs belong to this class. In [7] the characterization of arbitrary

program graphs is being explored.
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