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secondary logical address space, as shown in {a} Resources.
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sets of operations lowed to them, ¢ o {c)
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4y realize functions of monitor compon-
provide a next natural internal level of

Protection of monitors
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more f{requ 4 medules to firmware and

1
! ro lesve less frequently used modules In software
)

COnCe

the structures of monite

| {vertical migration). This is essentially equiv-
B atlent to add new machine ingtructions {51. 1In
| this technigue to be fully exploited,
wing two facllities must be provided:

modules,

irmware are necessary because of
Section 2. Theyare also
firmeare module may take a
e than a conventios
D;uamif loading of
ause the capacity of micro-

Dynamic Microprogrammin

ther step toward higher performance 1s
s0 Ydynamic microprogramming’’ or Tuser
microprogramming. vis is to allow a user 1O
write his own microprogram modules. in this way,
s user can tailor a compurer system to his par-

D
| ticular needs. Iin order for this to be fully
1 E exploited, a computer systeém must provide the
| | - X ! following additional facilities:
: : Execution : |
i ! body | I (a) Memory protection in miCroprogram mEmOTY.
L : | (b) Two execution modes in Firmware and

privileged microl onS.
{¢c} Program Lraps far exceptions and sunervisor

calls.

User microprogramming must be very ca:
designed. One reason is that it might nu N
the neatness and cleanness of operating svstenm




structures obtained by microprogramming. Ancther
-

reason is 2 well recognized one among manufactu
ers; that is, a compatibility ;Laﬁigm. ﬁaie that
vertical migration does not cause © ms

as far as migration is stabilized.

following sections, we discuss archi-
ors for the requirements discussed.

4, PROCESSOR'S ARCHITECTURAL SUPPORT

in order to realize monitors easily a
and to obtain high performance, processors
provide the following capabilities at firmware
level:
{(a} Memory protectlon for microprogram memory.
(b) ﬁasierfslavﬁ mode.
{c} Interrupts.

only one exesufion fﬂée, there
and there are no privileged
ever, it is necessary to have a
facility for maln memory for two
is shared among processes.
f Fwarﬂ require work

irely be placed

) e
")”{

application users are ai%aweé to write
their own firmware, many considera 4
"

ade at microprogramming 1

application users are not

fact, it wmust be taken for grin

ti 5 errors and eve: e

Thig i3 quite
microprogramning
killed designers write microprograns,

tection and master/slave mode mechanisms
ram level are necessary for detect

>

and 359;7 ing errors and malicious actions.

The master/slave mode ig similar to that o
usual multiprogramming systems in that privileged

instructions are allowed Ghif in master mode. How-

its mechanism can or should be simpler at a
ing level than uage

the address sp’ﬁe o? QPSS,

program memory part shows th lay-ou
but the main memory part shows gical {(seg-
mented) lay-out. Operations allowed in each mode

3
are described below.
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L (14 4 a
only memories) any part of the microprogram memory
{MPM). HNote that MPM can be used as working

storages

ticreinstructions: Any microinstruction
cluding privileged microinstru
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{thisz CPU's own local memory, other
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physical by logical address through the
address wchanism (ADC).
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Those segmcnié having ring numbers egqual te
or higher than the aumber set up by the master

mode program {the areas f{dentified as L. and !
3

8

ar

can be executed, read and written.

A mode change is made as

Master  Slave: When the microprogram instructio
counter reaches equal to ot beyond LLM, the mode

ts automatically changed to slave, and stays as so.
ciave -+ HMaster: A supervisor eall {SYC) imstruc-

a
on changes the mode Lo master

in area M

¥

instruction

siave mode will
interrupt. That 1s,

always executed in ma
¥_ are alwavs executed

ates master and slave programs. above mode-
relared mechanism enhances user mxagayfogramming.

mvm el

Segmented Main Memory

When an application prog?aﬁver wrep res firm—
ware, he usually needs software as which
collaborates with the fivmware L0 ¥
quired task. He fi
which are execut

program in main

software colls

H
hierarchical us
software. A prot ec
memory can provide such a hievarch
EFOS.

any main memor
the three add

M %

w
-
W
s

v by master mode
can hold either &

Oniy master mode |
¢hem to hold physical addresses,
only their 10w 22 bits are meaningful. As iogical
addresses, AQ and Al are used as shown in Figure &,

he changed even by a 8 ooan
access to a segment Is hoA, in

progra

number

ger only by a master mo in
Figure 3, the ring numbe and
LS. A hierarchy within slave mode programs can be

ing some number larger than the one
This boundary will usually

arate software accessible segments from fivm—
accessible segments &s showﬂ in Figurve 3. 1
s way, zlave mode firmware can collaborate with
sofrware {(firmware serves as an interpreter)

and the software can access only the limited
segments The abeve arrangement suggesis that

a microprogram must be able to access both micro-
pTOgYam memory and main memory. A dummy section
capability is wseful in 2 wicroprogran assembler.

Interrupts
As stated in Section 2, it is desirable and
sometimes necessary to have interrupts at micro-
programming jewel. They are also required for
user microprogramming.
k)
Y

%eahanisnc cgram ievei for éetect% g nd
stopping € maiicicus actions requi
interrupt ts are so convenient §az
handling sej ts caused by & microprogram.
They are al to provide an unlimited data
srack in sla microprogramming. Flexibility
in micraprogr&m wrdﬁiﬂg is increased by having
interrupts. Some application users, for instance,
may mot want fo have machine instruction fetch
cycles. Without interrupis, it is difficult to

use a system for a time crirical application.

ack and Subroutine St

Unlimited Data B ack

POS provides an unilimited data stack in

de microprogramming. One of the two 16—
isrer files of PULCE (Pips Universal
slement: a LSI chip) are designated as
slave mode, it works as an unlimited
ing stack full and emply interrupts.
the stack is placed in main

wl

atack holding activation records for an
language, & single~segment stack is
because stack Full and empty conditions
ally detected by the segmentation

nd because rhe memory address V&wi ters
fore can be automatically incremen ed

ed by U, Z or 4 at each memory
For nested subroutine linkages. MCQ {(micro~
program Sequence uO“iiCiiET} provides 3 subroutine
stack of 16 levels. When rhe stack becomes full

an interrupt occurs, bur, unlike the PULLS s

stack, this error is not recoverable and the pro-
gram usua to be aborted.
5. PROCESSOR AND MEMORY MANAGEMENT

A )
This ﬁxﬁedu ing becomes

scheduling for processors.
much simpler 1f & physical
pIGCEQGOT can be dedicated to each process, par-
ricularly, to each monitor. Although it may
be ieaslb‘e to dedicate a processor o gach pro-
cess, it is possible teo dedicate a processor to
each monitor for important resources. EPOS is
example. EPCS is designed to be a mulri-
processor system ha ving & relatively numbert
{6~84) of processors O exploit this 2, in
addition to many {possibly more im pcrtaat}
concepts and goals. The overall organization of

Figure 5 while the details of

e

£POS is shown in
each h"Végart are shown in Figure 6.
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such an

sther

gystem buses are multiple independent common
buses, which iatercaﬁne@t shared memory, input/
output, and computing modules. The number of
system buses can gTOW &8 needed,
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Computing modules are responsible for compu-
tation. They can be added to the system as far as
the total number of computing and input/output
modules does not ewxceed 64. Each computing module
has a computing elewent, wmicroprogram memory,
microprogram sequence cont*ol?erg‘ cal memory and
address controller for segmentation. Each comput-
ing module is ted to perform most of itrs
computation on 1fs own Eocal memory, bubt it can
also access ting modules' local mewor-
ies as well memory through the sys-
tem buses.

The input/output module {EGK} is a controlley
for input/output buses, to which input/output de-
M r

!

vices are conne c*eé I0M can transfer data tof
ul ared memory. I0Ms
T the total number of

data common
amount of ¢
ticular appl idea is to ﬁeep the
amount of ¢ ninimal so as to avoi
P

the system for
such as power on

off, 3 up, dynamic con-
figura n AN i warm starts.

2 way that any
system Lo stop

Cces

faults in
operation.

CMs and I0Ms) in
scheduling prob-
is dedicat
ion such as )
nd terminal input/
erformed by IOMs
ormed by a CM,
scribed in Section 4.
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is alsc dedicated to job
more global scheduling.
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Figure 8. Operating System and Firmware Structure
Application programmers may also write their
own firmware. 1f a user chooses to write his own
emulator or imterpreter, then he writes it a5 a
slave mode microprogram and simply adds it to the
¢irmware library. The opervating system and sther
programs are rafeLtsd from the user written
firmware. A user may also choose to write his own

applicarion program in firmware 1f the
and econocmy permit.

ecialization and

targely depend on £
Generally, however,

rorin
obtain the

Numerical

Eagsfithmzc
med

anda oved.,

is
the overhead of transferry

Since functional specialization
ed dynamically,
microprograms into the microprogram
be taken into consideration. Thi
made through the main memory from
memory such as a magnetic disk. effective
transfer rate between the main and microprogram
memories is “1}38 byte/sec, which is adequate for
many applications. Since ne variable data are

ag
memnocyry must
s transfer is
secondary

a
The

o

oy

gram memory, ne swapping-out
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gramg, they can be stored in
st loading.
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The time-slicing in EPOS is made by timer
interrupt to a microprogram. Since almost free
user microprogramming is allowed, the usual method
of interrupt signal detection in each machine in-
struction fetch cycle is not adequate. Some
emulator or interpreter may take minutes before it
verurns to the next feitch cycle oy some Interpre-

ter may not have even the concept of fetch cycle.
One the problems related to the design of
the ope ng system nucleus, particularly moni-
tors, £ ime-critical =zpplications is response
simes i xternal interrupts. When monitors are
impleme in machine code, they often take in-
tolerably long times, particularly when operating
systems sre compl Because of this, it is often

necessary to have
cime-critical appl
cessing., Multiplici
in firmware help so

fferent operating systems for

tions and for batch data pro-

v of processors and monitors
preblem.
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7. PERFORMANCE IMPROVEMENT OF AN AFL
BY MICROPROGRAMMIRG

INTERPRETER

In this section, we
mance of the APL machine
migration. Define by 7

P

is,

deacribe how the perfor-
iz improved by vertical
the ratio of firmware.

That for some module M, r_ is defined by

P
size of microprogrammed part of module M

¥ =

total size of module M

variss from O to 1.

simple case, module AFDDT,
s analvyzed.
es of the APL
dic oﬁoruiéea s s S

s Sa s v ms ¥ ;§ L~§ or [ The internal
structure of AFDDT is shown in Figure 10. Each
node corresponds to an internal module of AFDDT.

shown in

Module AFDDT is one of the
interpreter, and it per-

X, T, <, #, >, 2,

forms a
<, <

The tree shows the invocation relations among
medules. An experiment shows that, when every
module ncluding AFDDT ftself) is
microp TOT executes the following
number gram instruction steps:

where n iz the
variables, It
the same

number of elements of the glven

{s agsumed that both operands have
of elements. When every module Is
written APL, which is im turn interpreted by
firmware, the number of micy ogram execution
steps is given by

1,839n + 105,137

number
i

iG

This
about
progra

indicates that an APL interpretation needs
100 times more than its equivalent micro-
FREIN
The zbove cases are Lwo extremes.
mediate cas Table 1 sumzm
provement when L changes.
F

For inter-
arizes performance im-
it can be geeh from

Table 1 that performance greatly varies depending
on which modules ave microprogramed. TFigure 11




shows a comparison between the best and worst
choices. The difference is immense., A careful
gselection of modules is very Important. The
number of petirions also greatly affecis per-
formance. Fs: n=10, a 10-time performance im-
q s 607 to be microprogrammed
& is n s
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] 1 AFFORM LARG /#CHECK LARG*/

AFFORM RARG /#CHECK RARGH/

AFCHK CHKTBL  /*ERROR HANDLING*/
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[4] Ul +, LARG /#CHANGE TO VECTOR®/
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o
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Figure 9, Dyadic Operator Function in the
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As more problem oriented examples, two s
programs shown in Figure 14 are analyzed. The
program to sort glven elements
The second example is
X. Both the program

in ascer
gram to

n

Wt

APL system

itions for 8 digit accur-
AP

sorl program executes

where n is the number
The hyperbolic-sine

lines. Figure 15

best performance improvements possible

{29n2 + 523n3/2 APL line
of elements to be sor
program regulres 5 repet
acy and exscutes 1,475
showe the

£

ram

[ v+ o]

for the two programs. It also shows how one pro-

ig improved when the other is best micro-
though some discrepancy exists

rogrammed.
etween the two optimals,

it remains true that a

small portion of program takes much of the total
execution time.

Modules
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