A,

g
o]

R

3y
LR

Ic

M

N

=
b

b

ey

Firmware Structure and

Architectural Support

for Monitors, Vertical
Migration and User
Microprogramming

Mamoru Maekawa?®
akamura®¥®
vniaki Ishikawa®*

ems are much easier to
r to be decomposed int
different means of
gilcal hierarchical

1nc1ud‘ng laﬁguag% translators and
Basic

pfiﬂ“iﬂle
hich shifts mo
firmware.
d by allowing a use
to his particular

o
&
ol

sty ire a h?éﬁhe sa»caﬁl%é

fit is partil or Yuser microprogram-
in which softs

cal structure ; . .
o ssues involved in

Permission to copy without fee all or part of this material is granted
provided that ihe copies are not made or distri i
mmmefciai advantage, the ACM ﬂﬁgvrégh’ notice and the title of the
publication and its daie appear, and notice Is given that copying is by

pose. n o
anguage,

gﬁ@?mmm;. of the Association for Computing Machinery. To copy external
stherwiss, or 1o republish, requires a fee and/or specific permission.
ce
rernal interface con-
ezs ltself consists of
® 1882 ACM (-89751-066-4 82/03/0185 $00.73 cal address space, a

oo
A

secondary logical address space, as shown in {a} Resources.
Figure 1. All these components define their own (b}
sets of operations lowed to them, ¢ o {c)
it rees are objects to which processes make ac-
P Monitors govern this access, In structur-
ing an operating system, the of the three
L esses and moniters,

Information can be exchanged between proces-
ses through shared portions of a logical address
space and/or a secondary loglcal address space.
in Figure 1, process P, allows a part of its

basic elements; TeSCUTCES, DTG
is most fundamenta tic
between processes and moni
helpful for structe

on

d

iT
1

"1 operating system. ally ide
secondary logical address space to be shared by r hierarchica than proc s0
P, and P,, and a part of its primary logical add- can govern access to resources,

3 & -
th

r systems do not support
tware must create this

systems, monitors

ress space to be

feie's]

v making monitor routine o
PE P, nterruptible mutually excluded
- be done but causes scheduling,
protection to be more complex
than necessary, consequently increases the
complexity of an operating system. Separation is
mogt easily accomplished if monitors run on a
more internal level than a base language or
o machine instrt s, Firmwavre provides such an
3] . 5 X N . .
© ideal level. hree basic elements should thus
w corres realization or hierarchical
@ 4
P ievels as fo :
c .
i~ Resources—Ha
e L £ + Microinstruction interface
o P o
o Honltors——Fivmweare
i N .
u + Base language {machine
& s ~
% Processes— ~5Soft instruction) interface
3 e ey .
This corr least solves the following
three prob
{a)
BM 5H,
3 4 are
@ 1 _—
3]) { tor
5]
[comes f
) under t
@ . 3
o oae Mapping TR
o 9 special
2 e s .
g 7777 7 TR ; | 7 77 fhis compli
— g%f"if’zf’f;;‘!f} FIII7770 J7ITT770 777777 ’ .
w T : - are essen
34 Main . 1/o .
it Disks TO
o W
., &
2 gk
f, M
=

g

"

liow easv manping
Since sharvin

.
e}

I

ey e ey (D e
S5 e w

e A

w
ZA.
"y
pw s

o
s

0
oty
eyt

<
o
)
)
T
oS
E
o
y
W
5]
=
3]
.
n

€ e

"]
ol
bl

i

"
4
o
el
D
n
W
m
n
)

4y realize functions of monitor compon-
provide a next natural internal level of

Protection of monitors
"
!

acing menitors in firmware e

puarantoes protect fon

is no way that softwar an
of
.. 1y el Wo further extend ot igcussatl o Lhe
can ey el We further extend our discussion on ind

.. The scheduling problem des-
ses because processes and monltors

g, 1f a CPU

schoduling probl
cribed above ar
share processing elements such as CP

Oae o
Operatl

I Tove

,M -

no longer

writers in oa base
SR

interrup

Ol is proviéed for each process and monitor, then no
rthoyg o K
AN “h scheduling problem arises, which simplifi

A is prov uctures of operating systems. Although this

~osources and provid sOems rzux wulous, the rapid decline of hardware
|

R R realistic. In particular, provi-
operations ai i
A . srocessor Lo each monitor 1s not
; 2 rategy L

; s : o holce.
the uriiization

.se validation Lo protect the e

is responsib for active

{rom improper us a further

Process syne for A CFU ig released after an

\Smmuh1~axibl% ed and reacquired when an /0
adlock rion and prevention, operation is completed. In order to acquire a CPU

should be

ime-out. on an 1/0 completion, an
¢

i .\ . allowed to a monitor
he monitor str schematically shown In .

; A . hility to is
Figure 2. We o ortheogonal modulari

moduls is that cati

monitors shou sther. L o . R , .
. . - interproCess communications are made Tarougn
«not%z?i‘ dimensi apove wetions oOf N . B
ghared resources. wverefore, any interproce
shou of ea ther. ¥

. PR communication primitcives must be g part of
es, t sameé g of di

instance,
at the dead-
of

monitor.

'JteC{loﬂ and preventic

‘red to eatrh othexy

connection must be done without being affec
i. A princi srmance optimization is Lo
more f{requ 4 medules to firmware and

1
! ro lesve less frequently used modules In software
)

COnCe

the structures of monite

| {vertical migration). This is essentially equiv-
B atlent to add new machine ingtructions {51. 1In
| this technigue to be fully exploited,
wing two facllities must be provided:

modules,

irmware are necessary because of
Section 2. Theyare also
firmeare module may take a
e than a conventios
D;uamif loading of
ause the capacity of micro-

Dynamic Microprogrammin

ther step toward higher performance 1s
s0 Ydynamic microprogramming’’ or Tuser
microprogramming. vis is to allow a user 1O
write his own microprogram modules. in this way,
s user can tailor a compurer system to his par-

D
| ticular needs. Iin order for this to be fully
1 E exploited, a computer systeém must provide the
| | - X ! following additional facilities:
: : Execution : |
i ! body | I (a) Memory protection in miCroprogram mEmOTY.
L : | (b) Two execution modes in Firmware and

privileged microl onS.
{¢c} Program Lraps far exceptions and sunervisor

calls.

User microprogramming must be very ca:
designed. One reason is that it might nu N
the neatness and cleanness of operating svstenm

structures obtained by microprogramming. Ancther
-

reason is 2 well recognized one among manufactu
ers; that is, a compatibility ;Laﬁigm. ﬁaie that
vertical migration does not cause © ms

as far as migration is stabilized.

following sections, we discuss archi-
ors for the requirements discussed.

4, PROCESSOR'S ARCHITECTURAL SUPPORT

in order to realize monitors easily a
and to obtain high performance, processors
provide the following capabilities at firmware
level:
{(a} Memory protectlon for microprogram memory.
(b) ﬁasierfslavﬁ mode.
{c} Interrupts.

only one exesufion fﬂée, there
and there are no privileged
ever, it is necessary to have a
facility for maln memory for two
is shared among processes.
f Fwarﬂ require work

irely be placed

) e
")”{

application users are ai%aweé to write
their own firmware, many considera 4
"

ade at microprogramming 1

application users are not

fact, it wmust be taken for grin

ti 5 errors and eve: e

Thig i3 quite
microprogramning
killed designers write microprograns,

tection and master/slave mode mechanisms
ram level are necessary for detect

>

and 359;7 ing errors and malicious actions.

The master/slave mode ig similar to that o
usual multiprogramming systems in that privileged

instructions are allowed Ghif in master mode. How-

its mechanism can or should be simpler at a
ing level than uage

the address sp’ﬁe o? QPSS,

program memory part shows th lay-ou
but the main memory part shows gical {(seg-
mented) lay-out. Operations allowed in each mode

3
are described below.

g P
L (14 4 a
only memories) any part of the microprogram memory
{MPM). HNote that MPM can be used as working

storages

ticreinstructions: Any microinstruction
cluding privileged microinstru

Main memory: Any part of th
{thisz CPU's own local memory, other
emories, shared memories and Input/Output

Processor memories) can be accessed either by
physical by logical address through the
address wchanism (ADC).

Privileged microinstruc~

HMain mEROTY Access by logical address only

address
translation

id- |Master
irhimode-only
crionfaccessible
segments

slave mode

(i aclgae
s

Q

}

5 - . s A 1
}’11 hame a8s fs@ H
—
2% 0

I

Shared memory module 1 {Sﬁﬁlé
i? -
1 e T renmd A
Shared memory module 2 \Sﬁ%zj
L.
2 7 f TR :
2 % z TOM,, [LOM,
My E !] 1
4 PO P ol MEMOTY, MEMOTY
local local| localf
|
- - e
H
i
|
i
|
I

Those segmcnié having ring numbers egqual te
or higher than the aumber set up by the master

mode program {the areas f{dentified as L. and !
3

8

ar

can be executed, read and written.

A mode change is made as

Master Slave: When the microprogram instructio
counter reaches equal to ot beyond LLM, the mode

ts automatically changed to slave, and stays as so.
ciave -+ HMaster: A supervisor eall {SYC) imstruc-

a
on changes the mode Lo master

in area M

¥

instruction

siave mode will
interrupt. That 1s,

always executed in ma
¥_ are alwavs executed

ates master and slave programs. above mode-
relared mechanism enhances user mxagayfogramming.

mvm el

Segmented Main Memory

When an application prog?aﬁver wrep res firm—
ware, he usually needs software as which
collaborates with the fivmware L0 ¥
quired task. He fi
which are execut

program in main

software colls

H
hierarchical us
software. A prot ec
memory can provide such a hievarch
EFOS.

any main memor
the three add

M %

w
-
W
s

v by master mode
can hold either &

Oniy master mode |
¢hem to hold physical addresses,
only their 10w 22 bits are meaningful. As iogical
addresses, AQ and Al are used as shown in Figure &,

he changed even by a 8 ooan
access to a segment Is hoA, in

progra

number

ger only by a master mo in
Figure 3, the ring numbe and
LS. A hierarchy within slave mode programs can be

ing some number larger than the one
This boundary will usually

arate software accessible segments from fivm—
accessible segments &s showﬂ in Figurve 3. 1
s way, zlave mode firmware can collaborate with
sofrware {(firmware serves as an interpreter)

and the software can access only the limited
segments The abeve arrangement suggesis that

a microprogram must be able to access both micro-
pTOgYam memory and main memory. A dummy section
capability is wseful in 2 wicroprogran assembler.

Interrupts
As stated in Section 2, it is desirable and
sometimes necessary to have interrupts at micro-
programming jewel. They are also required for
user microprogramming.
k)
Y

%eahanisnc cgram ievei for éetect% g nd
stopping € maiicicus actions requi
interrupt ts are so convenient §az
handling sej ts caused by & microprogram.
They are al to provide an unlimited data
srack in sla microprogramming. Flexibility
in micraprogr&m wrdﬁiﬂg is increased by having
interrupts. Some application users, for instance,
may mot want fo have machine instruction fetch
cycles. Without interrupis, it is difficult to

use a system for a time crirical application.

ack and Subroutine St

Unlimited Data B ack

POS provides an unilimited data stack in

de microprogramming. One of the two 16—
isrer files of PULCE (Pips Universal
slement: a LSI chip) are designated as
slave mode, it works as an unlimited
ing stack full and emply interrupts.
the stack is placed in main

wl

atack holding activation records for an
language, & single~segment stack is
because stack Full and empty conditions
ally detected by the segmentation

nd because rhe memory address V&wi ters
fore can be automatically incremen ed

ed by U, Z or 4 at each memory
For nested subroutine linkages. MCQ {(micro~
program Sequence uO“iiCiiET} provides 3 subroutine
stack of 16 levels. When rhe stack becomes full

an interrupt occurs, bur, unlike the PULLS s

stack, this error is not recoverable and the pro-
gram usua to be aborted.
5. PROCESSOR AND MEMORY MANAGEMENT

A)
This ﬁxﬁedu ing becomes

scheduling for processors.
much simpler 1f & physical
pIGCEQGOT can be dedicated to each process, par-
ricularly, to each monitor. Although it may
be ieaslb‘e to dedicate a processor o gach pro-
cess, it is possible teo dedicate a processor to
each monitor for important resources. EPOS is
example. EPCS is designed to be a mulri-
processor system ha ving & relatively numbert
{6~84) of processors O exploit this 2, in
addition to many {possibly more im pcrtaat}
concepts and goals. The overall organization of

Figure 5 while the details of

e

£POS is shown in
each h"Végart are shown in Figure 6.

not

such an

sther

gystem buses are multiple independent common
buses, which iatercaﬁne@t shared memory, input/
output, and computing modules. The number of
system buses can gTOW &8 needed,

Id
H
System j | SBC -
buses N rauee
} E?BL; - —
+ [8BC
Lo .
I0M.00 [tom.1ll [cM.O]
e T
- i
Input/output modules| Compu
T ————— H
i
1/0 || s
device| L
i
|
-
Figure 6. EPOS Overall
514.0 el
I P !
. Lk Lo M |
H 3 H H
o P z
| - o !
e H H H
i wcl P i
e S ;
A I O { i
: H k b
; P I .
{ mimimimy 1 i] f
i 23 0 N I O 20 G U i
. A .
i “meaNME R IR IR
Ty Y
SEC. 03
188C. 15
i8BC.2
[E5C.3 =
i . — .
- LT [i
E b ot]t §§’ H i
i o imimim ; ,
i !

Sty

l
rW"Mqrwmww.
@?GC: ‘;‘ ,i %
i e !
| nadeci | i
§ ig
i - N I
& TS il
¥ G 3 ; LML
£ G
‘M—_._éAq
i1 H
|2 [P
[t
; i
T rel
i L ECS | .
ther | N B |
evices {“wmw%
L. DTR |
uctures of modules

194

Computing modules are responsible for compu-
tation. They can be added to the system as far as
the total number of computing and input/output
modules does not ewxceed 64. Each computing module
has a computing elewent, wmicroprogram memory,
microprogram sequence cont*ol?erg‘ cal memory and
address controller for segmentation. Each comput-
ing module is ted to perform most of itrs
computation on 1fs own Eocal memory, bubt it can
also access ting modules' local mewor-
ies as well memory through the sys-
tem buses.

The input/output module {EGK} is a controlley
for input/output buses, to which input/output de-
M r

!

vices are conne c*eé I0M can transfer data tof
ul ared memory. I0Ms
T the total number of

data common
amount of ¢
ticular appl idea is to ﬁeep the
amount of ¢ ninimal so as to avoi
P

the system for
such as power on

off, 3 up, dynamic con-
figura n AN i warm starts.

2 way that any
system Lo stop

Cces

faults in
operation.

CMs and I0Ms) in
scheduling prob-
is dedicat
ion such as)
nd terminal input/
erformed by IOMs
ormed by a CM,
scribed in Section 4.
other resources such as
o alsc be performed by
is alsc dedicated to job
more global scheduling.

bty
n oy
=250
W

el
£

rimware includes emulators
ints;preter, for in-

source program, thus form-
ordinary machine langauge
ine. Similarly, we can

and any other commercially
that is, thelr machine langua-

The next level of
and interpreters. An

interface

M 0¥ CM CH, @
{fe 1&3@ G il a oy \ &
| u— - 2 e H i
] 1/0 | 1/0 (Termi-| File | U orir 2
= H . i % r me Il
& jsuper- super- 1 nal |manage- { ware =
wed [visionivisionj cortrol | ment |) b
= [y
= Hucleus 152
58, = 8
-]
¢ g Job APL APL Pascal User=~ 556{—; @
& % lcon- Bnter-finter-bbiectEmula-writtenpritten N ;
2 ltrol preterpreter code | tor emula-appli- 28 4
@ . B
@ dnter— tor pati n~g§§
A sreter wogrami W
R 3
g &
BTG o, | APL | APL Pascal
] :
8 &w 7 pro- | pro- pompi- code program\
W %
=3 gram | gram | ler,]
. i
-2 bbiect /
9 g S {
tode i
e 9 P Sofi-
- T fuare
ar
o8 Pascall High {
EX o H
o srogran level E
g age /
© .
o wogra
Q@
@ W
o I
g Find CM r~
CH CM_ ... M, CM, ... CM
b 5 i i+l 0
Figure 8. Operating System and Firmware Structure
Application programmers may also write their
own firmware. 1f a user chooses to write his own
emulator or imterpreter, then he writes it a5 a
slave mode microprogram and simply adds it to the
¢irmware library. The opervating system and sther
programs are rafeLtsd from the user written
firmware. A user may also choose to write his own

applicarion program in firmware 1f the
and econocmy permit.

ecialization and

targely depend on £
Generally, however,

rorin
obtain the

Numerical

Eagsfithmzc
med

anda oved.,

is
the overhead of transferry

Since functional specialization
ed dynamically,
microprograms into the microprogram
be taken into consideration. Thi
made through the main memory from
memory such as a magnetic disk. effective
transfer rate between the main and microprogram
memories is “1}38 byte/sec, which is adequate for
many applications. Since ne variable data are

ag
memnocyry must
s transfer is
secondary

a
The

o

oy

gram memory, ne swapping-out
cessary. Depending on the
gramg, they can be stored in
st loading.

Operating System Primitives

o]
2
o]
2

The time-slicing in EPOS is made by timer
interrupt to a microprogram. Since almost free
user microprogramming is allowed, the usual method
of interrupt signal detection in each machine in-
struction fetch cycle is not adequate. Some
emulator or interpreter may take minutes before it
verurns to the next feitch cycle oy some Interpre-

ter may not have even the concept of fetch cycle.
One the problems related to the design of
the ope ng system nucleus, particularly moni-
tors, £ ime-critical =zpplications is response
simes i xternal interrupts. When monitors are
impleme in machine code, they often take in-
tolerably long times, particularly when operating
systems sre compl Because of this, it is often

necessary to have
cime-critical appl
cessing., Multiplici
in firmware help so

fferent operating systems for

tions and for batch data pro-

v of processors and monitors
preblem.

4

ive tnis

7. PERFORMANCE IMPROVEMENT OF AN AFL
BY MICROPROGRAMMIRG

INTERPRETER

In this section, we
mance of the APL machine
migration. Define by 7

P

is,

deacribe how the perfor-
iz improved by vertical
the ratio of firmware.

That for some module M, r_ is defined by

P
size of microprogrammed part of module M

¥ =

total size of module M

variss from O to 1.

simple case, module AFDDT,
s analvyzed.
es of the APL
dic oﬁoruiéea s s S

s Sa s v ms ¥ ;§ L~§ or [The internal
structure of AFDDT is shown in Figure 10. Each
node corresponds to an internal module of AFDDT.

shown in

Module AFDDT is one of the
interpreter, and it per-

X, T, <, #, >, 2,

forms a
<, <

The tree shows the invocation relations among
medules. An experiment shows that, when every
module ncluding AFDDT ftself) is
microp TOT executes the following
number gram instruction steps:

where n iz the
variables, It
the same

number of elements of the glven

{s agsumed that both operands have
of elements. When every module Is
written APL, which is im turn interpreted by
firmware, the number of micy ogram execution
steps is given by

1,839n + 105,137

number
i

iG

This
about
progra

indicates that an APL interpretation needs
100 times more than its equivalent micro-
FREIN
The zbove cases are Lwo extremes.
mediate cas Table 1 sumzm
provement when L changes.
F

For inter-
arizes performance im-
it can be geeh from

Table 1 that performance greatly varies depending
on which modules ave microprogramed. TFigure 11

shows a comparison between the best and worst
choices. The difference is immense., A careful
gselection of modules is very Important. The
number of petirions also greatly affecis per-
formance. Fs: n=10, a 10-time performance im-
q s 607 to be microprogrammed
& is n s

107

] 1 AFFORM LARG /#CHECK LARG*/

AFFORM RARG /#CHECK RARGH/

AFCHK CHKTBL /*ERROR HANDLING*/
VE

ey
e
[an]

[

[4] Ul +, LARG /#CHANGE TO VECTOR®/
[5] U2 +, RAl /*CHANGE TO

6] 1«0 /FINITIA

{71 ¥ + MAX1 p O /#*RESERVE

sl =+« KCOMPS 12

J*REPEAT UNTIL I REACHES
MAX1%/

1 /*INCREASE COUNTER BY 1%/

N

o
4

P

101 viij = e U2[T]

/*PERFORM SCALAR OPERATION*/
{11} J*RETURN TO 8%/
{123 /#CHANCE

APPROPRIATE

Figure 9, Dyadic Operator Function in the
termediate La

) AFYDDT
//? .

{ AFFORM AFCHK J AFDEND

L FERR AFABS AFERR AFABS

e

U

e wny

As more problem oriented examples, two s
programs shown in Figure 14 are analyzed. The
program to sort glven elements
The second example is
X. Both the program

in ascer
gram to

n

Wt

APL system

itions for 8 digit accur-
AP

sorl program executes

where n is the number
The hyperbolic-sine

lines. Figure 15

best performance improvements possible

{29n2 + 523n3/2 APL line
of elements to be sor
program regulres 5 repet
acy and exscutes 1,475
showe the

£

ram

[v+ o]

for the two programs. It also shows how one pro-

ig improved when the other is best micro-
though some discrepancy exists

rogrammed.
etween the two optimals,

it remains true that a

small portion of program takes much of the total
execution time.

Modules
microprogrammed

B S V- S S R P e I
~F W ~ ~ w3 [« 2SNV] i Ve

Lt

56

o
e

on
o

)
P

o

Nel

2.5 1 17.1
52.5 | 75.0
47.5 | 25.0

(67.5) 93
45,0 71.1
35.0 18.4
12.5 6.6

95.0 | AFCHK, AFFORM
3.2 | AFCHK, AFDDT,

1.2 AFDDT, AFFORM,
(93.8), AFCHK, AFDEND,

AFFORM
1.0 all

J: best choice

worst choice

Improvement versus 71
D

.

100

Operato

Monadic + - % +

Dy

Execution time (%)

3

Execution time {%)

[
[oe)

o
[
I
[
4

ot

©
o
[
©

Figure 11.

Execu

S
P
<
&

v
(o]
[
]

0.4

bof Ny ESNEY

i c.g 0.8

operators included: 4 ¥
T

Performance Improvement
Versus T
P

H

el

luded

pta
4

addition to those
Figure 6.

in

in

rerformance lmprovaments
for APL Operations.

¥ R SORT; A; B; C; D
‘) (17 B p, A0
tion time (%) [21 R+ 0
{31 D+ p, A
(47 A+ (A =C « L/AY/A
{51 ®<gR®, (0-p,ApC

% {a} Sort
3 « SINH ¥; N; ¥
X\ (1] ®+1+R*O0
Y n=100 i))
R (2] +(R=Y+ R+ (X*N ¢ N/
S 3] R+ Y
0.2 0.4 0.6 o 1f§ 41 N+ N+ 2
5 °F Tp {51)
‘ (6] v
rs included: (b) Simh X

d

s N 2
ig S
adic ks i

Figure 12.

for Basic Operations

Performance Improvements

< v AY A

Figure 14.

Sample Programs

)
St

REFERENCES

P

Executlon time

100 M. Maekawn, Eg’Y amazaki, et al, Experimental
Polvprovessor System-—Avchitecture, Proc.
90 g, in {e*“3iionai Symposium on Computer Archi
e 4 tecture, Philadelphia, PA, 1879,

80 - o . - ; p
{27 M. Maekawa, 1. Yamazaki, et al, Experimental
- Polyprocessor System—-Operating System,
i Proc. international Symposium on Computer N
Architecture, Philadelphia, PA, 1979.
6 STHN (for best SORT) ’ pha, F8
1

[3] M. Maekawa and Y. Morimoto, Performance
justment of an APL Interpreter, Micro-
J

& A
40~
3
i
0 tion and
- ination Mechanisms
1n R ment of Inkc‘muiloﬂ
L SORT : :
SORT S Science, University of

(best choice)

-3

Japan, 1980,

¥ [H H .
0.2 G.4 Gsd 0.8 1.0 151 \utomatic Tuning of
r , Proc, HNational
5 ; -
; Vol, 48, 1979,

ot
(w43

g hard-

operating system s
corresponden
hierarchical
a great role
role of firmware

is I mo
i as &?réwaze Compo

