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Figure 3.4: Interconnection For Stage 2 Of

Step 2 OF OEE Of 16 % 16 System
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3.3.1.2 Intratask Data Flow -

The use of an SISD partition for each block avoids the
problem of alternate row/column addressing. Alternate row and
column access is necessary because the block matrices, a{k) and
c(k) are invoived 1in alternate premultiplication and post
multiplication. The use of SIMD partitions would Jintroduce
gfficiencies in the computaticnal part of the formulation. Data
distribution would however, become more  complex. Packet
movement would be necessary to realign data between pre- and
post-multiplication stages. This aspect is not considered any

further.

3.3.2 Performance Estimation -

The mode of eperatééﬁ described in the oprevious
subsection consists of asynchronously executing processes which
synchronize periodically to transfer data. Operations on
different Séocks may require different computation times. There
may be, for example, different search times for the choice of
pivot rows. Additionally, in the case where packets are used, a
further dimension of nondeterminacy is introduced. Thus for a
performance model to accurately represent this kind of behavior,

it must be based on nondeterministic time parameters.
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Two modes of  operation based on different
synchronization requirements were described 1in the previous
subsection. The mode with explicit synchronization at the end
of every stage 1is easier to control: here all streams of
control must wait until the Tongest stream in the stage is done.
The entire elimination, then, is the sum of the lengths of the
tongest stream in every stage (Figure 3.5a). The second
approach allows streams to sroceed independently;
synchronization is only required at points of data dependency.
Here the total execution time is the length of the longest
stream chain; this is usually less than the time 4in the first

case (Figure 3.5b).

We will now present a naive analysis of the first mode
as a step towards developing a performance model of
reconfigurable computer operation. This analysis will first be
given for the switched memory implementation and then for the

packet implementation.

The time for data movement depends upon the precision
of the processors and the precision of the arithmetic. A
definite configuration is chosen to illustrate the magnitude of
the communication costs. A 16 bit wide SISD partition will be
assigned to each block. (If blocks are of uneven size a wider
partition could be assigned to larger blocks.) Arithmetic will

be on floating point numbers with 64-bit mantissas and 8-bit
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exponents.

Let the system be 16x16 blocks and each block be 8x8
(total matrix dimension 128x128). Each 8x8 block requires about
600 words of storage. A block row consisting of three 8x8 non
zero blocks and a 8xl vector requires about 2000 words of

storage.

W
[¢2]
joN
=y
[o)
~$

The following notation iz u represanting
operation times:

[.fpa: flcating point addition

T.fpm: floating point multiply/divide

T.xfer: memory to memory transfer time for one word

T.swi: acquisition and setup time to obtain

shared memory.

T.pkt: minimum byte transfer time using packets

The evaluation of H.5 from H.1 proceeds in 4 stages
with each stage evaluating H.i+1 from H.i. The first step of a
stage acnsésts of the LU factorization of b which i3 wused to
evaluate a,c and v. The second step consists of three substeps
that correspond to the three positions of the Z-pole, 3=position
switch. The final step performs the inverse perfect shuffle to
position data for the next stage. From the discussion of the
previous subsection it is evident that the first and last step
display 16 way parallelism and the second step g  way

paralleiism.
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H.5 is finally solved as 16 uncoupled Tlinear systems

to obtain the required solution.

We will use the notation Pi(k,1,m..) to represent the
state where partition Pi is connected to datasets k,1,m.. and

dataset k contains a{k),b(k),c(k) and v{k).
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The timing for the implementation with shared memory is now

presented.

STAGE 1:Compute H.Z2 from H.1

Step 1:
Configuration: Pa(l), Pb(2),.... , Pp(l6}

Setup time = T.swi.

Substep 1.1

Computation: Pa: b{1) (LU decomposition)
P B(2)
Po: b{16}

Compute time = 200*T.fpm + 200*7.fpa

Substep 1.2

Computation: Pa: ally, (1), vi1)
Pb: a(2), o(2), v(2)
Pn: a(16), c(16), v(16)

Compute time * EZOQ*?.?;% * EEO&*T.?pa”



Step 2

Substep 2.1

Configuration: Pa(l), Pc{2,3), Pe(4,5)
..... , Po(14,15)

Setup Time = 2*T.swi

Substep 2.2
Configuration: Pa(l,2), Pc(3,4), Pe(5,6),
....... ,Po(15,16)

Setup time = 2*T.swi.

Computation: Pa: b{1}.2, a{l}.2,
c(1).2, v(1).2

Pc: b(3).2, a(3).2,

c(3).2, v(3).2

Compute time = 2000*T.fpm + 2000*7.fpa

60
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Substep 2.3
Configuration: Pa(l,2), Pc(3,4), Pe(5,6)
,,,,,,, , Po{15,16)

Setup time = 0*T.swi

Substep 2.4

Configuration: Pa(2,3), Pc(4,5), Pe(6,7},

Setup Time: = 2*T.swi

Computation: Pa: b{(2).2, a(2).2,

c(2).2, v(2).2

Pc: B(4).2, a(4).2,
c(4y.2, v(4).2

Compute Time = 2000*T.fpm + 2000*7.fpa



Step 3

Substep 3.1

Configuration: Pa(l), Pb{2), Pc(3), Pd(4),
Pe(5), Pf(6), Pg(7), Pnh(8),
Pi(9), Pj(10), Pk(11), PI(12),
Pm(13), Pn(14), Po(15), Pp(16)

Setup time = T.swi

Computation: Transfer source dataset contents to
Tocal buffer.

Compute time = 2000*T.xfer

Substep 3.2

Configuration: Pa(l), Pb{(9), Pc(2), Pd(10},
Pe(3), Pf(11), Pg(4), Ph(l2),
Pi(5), Pj(13), Pk(6), PI(14),
Pm(7), Pn(15), Po(8), Pp(ls)

Setup time = 7.swi

Computation: Copy local buffer contents to target
dataset.

Compute time = 2000%7.xfer



The implementation using packets avoids a  large
fraction of the configuration setup time; instead, large volumes
of data must be moved within steps ({specifically in step 2},
between  steps and between stages. The following timing
calculations are based on the assumption that the average packet
transfer time s 2*T.pkt {T.pkt is the minimum packet transfer
time - this is seen when no collisions cccur. Actual  transfer
times are vrelated to parameters such as the nature of the
background traffic, the actual source, destination traffic
pattern 1in the program and the physical placement of the source
memories and the target processors). The computation times

remain precisely the same as before.

The following are the setup and data transfer times

for the packet implementation:

Step 1:

Setup time = T.swi
Transfer = 4000*T.pkt
Step Z:

Setup time = 2*7T.swi

1

Transfer = 8000*T.pkt

Step 2.1

Transfer = 4000*%.pkt

N



Step 2.2

it

Transfer = 4000*T.pkt

Step 2.3

Transfer = 0*T.pkt

Step 2.4

Step 3

Setup time = T.swi

Transfer ~ 8000*T.pkt

64
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The important concern 1is the ratio of direct
computation time to the sum of the total non computation time
(this consists of the wvarious T.swi, T.xfer, T.pkt,
synchronization times  etc.). Let wus make a reasonable
assumption  that the ratio . of execution time for
T.xfer|T.pkt|T.fpalT.fom|T.swi are 113710110011000 and et

T.xfer be one microsecond. Estimate the set-up time for

RS

.fpa,T.fpm and T.xfer to be equal to the arithmetic execution

time.

For the shared memory implementation the per stage
direct computation time s 1188 milliseconds (ms) per stage,
reconfiguraticn time is 9 ms and data transfer time is 8 ms.
The total runtime for OFEE is then comprised of approximately
5000 ms. of direct computation time and 70 ms. of data
transfer time. Thus, if synchronization time is zero, then the
overhead associated with mapping the odd/even elimination to a
parallel basis is about 70/5000 or less than 2%.
Syﬂchrsnizétéon delavs result solely from the differences in
processing time for each block. For uniform size blocks,

processing time differences between blocks will result from

differing effort for pivot selection. This should not exceed
1%. Reconfigurable  architectures can  assign  processing
partitions with opower proportional to block size. (SIsSD

partitions with a factor of & variation in power for 6&4-bit

floating point numbers «can be constructed on TRAC.} Thus
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synchronization delays should not be more than 10% of direct
execution time. Using this as an upper bound the total overhead

cost in this formulation is approximately 12%.

For the packet implementation the per stage compute
time vremains 1188 ms. The reconfiguration time is 4 ms and the
data transfer time is 100 ms. In this case the data transfer
and synchronization delays amount to approximately 20% of the
direct computation costs. The speedup over a  comparable
uniprocessor implementation of OEE is approximately N/Z for the
circuit switching as well as the packet switching

implementations.
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3.4 (QODD-EVEN REDUCTION

OFER can now be derived from the groundwork established

L

in the previocus section. Consider an elimination step in the
previous section. Suppose we collect even numbered equations
into a linear system (A.2)(x.2)=(w.2), where

<
|

A.2 = (~a(2jy*d (2j-1)*a(2j-1),

“1 -1
b(23)- a(2i)*b (23-1)*c(2i-1)- c(23)*b (2j+1)~
a(2j+1),
=c(2i)*b  (2j+1)*c(2]+1))
N.Z2
x.2 = x(23)
N.2
.SE “"E
w.2 = (v(2§) - a(2i)*b  (23-1)*v(2j-1) - c(2i)*d (2§+1)*
v(23+1))
N.2
= v.2(23)
N.2
N.Z2 = floor(N/2)

This 1s a reduction step: it is a vreduction step
because A.2 is half the size of the original coefficient matrix
A. Once this new system {s solved, we can compute the remaining
components of x.1=x by back substitution.

=

-1
x(23-1) = b (23-1)*(v(23-1) - a(23-1)*x(2j-2) -

where j = 1,2,......... , ceiling(N/2)
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matrix).

ool

n the case of OER (figure 3.7), the number of +tasks
remains constant from reduction step to step; furthermore, the
task size in a given step is half the task size of the previous
step. Under the assumption that the reduction step times are

equal, the average degree of parallelism is log N.

After the last reduction is performed, exactly one
block matrix s left = the solution of this matrix forms the
basis for the back substitution sequence. This sequence grows
from a parallelism of 2 to N/4 (figure 3.8). This back
substitution sequence also shows an  average degree of

paralielism of log M.

The elimination sequence in OEE (for N = 2**m, figure
3.6) requires one more step than the reduction sequence in OER
(for N = 2%*m -1, figure 3.7) as indicated by the tree heights
in the 1two figures. OEE does require extraneocus operations
within each step but these are performed in parallel and so do
not contribute to the execution time. After the solution step
OER requires an additional back substitution sequence (figure
3.8) that 1is not needed in OFEE. If the back substitution
sequence runtime is less than one elimination/reduction stage
runtime, OEE is superior to OER. In the example shown latter in
this section this is the case for reasonably sized coefficient

matrices.
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3.4.2 O0OER Back Substitution Data Flow -

From the back substitution eguation of section 3.4, it
is evident that each soived Dlock is used in the generation of
the solution of two unsolved blocks in each stage of the back
substitution  sequence. Figure 3.9 shows a configuration
suitable for implementing one such stage. Each stage then
reguires a step with no switched memory access for computing
block diagonal inverses: thereafter, switched memory access is
necessary in two steps - once for each of the unsolived blocks

whnere the sclved blocks are needed.

3.4.3 Performance Estimation For OER -

The computation and data movement costs for OER can be
estimated by a procedure similar +to that used in subsection
3.3.2 for OEE. We consider only switched memory data movement

for OER.

Continuing with the example of subsection 3.3.2, for
the reduction sequence the per stage computation time is 1188
ms. and the data tranpsfer time is 17 ms. {this is identical to
the elimination sequence per stage times). In the back
substitution sequence, the per stage computation time is 240 ms.
and the per stage data transfer time is 2 ms. The total

computation time for OER is approximately 4500 ms. and the data
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transfer time is 60 ms. as opposed to 5000ms. and 70 ms. for
DEE. With 64x64 block and larger systems, the back substitution
sequence requires more time than an elimination/reduction stage.
From this point on, QEE requires less time than OER as shown in
figure 3.10. The speedup for OER is approximately log N over a

comparable uniprocessor implementation.
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3.5 CONCLUSIONS

The technique for programming reconfigurable computers
developed 1in the previous chapter is used to adapt algorithms
used on uniprocessor computers to reconfigurable computers,
Odd-even elimination and odd-even reduction are cast as multi
phase realizations on a  representative reconfigurable

architecture.

Two issues that have not been considered in  this
analysis deserve mention. Firstly, this study assumes that
configurations can always be set up to completely meet the
resource reguirements of an executing phase, Aspects of
reconfiguring the machine cor the algorithm in the presence of
insufficient resources have not been considered. Secondly, the
issue of the use packet switching versus circuit switching has
not been addressed. From a qualitative standpoint, circuit
switching fits in naturally with algorithms that repeatediy

3

reguire Dlock transfers over relatively fixed geometries, as is

1

the case for block OEE and block OER. However, the packet

%1
i

witching implementation 1is only marginal

&Y

v inferior to the

ircuit switching implementation of OEE: aspects of overall

8]

system wutilization may be relevant in a guantitative study of

this issue.

Odd~even reduction, which s considersed to be &

compact form of odd~even elimination on uniprocessor
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architectures, is projected to have a larger execution time on
reconfigurable architectures when the matrix size is moderately
large. The speedup over comparable uniprocessor implementations
is approximately N/2 fo OEE and log N for QOER. This is an
instance of the conjecture that many ‘good’ uniprocessor
algorithms are outperformed by 'bad' uniprocessor algorithms on

multiprocessor computers.



CHAPTER 1V
MODELLING THE EXECUTION OF PARALLEL PROGRAMS
ON RECONFIGURABLE ARCHITECTURES

A performance model for the execution of parallel
programs on reconfigurable architectures is developed in this
chapter. This abstract machine will be used for determining the
elapsed execution time of parallel programs and to apportion
this time among its component tasks in terms of computation and

data movement times and svnchronization delavs.

S
o

<
i,
iy
A
ez
oo}
m
kN

The study and development of modelling tools for
various aspects of computer systems has received a great deal of
attention with the proliferation of the modern multiprogramming
operating system. Tools such as discrete event simulation
tanguages [Efr69], analytical gueueing modeiling systems
[Inf81], hybrid simulators [Sch78] etc. are widely available
and extensively used in the performance forscasting and tuning
of such systems. These tools however, have been shown to be
inadequate for modelling concurrent system behavior such as
process blocking, holding of multiple resources, etc. [Bro73,

Ram&0].

78
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The early modelling structures developed for the study
of concurrent systems focused on properties such as correctness,
termination, deadlock freedom etc. However, one of the major
motivations for developing concurrent systems is performance:
therefore the need exists for a modelling system that records
the passage of time and generates performance metrics such as
total execution  times, resgurce holding times and
synchronization delays. A few models of computation have been
developed for extracting the performance characteristics of
concurrent systems. Most of these models have had their formal

basis in graph models such as Petri nets.

A rveview of previous work on structural and
time~resolived models of concurrent systems is presented in the
following sections as an introduction te the development of a

modelling system for the execution of

parallel programs on
reconfigurable architectures. Section 4.2 contains a brief
description of Petri net [Pet77] and Vector Replacement System
[Kel74] noiaticn. Section 4.3 contains some examples of timed
models for concurrent systems. Section 4.4 provides the formal
specifications for a Paraliel-program
Reconfigurable-architecture  Performance (PRP) model. This
performance model has been specifically designed for evaluating

the performance of parallel numerical codes on reconfigurable

computers.
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4.2 FORMAL MODELS FOR REPRESENTING CONCURRENCY

The notation and the basic aspects of some formal
models  (Petri Nets and Vector Replacement Systems) for
representing concurrency have been used in this development of
performance models for paraliei programs executing on

reconfigurable architectures. This section establishes notatio

o]

and fundamental concepts for Petri nets [Pet

S
S
Yo
[+5
o}
[
il
]
8}
o+
o]
b

Replacement Systems [Kel74]. Set Operation Systems {503}, which
form the implementation framework for PRP, are developed from
VYector Replacement Systems in subsection 4.2.3. S05 use the
same algebraic notation as VRS and are similar to colored Petri

nets,

4.2.1 Petri HNets -

A Petri net is an abstract formal model of information
flow. The primary use of Petri nets is in the modelling of
systems where events can occur coacurrently, subject  to

constraints such as frequency and precedence.

Definition: A Petri net is defined as a bipartite directed
graph described by the four-tuple

C=(P, 7,1,

where

=[pl,p2,..,pnl, a set of places, n>=0,
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T=[t1,t2,..,tm], a set of transitions, m>=0,

1 is the transition input function, I: T==>2**P,

or, [ 1s a subset of PxT7,

0 is the transition ocutput functicn, 0: T-—>2%%P

or, 0 is a subset of TxP

and the sets P and T are disjoint.
The graph C models the static properties of a system. Figure

4.1 shows an exampie of a Petri net graph.

In this definition, the connecting arcs are defined by
the transition input and output functions. For each transition,
the input function yields the set of places connected by arcs
directed into the transition while the output function yields
the set of places connected by arcs directed away from the

transition.

Dynamic properties of the system may be m@de?%ed by
the dntroduction of another primitive entity called a 'token'.
A marking 'u' of a net is an assignment of tokens to places in
that net. Tokens reside in places within the net - the number
and distribution of tokens may change during the execution of
the net. A Petri net executes by firing transitions. A
transition may fire when it is enabled. A transition is enabled
if each of dts input places contains at least one token. The
firing of a transition resulis in the removal of exactly one

token from each dnput place and the addition of one token to
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each output place (Figure 4.2).

This definition of Petri nets assigns no special
meaning to places, tokens, transitions or transition firings;
they are primitive objects and actions with nc associated
attributes or functions. If a Petri net is to be used to model
a specific system 9t 1is necessary to assign & name and
interpretation to each node of the network: this gives rise to
"Interpreted Petri Nets'. Examples of interpreted Petri nets

are given in the next section.

An extension to Petri nets that is potentially wuseful

H

in compressing net size is the concept of 'colored' or 'typed’

tokens [Pet80].

Definition: Let qj and rj be the number of input and output

places vrespectively of a ctrapsition td. A firing rule for

gy

transition tj would be a function fj that takes a gj-tuple o

input tokens and produces a rj-tuple of output tokens.

Figure 4.3 shows a tabular representation of such a
rule. The firing occurs when tokens of appropriate color are
present in appropriate input places; it places <tokens of

specified colors in specified output places.

The formal study of Petri nets has produced a number
of results concerning the 'correctness' properties of parallel

computation. These results are not of dinterest in  the
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development of the PRP model because the only goal of this

modelling structure is to generate time resclved performance

information; a PRP model can be reduced to a Petri net graph if
it is necessary to obtain the formal properities of a program.

The semantic structure of Petri nets does embody

features needed for PRP but its primitives cannot be cast in a

computer representation in the form A model
that wuses an algebraic instead of a symbolic set of primitives

is considered next.

4.2.2 Vector Heplacement Systems. -

In this section the notation for Vector Replacement
this notation is transformed into Set

Operation Systems in subsection 4.2.3.

The notion of a transition system 1is necessary for

Petri nets and Vector Addition Systems [Kar68] are proper

Definition: A transition system is a triple (0,7,->) where
ol ¥ 2

LD
vt
W
o
w

et of states (not necessarily finite),
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Let q,q' belong to Q and t to T. Denote (g,t,q')
belonging to -> as (g,t)=q'. t transforms state q into g'. It
is customary to define a fixed initial state q0; the system 1is

then represented as (Q,T,->,q0).
Definition: lLet w=[0,1,2,3...... 1 and z={0,1,-1,2,-2,3,-3..... ]

Definition: A Vector Replacement System {(VRS), (qO,U,V) is a

transition system (Q,7,->,q0) in which

J is a subset of w**d for a fixed d called the dimension of

[y
«

the system (d can be thought of as the number of places in

the Petri net equivalent of the VRS).

2. T is an arbitrary indexing set so that for each t belonging
to T, we have Ut, Vt belonging to Z**d. Ut is called the
test vector and Vi is called the replacement vector.
Furthermore it is required that Ve>Ut. (If Utp is the p-th
coordinate of Ut then Vt>Ut dimplies that for all p,

Vep>Utp).

3. For g,q' belonging to Q we define {(g,t)=q' 1iff q+Ut>0 and

g+Vi=g', where addition is component-wise vector addition.

Note that Ut>Vt and q+Ut>0 guarantees that q' belongs to w**d.
Mote also that only the non positive components of Ut are of

significance.
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The Vector Addition Systems {(VAS) defined by Karp and

Miller [KaMi69] are VRS with Ut=Vt for all t belonging to T

)

[Kel74].

o

7
H

Petri nets are also VRS in which the components of U
and V are restricted to 0, 1 and -1 [Kel74]. This
correspondence is obvious once the coordinates of vectors are
associated with places, vectors with markings and the pair
(Ut ,Vt) with transitions. The definition of muitiple input and
output arcs in Petri nets vremoves the restriction on the

components of U and V to 0, 1 and =1.

When VRS is wused 1in the modelling of a specific
system, the interpretation of VRS primitives is simiiar to the

interpretation of corresponding Petri net primitives,

We can now define Set Operation Systems (S0S) that use
the aigebraic primitives of VRS and are similar to colored Petri

nets.

4.2.3 Set Operation Systems -

The system that will be now defined 15 semantically

[

similar to coloved Petri nets that allow the movement of

distinguishable tokens to and from places when a transition
fires. The syntax s based on VRS syntax of the previous

T S
H

subsection and uses an algebraic notation. his forms the
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implementation framework for the PRP of section 4.4.

Definition: M=[ml,m2,m3,....mnl,a finite set.

N is a subset of M.

Definition: A Set Operation System (S0S), (q0,U,V,R) is a

transition system (Q,T,->,q0) in which

1. Q is a subset of N**d for a fixed d called the dimension of
the system. (d can be thought of as the number of places in

the colored Petri net equivalent of SOS).

2. T is an arbitrary indexing set such that for each ¢t

belonging to T we have Ut, Vt and Rt belonging to N**d.

3. ’For g,q' belonging to Q, we define (q,t)=q' iff
g intersection Ut = Ut,
and
g'= ( g minus Vt) union Rt.
Note: |
Ut is the test 'vector of sets’
Vt is the extract ‘vector of sets’

Rt is the inject 'vector of sets'.

The operations defined are vector component wise set operations.
Figure 4.4 is an SOS that is equivalent to the colored Petri net

of Figure 4.3.
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Figure 4.4: S0S Equivalent Of Colored Petri Net

0f Figure 4.3
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4.3 TIMED MODELLING OF CONCURRENT SYSTEMS: A REVIEW

The work described 1in this section is a further
extension (inclusion of time) of the formal models of concurrent
behavior described in the previous section. Time extensions are
used to obtain metrics such as firing freguencies, subsystem
utilization, waiting times, gueue lenths etc. The nature of
time extensions, the interpretation of the additional primitives
and the nature of restrictions placed on the underlying formal
model give rise to either a simulation or an analytical

modelling system.

The first published simulaticn modeiling system for
concurvrent systems is due to Noe and his co-workers. He used a
Petri net extension for modelling a COC 6400 operating system
[Noe71]. The dinitial goal of the study was to identify model
Timitations. This work was continued by Noe and Nutt and the
next modelling system was called E-nets [Nut72]; further
extensions. resulted in & modelling system called Macro-E-nets

[Noe73].

E-nets use the same primitives as Petri nets: places
(Tocations), transitions and tokens. Locations are occupied by
tokens and represent conditions that may exist for a period of
time. Five kinds of transitions are defined- they represent
nodes at which determination of  token flow and  token

modification takes place. Macro-E-nets are E=-nets with
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composition facilities for representational ease and clarity.

Berlin proposed and implemented Time Extended Petri

Nets (TEPN) [Ber79] for modelling a multi disk multiple
controller multiprogrammed computer system. This work also grew
out of Petri nets and is similar to E-nets and Macro-E-nets to
the extent that the user develops a representation of the system
that 9is being modelled in an appropriate input language; data
structures generated from the user representation are exercised
to obtain relevant metrics. TEPN uses the same primitives as
Petri nets with the following interpretations: tokens are typed
and represent conditions, resource reguests and respurces.
laces combine the concept of queues and servers. Functionally,
the place receives tokens from input transitions, ‘stores’
tokens for some elapsed interval and when an appropriate output
transition fires, it emits the proper tokens. TEPN transitions
serve as synchronization and token modification mechanisms, to
control the flow of tokens through the net.
primitives model process service, process blocking and other
attributes of parallel systems. Performance metrics are derived

from TEPN state attributes.

A number of temporal models  that are  solved

analytically have also been developed. OSystem representations

i
[ o

are generated which are amenable to analytic

L

olution to yield

metrics such as firing frequencies, gqueue lengths and others.

=



Ramamoorthy and Ho [Ram80] ascribe fixed time periods
to transition firings; they have developed a technique for
determining the minimum cycle time (for processing a task) for
decision-free [Pet77] and safe persistent Petri nets [Pet77].
Han [Han78] interprets transitions as service stations, places
as queues and tokens as tasks; determination of metrics such as
firing frequencies, maximum queue lengths, average gqueue lengths
etc. is done by converting the timed nets into state diagrams
and then using Markov chain methods for soclution. Ramchandant
[Ram73] developed a method for determining maximum firing
frequencies for a subclass of timed Petri nets with fixed delays
associated with transition firings. Sifakis [Sif77] generalized
this work by converting timed Petri nets into a linear system
with n unknowns (where n is the number of places) and using that

to determine maximum firing frequencies.

Robinson  [Reb79] has used a directed graph
representation of Jjobs consisting of asynchronous tasks and
developed techniques to determine probability distributions for

execution times and bounds on execution times.
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4.4 PARALLEL-PROGRAM RECONFIGURABLE-ARCHITECTURE P

[ A1

RFORMANCE

Paraliel-program Reconfigurable-architecture

Performance (PRP) modelling reguirements are as follows:

1. Represent the time resolved behavior of a set  of
deterministic interacting concurrent tasks.
2. Represent the waiting for and the holding of multiple

resgources.

3. Allow the specification of the model as a data structure

rather than as a custom program.

4. Allow the specification of the user job {user net) in terms
of tasks {subnets}, as defined in chapter II, and of tasks

in terms of simpler constructs.

the model to han

programming numeri

P

Computations display phases: a phase corresponds to a

particular configuration and dits beginning and end are

explicit points of synchronization.

2. There is a large measure of repetitiveness in the geometry

of flow of data. This repetitiveness manifests jtse
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jterations and recursions along the time and space axes.

PRP is similar in many ways to TEPN and E-nets. Its
primitive interpretations, however, are tailored specifically to
the modelling of reconfigurable computer mechanisms. Switched
memories, tasks and the execution of tasks with captive switched

memories are represented in a direct manner.

Definition: A PRP is a modelling structure defined by the

four=-tuple C = (P,7,1,0), where

P=[pl,p2,....... ,onl, a set of places, n>=0,

i
ey
ke

[y
)
™o

i

T ft1,82,....... ,tml, a set of transitions, m>=0,
I is a transition input function, 1:T==>2%%p,

or, I is a subset of PuT,

0 is a transition output function, O0:T=->2%*P

or, 0 is a subset of TxP.

and the sets P and T are disjoint.

The next subsection describes time resclution
mechanisms provided in PRP and the following subsection

describes management aids provided in PRP for constructing nets.
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4. 4.1 Parametric Extensions -

This subsection describas and defines the extensions
to colored Peiri net models that arise from the first three
requirements cited for the PRP model; the next subsection

describes  extensions necessary for fulfilling the fourth

i

requirement. The nomencliature from colored Petri nets and S0S

is used interchangeably.

The PRP model s constructed from an 508 by the

P

definition and addition of attributes to the abstract entities

e

used in the S0S definition to allow for time resclived behavior.
TEPN [Ber79] primitive interpretations {these have been briefly
reviewed in the previous section) are used as a starting point
to assign to PRP place and transition, attributes that allow the
direct definition of performance metrics as an  inherent

characteristic of the model. The definition and placement of

{

attributes is predicated upon s performance evaiuation viewpoint

rather than a thecoretical view of Petri nets. The nature of the

parametric extensions is such that stripping away  these
f

extensions from a PRP leaves an 505 that faithfully reproduces

the semantic behavior represented in the PRP net (Appendix B).

The primitive interpretations that follow are based
upon and are nominally similar to TEPN [Ber79] primitive
interpretations (PRP subattribute definitions within primitive

attribute definitions are different from TEPN). Places now
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represent queues and processes {or wait stations) while
transitions remain as synchronization gprimitives that act as
state transition arcs. Transitions «can never hold tokens,
therefore they are never a part of the state definition of the
PRP net. Finally, the interpretation of tokens must allow for
typing as well as time stamping. This extended model can
represent deterministic token vrouting; 1t also provides a

mechanism to model the effects of process blocking.

The attributes of the PRP primitives will now be
defined; the formal definitions are supported by Jjustifications

and motivation where necessary.
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Definition: The PRP place is a composite entity defined by the

following attributes (Figure 4.5

1. DPlace wait set: This holds a set of tokens waiting to be

‘enabled’.
2. Place enable slot: This holds a single token that fis
‘enabled’, 1i.e. receiving service 1in conjunction with

tokens from other places (as defined by the input marking of

a target transition in the PRP transition definition).

In the context of reconfigurable machines, the place
wait set may be used to represent switched memories awaiting
attachment; the token in a place enable slot represents an

acquired switched memory that is being serviced by a task.



PRP Place:

Place Wait Set: Holds set of uﬁemabied

tokens.

Place Enable Slot: Holds enabled token.

Figure 4.5

39
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Definition: The PRP transition is a composite entity defined

according to the following attributes (Figure 4.6):

fary

Input-output mapping set (I0OMS):

I0MS = [I0OM / I0M i an input-output mapping]

I0M = [Input marking, Cutput marking]

Input marking = [token type, input piacel for all
the input places of the transition.

Output marking = [token ifype, output placel for
H ol

a1l the output places of the transition.

Transition delay function set {(TDFS): A transition delay
function is defined corresponding to each member of IOMS.
Each transition delay function is defined as

TOF = [TDF type, TOF parameters]

it
[
o)
[$4]
ot
(o]
[2%3
o)
(o N

where TDF type can be deterministics, exponenti
TOF parameters avre parameters appropriate to the TDF  type.

This function is used to determine the duration a transition



