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ABSTRACT

The method of projections is a new approach to reduce the complexity of analyzing
nontrivial communication protocols. A protocol system consists of a network of protocol
entities and communication channels. Protocol entities interact by exchanging messages
through channels; messages in transit may be lost, duplicated as well as reordered. Our
method is intended for protocols with several distinguishable functions. We show how to
construct image protocols for each function. An image protocol is specified just like a
real protocol. An image protocol system is said to be faithful if it preserves all safety and
liveness properties of the original protocol system concerning the projected function. An
image protocol is smaller than the original protocol and can typically be more easily
analyzed. Two protocol examples are employed herein to illustrate our method. An ap-
plication of this method to verify a version of the High-level Data Link Control (HDLC)
protocol is described in a companion paper.

Index Terms: C'ommunication protocols, verification, method of projections, image
protocols, protocol analysis, message-passing networks, communicating
processes, distributed systems.



Table of Contents

1. INTRODUCTION
1.1 The Abstract Model
1.2 The Projection Approach
1.3 Related Work :
2. THE PROTOCOL SYSTEM MODEL
2.1 Entity Events
2.2 Channel Events
2.3 Paths in the Global State Space
2.4 Two Protocol Examples
3. CONSTRUCTING AN IMAGE PROTOCOL SYSTEM
3.1 Aggregation of Entity States
3.2 Aggregation of Messages
3.3 Images of Channel States
3.4 Images of Global States
3.5 Image of a Sequence of Global States
3.6 Aggregation of Entity Events
3.7 Channel Events
3.8 An Image Protocol System
4. PROPERTIES OF IMAGE PROTOCOLS

4.1 Safety Properties of Image Protocols
4.2 Conditions for Faithfulness
4.3 Sufficient Conditions Without Knowledge of R or R’
4.3.1 Assumption about the original protocol system
4.3.2 The well-formed property
5. STEPWISE REFINEMENT ALGORITHMS
5.1 Termination Based Upon the Well-Formed Property
5.2 Termination Based Upon Safety Properties of Image Protocols
5.3 Verification Methods
6. CONCLUSIONS

APPENDIX I. EXTENSIONS TO THE PROTOCOL
MODEL

APPENDIX II. PROOFS
REFERENCES

FIGURES
TABLES

SYSTEM

-

b

GO =] O O ¥

O 0 10 10 10 BN LY 1Y 1O ke e B i e e b e e et e P
bt D O ST U U DD O D~ ST O U R b e DD e O

W oW
-3 W

- W
[ IVe)



1. INTRODUCTION

Most real-life communication protocols are very complex because they typically
have to perform several distinet functions. For example, the High-level Data Link Con-
trol (HDLC) protocol has at least three functions: connection management and one-way
data transfers in two directions [10, 20]. To reduce the complexity of analyzing such a
multi-function protocol, an approach that appears attractive is to decompose each
protocol entity into modules for handling the different functions of the protocol. For ex-
ample, each protocol entity in HDLC may be decomposed into three functional modules
such as shown in Iigure 1. Each module communicates with a corresponding module in
the other protocol entity to accomplish one of the three functions [1]. However, the
decomposition approach does not seem to facilitate an analysis of the protocol. The
main difficulty is that significant interaction exists among the modules. We identify two
types of dependencies. First, modules interact through shared variables within an entity.
Second, they also interact because data and control messages sent by different modules
in one entity to their respective modules in the other entity are typically encoded in the -
same protocol message (shared messages).

Most communication protocols that have been rigorously analyzed and presented in
the literature are concerned with a single function: either a connection management
function [2, 11, 16] or a one-way data transfer function [6, 9, 23]. A one-way data trans-
fer protocol, for example, corresponds to the interaction of a data send module and a
data receive module in isolation (see Figure 1). Any interaction between these modules
and other modules are not accounted for. As such, it constitutes just one function of a
real-life protocol. The following question arises: Are the safety and liveness properties
that are proved for the one-way data transfer protocol still valid when it is implemented
as part of a multi-function protocol with the two types of dependencies mentioned
above?

The method of projections provides an approach to transform the analysis of a
multi-function protocol into analyses of smaller single-function protocols, called image
protocols. It is different from the straightforward approach of decomposing protocol en-
tities into functional modules. Image protocols are obtained by treating groups of entity
states, messages and events in the original protocol as equivalent and aggregating them.
An image protocol is specified and verified just like a real protocol.

1.1 The Abstract Model

The underlying abstract model for the development of our theory uses states to en-
code meaning [3, 17]. Our results are thus applicable to two widely used protocol
specification formalisms: state machines [24] and programming language descriptions |1,
8, 20]. (We illustrate below the application to each formalism with one example.)

A protocol system consists of a network of protocol entities and channels. At any



time, the global state of the system is specified by ‘a joint description of the states of the
entities and channels. Let G denote the set of all global states of the protocol system.
The states of entities and channels (and hence the global state) may change due to the
occurrence of certain events: entities sending messages, entitles receiving messages,
timeouts, channel errors, etc. These global state transitions define a directed graph on
G. Given any initial global state g, the portion of the graph that is reachable from g is
referred to as the reachability graph R. R contains all available information on the logi-
cal properties of the protocol system.

Specifically, assertions of liveness properties are predicates on the set of paths in
G. A liveness assertion is valid if it is satisfied by the paths in R. Assertions of safety
properties are predicates on G. Let R, denote the set of states reachable from g;. A
safety assertion is valid if it is satisfied by the states in R_.

Verification of these properties may be carried out by a brute-force state explora-
tion (in the case of a small finite R), or by proof techniques for parallel programs. The
method of projections can be used in conjunction with either verification approach.

1.2 The Projection Approach

Consider a protocol with several distinguishable functions. We would like to ask
questions regarding the logical behavior of the protocol system concerning these func-
tions. Instead of asking such questions all at the same time, we may ask them with
respect to one function of the protocol at a time. The projection idea can be illustrated
by the picture in Figure 2. Consider a protocol system with the state description (x,y,z)
and the set R, of reachable states. Suppose that we are interested in a safety assertion
that involves only the variables x and y. To determine whether the assertion is true, it is
sufficient to know the image of R, on the (x,y) plane. Obviously, if R, is known, its.
image on the {x,y) plane is readily available. However, the complexity of R (and thus R)
is the basic source of difficulty in any protocol analysis. Our analysis approach avoids a
characterization of R. Instead, we construct from the given protocol an image protocol
for each of the functions that are of interest to us (to be referred to as the projected
functions).

An image protocol is specified just like any real protocol. The states, messages and
events of entities in an image protocol are obtained by aggregating groups of states, mes-
sages and events of the corresponding entities in the original protocol. Definitions needed
for the construction of an image protocol are presented in Section 3.

Given an image protocol, suppose that a second image protocol is obtained by ag-
gregating some of the entity states, messages and events of the first one. We say that the
second image protocol has a lower resolution than the first image protocol. The original
protocol can be thought of as an image protocol of itself, and obviously it has the highest
resolution available.



Due to the aggregations, an image protocol is smaller than the original protocol
and is typically easier to analyze. However, the reachability graph of an image protocol
captures only part of the logical behavior of the original protocol. The following useful
properties of image protocols are proved in Section 4.

First, any safety property that holds for an image protocol must also hold for the
original protocol. Second, if an image protocol is constructed with sufficient resolution so
that its events satisfy a well-formed property, then it is fa:th ful: Any logical property,
safety or liveness, that can be stated for the image protocol holds in the image protocol
i f and only i f it holds in the original protocol. The well-formedness of an image protocol
is determined by checking protocol entities individually. The well-formed property is the
weakest sufficient condition for faithfulness that can be stated without any knowledge of

R.

Given a protocol and an assertion A, stating the desired logical behavior of the
protocol for the function being projected, our objective is to construct the smallest image
protocol that is of sufficient resolution to verify A, Towards this goal, we construct a se-
quence of image protocols of increasing resolution by a stepwise refinement process. The
initial image protocol can be determined by the resolution needed to describe A, The
stepwise refinement is terminated when an image protocol with sufficient resolution to
verify Ag is constructed. Two stepwise refinement algorithms are presented in Section 5
with termination conditions based upon the two image protocol properties mentioned
above.

Given a multi-function protocol, a faithful image protocol can always be obtained
for each function by adjusting its resolution. However, the successful construction of
faithful image protocols that are much smaller than the original protocol depends upon
whether the protocol has a good structure. Thus, one can think of a multi-function
protocol as being well-structured if it possesses small faithful image protocols for its func-
tions.

Our protocol system model is described in Section 2. Various extensions to this
model can be accommodated by our theory (e.g., broadcast channels, message priority
classes). To streamline our presentation below, we postpone these extensions to Appendix
1. Proofs of lemmas, theorems and corollaries are given in Appendix II.

Two examples are employed throughout Sections 2-5 for illustration. In the first ex-
ample, the protocol entities are specified using a finite state machine description. The
" second example is a full-duplex data transfer protocol. Its entities are specified using a
programming language description.



1.3 Related Work

The idea of projection is similar to various notions of abstraction in the design and
analysis of software systems and programming languages. Within the communication
protocols literature, the term ®protocol projection® has been used by Bochmann and
Merlin to describe an operation in their method for protocol synthesis [4]. Their basic
idea of "projection onto the relevant action® is similar to ours herein, but the develop-
ment and application of the idea in their work and ours are different. The idea of projec-
tion as applied to various special cases of our protocol system model has been previously
explored in [12, 13, 14, 18, 19]. Extension of our results to a more structured model of
protocol entities is presented in [21]. Efficient rules for constructing image protocols as
well as the modeling of timing relationships in protocol systems are addressed therein.
An application of the method of projections to verify a version of the HDLC protocol is
presented in [20].

2. THE PROTOCOL SYSTEM MODEL

Let there be I protocol entities P,P,,....P; and K channels C,C,,...,Cy. Let S; be
the set of states of P, and M, be the set of messages that P; can send into C,. For nota-
tional convenience, we shall assume that the message sets M, , for all i and k, are-
mutually exclusive. {In practice, this is achieved by encoding each entity’s unique address
in its messages. )

Each protocol entity can send messages into a subset of channels, called its out-
going set of channels. Each protocol entity can receive messages from a subset of chan-
nels, called its incoming set of channels. We do not require the outgoing and incoming
channel sets of a protocol entity to be mutually exclusive. We consider channels that
have a single destination protocol entity, although the number of protocol entities that
can send into a channel can be more than one. (An extension of the model to include
multi-destination or broadcast channels is given in Appendix I.)

A channel can be real or logical. In any case, all buffers and communication media
between two entities connected by a channel are considered to be part of the channel.
Hence, channels may have large storage capacities for messages in transit. At any time, a
channel contains a (possibly empty) sequence of messages. We further distinguish chan-
nels into the following categories:

(1) Infinite-buffer channels--most communication protocols have some measure of flow
control. As a result, their buffer requirements for messages in transit between two en-
tities are bounded. Hence the assumption of an infinite buffering capacity is equivalent

to being able to satisfy these buffer requirements.

(2) Finite-buffer blocking channels--with a blocking channel, protocol entities are not
permitted to send into the channel whenever the channel is full.



(3) Finite-buffer loss channels—-with a loss channel, the sending of a message into a full
channel rtesults in the instantaneous bumping (deletion) of a message. The message
bumped may be the new message or a message already in the channel.

Bumping rule. Whenever bumping is necessary, the selection of a message to delete
may be specified by any rule that depends only upon the channel positions of messages.

Define the set of messages that can be in channel C; to be

I
My = U My
i=1
The set of all possible sequences in C, is a subset of
J
M= (UMD U L)
j=t

where <> denotes the null sequence, Mkj is the Cartesian product of M, with itself )
times, and J is the maximum number (possibly infinite) of messages that C, can accom-
modate. If we think of C, as having J buffers, then any message sequence of length j in
C, occupies the first ] buffers.

The global state space of the protocol system is .

G:(Sixszx...xSI)x(glxgzx...xmK)

BEach global state in G is an (I+K)-tuple

(S,., Sp» -, Sy My, My, ooy M)
where s, ¢ S; for each i and my ¢ My for each k.

The dynamics of protocol entities and channels are described by events. FEach
event is specified by its enabling condition and its action. The enabling condition of an
event is a predicate in the components of the global state of the protocol system. The ac-
tion of an event specifies an update to the components of the global state. An event can
oceur only if the protocol system is in a state where the enabling predicate of the event
is true. Its occurrence, consisting of the execution of its action, is treated as an indivisible
transition from one global state to another. Each event corresponds to a set of transitions
in the global state space G.The union of these sets of transitions over all events
specified for the protocol system is denoted by r. We make the assumption that the
simultaneous occurrence of multiple events in the protocol system can be treated as oc-
currences of the same events in some arbitrary order.

Both entities and channels behave as event-driven processes: ie. their life cycle
consists of a continuous series of events. We will next describe the types of events in our
(abstract) protocol system model.



2.1 Entity Events

There are three types of entity events. The events of entity P, are specified as fol-

lows:

(1) Send events

Let (s, r, -m) denote the event of P, sending message m into channel C, where m « M,y
and Cy is in the outgoing channel set of P,. This send event is enabled when P, s in state
s. With a finite-buffer blocking channel, it is also required that the channel is not full.
After the event occurrence, P, is in state r and m has been appended to the end of the
message sequence in Cp. If Cy is a finite-buffer loss channel and is already full, then a
message 1s bumped instantaneously according to the bumping rule of C,. The set of such
send events that can be specified is a subset of S; x S; x M;;..

(2) Receive events

Let (s, 1, +m) denote the event of P; receiving message m from channel Cy where m ¢ M
and Cy is in the incoming channel set of P,. This receive event is enabled when P, is in
state s and m is the first message in channel C,. After the event occurrence, P, is in
state r and m is deleted from the channel. The set of such receive events that can be
specified is a subset of 5, x 5, x M.

{3) Internal events

Let (s, r, o) denote an internal event of P; where « is a special symbol indicating the ab-
sence of a message. This internal event is enabled when P, is in state s. After the event
occurrence, P; is in state r. Internal events model timeout occurrences internal to Pi, as
well as interactions between the entity and its local user. (The latter can be treated as™
internal events if message exchanges between P, and its local user are not explicitly
modeled.) The set of internal events that can be specified is a subset of S, x S, x {e}.

Note that each send or receive event may alter the states of the entity and channel
involved in the event. Internal entity events do not affect the state of any channel. We
shall use T to denote the set of events specified for P, i=1,2,..... Note that the be-
havior of P, may be nondeterministic. For example, we may specify T, to contain both (s,
r, +m) and (s, u, +m) where r £ u.

2.2 Channel Events

Let Ey denote the set of channel events specified for channel C,. The occcurrence of
a channel event in E; depends on and changes only the state of C;; no other channel or
protocol entity is involved. We use such channel events to model various types of chan-
nel errors.



The following three types of channel error events are considered: loss events,
duplication events, and reordering events. Each event 1s defined for a position or pair of
positions in C,. Let the sequence of messages in C, be m,. A loss event for the i-th posi-
tion of C, 1Is enabled if m, has a message in that position; its occurrence deletes that
message from my. A duplication event for the i-th position of Cy is enabled if m; has a
message in that position; its occurrence inserts a duplicate of that message immediately
behind it in m,. A reordering event from the i-th to the j-th position of C, is enabled if
m, has messages in both these positions; its occurrence moves the message in the i-th
position to immediately behind the message in the j-th position.

E, can be specified to contain any collection of events of each type.

For consistency, we require that all duplication events are inhibited if Cy is a
finite-buffer blocking channel and it is full. If C, is a finite-buffer loss channel, the
 bumping rule applies when a duplication event results in a message sequence whose
length exceeds the buffering capacity of the channel.

2.3 Paths in the Global State Space
The protocol system is completely specified by the following:

s,, M,, T,, E., g for i=1,2,..., I, (1

k=1,2,..., K

1’ ik’ 1’

where g denotes the initial global state of the protocol system. Define
I K

E= (U TP U (U EY
i=1 k=1

Cliven event e ¢ E and global states g and h (not necessarily distinct) we say that e
can take the protocol system from g to h, if e is enabled when the protocol system is at
state g and its occurrence results in the protocol system entering state h.

Recall that 7 is the set of global state transitions due to the events in E. The pair
(G,r) defines a directed graph whose nodes are elements of G and whose arcs are ele-
ments of 7. We now formally define a path in (G, 7) to be a sequence of global states
fof oy in G, such that there exist events e;,e,,....e; in E and ¢; can take the protocol
system from f,_; to f; for i=1,2,...,n. Since R denotes that portion of the graph (G, r) that
is Teachable from the initial global state g;, a path in R is a path in (G, ) that starts
from the initial state g,. The length of a path is defined to be the number of elements
(global states) in it. For notational convenience, we consider any global state g ¢ G as a

path of length 1 in (G, 7). Thus, g, is the only path of length 1 in R.

Given two sequences x = fg,f,,...f and y = g4,&y,...,8,, We denote by x,y the se-
quence fo,f,...f,80.81,- 8 obtained by concatenating x and y. A path x is extendable
by sequence y to z = x,y if z is also a path.



2.4 Two Protocol Examples

Finite state machines example

We first illustrate the specification of protocol entities with an example of two in-
teracting finite state machines. (See Figure 3.) Let C, and C, be two channels connect-
ing Py to Py, and P, to P, respectively. Protocol entity P; has state space S, =

{0,1,2,3,4,5,6} and sends messages into channel C; from M; = {a a5 a;}. P, receives
messages {rom C,. Protocol entity P, has state space S, = {0,1,2,3,4,5,6} and sends
messages into channel C, from My = {b,b,,bs}. P, receives messages from C;. The

events of entity P, are shown in Figure 3(a). An arc from node i to node j with a label x
specifies event (i,J,x), where x Is « for an internal event, x is -a; for sending message a,,
and x is +b; for receiving message b;. The events of entity P, are similarly shown in
Figure 3(b).

Note that from state 4 in S,, the reception of a, can cause a transition to either
state 3 or 5. This nondeterministic behavior is allowed, and is useful for representing cer-
tain features in real protocol systems.

We have not given meaning to the protocol entity states and messages. The ex-
ample in Figure 3 will be used expressly to illustrate definitions for the construction of
image protocols to be presented in Sections 3 and 4.

Full-duplex data transfer example

We next illustrate the specification of protocol entities using a programming lan-
guage model. A full-duplex data transfer protocol is considered.

Let ¢} and C, be infinite-buffer channels connecting Pl‘t»o P,, and P, to P,
respectively. Let variables CHANNEL1 and CHANNEL2 denote the sequence of mes-

sages in Cy and C, respectively.

Let DATASET denote the set of data blocks that can be sent in this protocol. Con-
sider protocol entity P,. P, has an infinite array of data blocks, SOURCE]i] for
i==0,1,2,..., destined for P,, and an infinite array, SINK[i] for i=0,1,2,..., to store data
blocks received from P,. SINK is initially empty. (SOURCE and SINK should be inter-
preted as history variables that are not actually implemented.) Additionally, the follow-
ing variables are used in P;: VS and VR which are non-negative integers, and D _OUT,
ACK _DUE and BUSY which are Boolean variables. VS points to the data block in
SOURCE to be sent next. VR points to the position in SINK to be next filled. D _OUT
is true if (and only if) a data block has been sent but not yet acknowledged.
ACK DUE is true if (and only if) a received data block has to be acknowledged. BUSY
can be viewed as an externally operated switch indicating that P, is given access to send
into channel C,.

The state of P, at any time, is given by the value of the 7-tuple <VS, D _OUT,



SOURCE, VR, ACK _DUE, SINK, BUSY> of P,. Let S, denote the state space of P,.
Entity P, has a similar set of variables. For convenience, we have omitted qualifiers (1 or

2) for theqe variables and we shall omit them as long as it is clear whether we are refer-
ring to P, or P,. In both entities, the initial state is given by VS and VR equal to 0,
D OUT and \CI\ DUE equal to false, SINK equal to empty, and SOURCE equal to
some infinite array of data blocks. (In both entities, SOURCE does not change its value
during the protocol interaction.)

Each message in the protocol is a tuple with one or more components. The first
component is used to identify the type of message, and it can take the (character string)
values DATA, ACK and DATA&ACK, corresponding to three message types. A DATA
message is a 2-tuple (DATA, d), where d is a data block from DATASET. There are as
many DATA messages as data blocks in DATASET. An ACK message is the 1-tuple
(ACK), signifying a positive acknowledgement for a received data block. Unlike DATA
" messages, there is only one ACK message. A DATA&ACK message is a 2-tuple
(DATA&ACK, d) where d is a data block from DATASET.

The set of messages that can be sent by P, is given by

= {(ACK)} U {(DATA,d) : d e DATASET} U {(DATARACK, d) : d ¢ DATASET}.

The message set M, for P, is the same as M;; each message has a sender identity field
which will not be explicitly indicated whenever there is no ambiguity.

The set of entity events for Py is presented in Table 1. (Note that each event in
Table 1 corresponds to a collection of events as defined in Section 2.1.) Events 1-3 are
send events for the 3 message types of M;. Events 6-8 are receive events for the 3 mes-
sage types of M,. Events 4 and 5 are mternal events caused by an agent locally con-
nected to P, but which is not explicitly modeled (e.g., a channel controller). The ena-~
bling condmon of an event defines the entity states and channel states at which the
event may take place. The action of each event causes the system to enter a new state.

SDATA and RDATA are variables taking values from DATASET. SDATA and
RDATA can be thought of as temporary buffers for transmission and reception
(respectively) of data blocks. In Table 1, the operation put{(CHANNELL,
(DATA,SDATA)) sends a DATA message with the value of SDATA as its data block
into CHANNEL1 (i.e. appends the DATA message to the end of the sequence of mes-
sages in CHANNELL1). The operations put(CHANNELI, (DATA&ACK,SDATA)) sends
into CHANNEL1 a DATA&ACK message with the value of SDATA as its data block.
The operation put(CHANNELL, (ACK)) sends an ACK message into CHANNELL.

The function first{CHANNELZ2) indicates the type of the message that is at the
head of CHANNEL2 and has arrived at P;. When a DATA message is at the head of
CHANNEL2, the operation get(CHANNEL2, (DATA,RDATA)) removes the message
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from CHANNELZ and assigns the data block in the message to RDATA. When a
DATA&LACK message 1s at the head of CHANNEL2, the operation get{(CHANNEL2,
(DATA&ACK RDATA)) removes the message from CHANNEL2, and assigns the data
block in the message to RDATA. When an ACK message is at the head of CHANNEL2,
the operation get{CHANNELZ2, (ACK)) removes the message from CHANNEL?2.

We will come back to both of the above examples when we use them to illustrate
the construction of image protocols in the following section.

3. CONSTRUCTING AN IMAGE PROTOCOL SYSTEM

An image protocol system is constructed by first partitioning each of the sets

S M T,Ek, for all i and k

i ik’ i

in the original protocol system specification. Protocol quantities (entity states, messages
or events) in each partition subset are treated as equivalent and are aggregated to form a
single quantity, called their ¢mage, in the image protocol system. Since partition subsets
are mutually exclusive and collectively exhaustive, quantities that are treated as equiv-
alent have the same image; quantities not treated as equivalent have different images.

For a protocol quantity x, we use x’ to denote its image. The same notation x’ will
also be used to refer to the set of protocol quantities in the original protocol system that
have the x” image. For a set A of protocol quantities in the original system specification,
we use A’ to denote the set of image quantities derived from A, ie, A’ = {x’ : x ¢ A}.
Note that an image protocol system, defined by '

s

4 7

M’

i 2,1 (2)

T{. Eg. & for

1s specified just like any real protocol system. We cannot tell from inspecting (2) that it
is an image of another protocol system.

Since an image protocol is obtained from the original protocol by aggregations, it
captures only part of the logical behavior of the original protocol system. First, global
states of the image protocol system correspond to aggregations of global states of the
original protocol system. Second, in the global state space of the image protocol system,
the observable effect of different events in the original protocol system may be identical
(these events will become the same image event) or nil (these will be eliminated).

Section 3 is devoted to definitions needed for the construction of an image protocol
given a partitioning of the entity state spaces of the original protocol. Stepwise refine-
ment algorithms for obtaining an image protocol of sufficient resolution to verify some
logical assertion are presented in Section 5. Properties of image properties are presented
in Section 4.
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3.1 Aggregation of Entity States

We start with a given partitioning of the state space S; of protocol entity P;, for all
i. All entity states in a partition subset are aggregated to the same image. Let S; denote
the set of images of states in S;, i.e., S} = {s’ : s € 5;}. S is said to be the image state
space of P,. Elements of 5] are also referred to as image entity stales.

Note that if a protocol entity does not participate in the projected function, then
the entire state space of that protocol entity may be aggregated to a single degenerate
image state.

Finite state machines example (cont.)

Consider the example in Figure 3. Suppose that the partition { {0,1,2,3,4}, {5,6} }
of S has been chosen; see Figure 4(a). Let image state 0’ denote the image of states 0, 1,
2, 3 and 4 in S,. Let image state 5 denote the image of states 5 and 6 in S;. The image
- state space of Py s S} = {0",5'}.

For the same image protocol, suppose that the partition { {0,3,4}, {1,6}, {2,6} } of
S, has been chosen; see Figure 4(b). Let image states 0’ 1" and 2’ respectively denote the-
ix;xages of the states in the partition subsets {0,3,4}, {1,5} and {2,6}. Then, the image
state space of P, is S, = {0',1",2'}.

Full-duplex data transfer example (cont.)

This example protocol has two functions corresponding to data transfers in the two
directions. The protocol is extremely simple but it embodies two types of dependencies
that are encountered when one attempts to decompose protocol entities into functional
modules. First, the variable BUSY is shared by both functions of the protocol. Second,
messages of tvpe DATA&ACK are also shared. Such dependencies present difficulties for
protocol analysis using a decomposition approach, but not when using a projection ap-
proach.

Consider the function of one-way data transfer from P, to P, Two desirable
properties of the protocol with respect to this function may be stated as follows:

DP1 : SINK,[i] = SOURCE,[i] for 0 < i < VR,

DP2 : VS, > VR, > VS, - 1
where the subscripts indicate which entity the variables belong to. This assertion can be
described using just the variables SOURCE and VS in P, and the variables SINK and
VR in P,. However, image protocol entities specified using only these variables do not
have sufficient resolution to verify the above assertion. The necessary resolution is ob-
tained by a stepwise refinement procedure (see Section 5). For now, suppose that we
retain the following variables in the image protocol: VS, D OUT and SOURCE in P,
and VR, ACK_DUE and SINK in P,.

At any time, the image state of P, is given by the value of <VS, D OUT,
SOURCE>. Let S| denote the image state space of P,. Thus, two states s and r in 5,
are equivalent if they differ only in the values of VR, ACK__DUE, SINK and BUSY.
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At any time, the image state of P, is given by the value of <VR, ACK_ DUE,
SINK>. Let 8’2 denote the image state space of PQ. Thus, two states s and r in S2 are
equivalent if they differ only in the values of VS, D OUT, SOURCE and BUSY.

3.2 Aggregation of Messages

The partitioning and aggregation of messages in the message set M, depend upon
the partitioning of the entity state spaces. Two messages m and n may be treated as
equivalent only if their receptions cause identical state changes in the image state space —
of the receiver of C'y. This equivalence relation partitions M;, and messages within the
same partition subset may be aggregated to form an ¢mage message. The image message
sets are given by

My = {m” 1 omoe M) for all i and k

In particular, messages in M, whose receptions do not cause any state change in the
image state space of the receiver are said to have a null image. The null image message
in M;k is denoted by 4. Define
I
Mp= U M

i=1
The null image messages from different M}, are all denoted by 2 and not distinguished in
M;..

Sometimes it is desirable to have a finer partitioning of a message set. A higher
resolution may be needed to describe and/or verify the behavior of the protocol system.
A stronger criterion for treating messages as equivalent is to require also that their send
events cause identical state changes in the image state space of their sender.

We shall deal with a null image message 8 in two different ways depending upon
whether Cp is a finite-buffer channel or an infinite-buffer channel. With a finite-buffer
channel, 4 is included in M}, as described above. If C is an infinite-buffer channel, it is
possible to ignore s because even though g occupies a buffer in Cy, 1t can never cause Cy
to be full. Specifically, § may be excluded from M, if C, is an infinite-buffer channel and
1s characterized by the following uni form error model:

a) Either E| contains no loss events, or the only loss event in E, is for the first
position in Cy, or Ey contains a loss event for every position in C,.

b) Either E, contains no duplication events, or E, contains a duplication event
for every position in Cy.

¢) Either E; contains no reordering events, or E; contains a reordering event for
every pair of positions in C,.
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The uniform error model is a realistic characterization of most conventional physi-
cal and logical communication channels. Henceforth in this paper, an infinite-buffer
channel C, will be considered to be characterized by the uniform error model and g will
be deleted from M|.

If E, does not satisly the uniform error model then Cy is said to be characterized
by a nonuniform error model.

Finite state machines example (cont.)

In Figures 4(a) and 4(b), if we relabel each state by its image and collapse all iden-
tically labelled states, without deleting any events, then we obtain Figures 5(a) and 5(b).
From these figures we can observe the state changes in S} and S, caused by the messages
in M; and M,. Assume that C; and C, have adequate buffers (infinite-buffer channels).

We will first examine the message set M,. The state transitions caused by message
a; are (0,07) in 5}, and (1,1') in S). Hence a; has a null image. Both messages a, and a,
cause the state transition (0’,5’) in S} and the state transition (0’,1') in S}. However, a, is
not treated as equivalent to a; because a, causes state transition (0’,0’) in S, while a,
does not. Thus, we partition M, to be {{a;}, {a5}, {a3}}. The image of a; is null. Let
the image messages a; and a; denote the images of a, and aj respectively. The image
message set M} is {ah,as}.

We will now examine the message set M,. The state changes caused by message b,
are (5°,0") in S} and (27,0} in S;. The state changes caused by message bs are (5°,0’) in 5]
and (2°,0") in S,. We will treat b; as equivalent to bs. The state changes caused by mes-
sage b, are (0°,0’), (5,5") in S}, and (0°,0’) in S,. Hence b, has a null image. Hence, we
partition M, to be { {b;,bs}, {by} }. The image of b, is null. Let image message b}
denote the image of messages b; and b,. The image message set M}, is {b}}.

Full-duplex data transfer example (cont.)

By examining the state changes in the image spaces 5] and S, due to send and
receive events, the following can be shown about messages in M, (see [14]). The message
“(ACK) has a null image. The messages (DATA d) and (DATA&ACK,d) may be treated
as equivalent; let their image be denoted by (DATA’,d). Thus M} = {(DATA’d) : d ¢
DATASET}.

Similarly, the following can be shown about messages in M,. All (DATA,d) mes-

sages have the null image. All (DATA&ACK,d) messages may be treated as equivalent to
the ACK message; denote their image by (ACK’). Thus M; = {(ACK")}.
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3.3 Images of Channel States

The preceding equivalence relation defined for messages is now extended to channel
states. The image my of channel state m, is obtained by taking the image of each mes-
sage in my . For infinite-buffer channels, messages with a null image are deleted from my
to form my. All channel states with the same image are treated as equivalent. Let My
denote the set of images of channel states in M, . Then

J
My = (U M U {<}
j=1
where Mi{j denotes the cartesian product of My with itself j times, and J is the number of
buffers in Cy (possibly infinite). The image of a channel state is also referred to as an
image channel state. M is said to be the image state space of Cy.

3.4 Images of Global States

The above equivalence relations defined for entity states and channel states are
now extended to global states. The image of global state g = (51’8‘2""7SI;E1’-@2?"'—@K) is
~defined to be g’ = (Si,Sé,...,Si;_@_i,@_é,...,_@i{). All global states with the same image are
treated as equivalent. Let G’ denote the set of images of global states in G. Thus, we
have '

G’ = (8{ x 55 x...x 8p) x (M x My x...x M.

The image of a global state is also referred to as an image global state. G’ is said to be
the image global state space of the protocol system.

3.5 Image of a Sequence of Global States

The preceding equivalence relation defined for global states is now extended to se-
quences of global states in G. Given w, a sequence of global states in G, its image w’ is
obtained as follows: first, take the image of each global state in w; second, any consecu-
tive occurrences of the same image state in the sequence are replaced by a single occur-
rence of the image state. All sequences having the same image are treated as equivalent.
Recall that paths in (G, 7) are sequences of global states in G. Thus, the image of a path
in (G, r) is defined as above for sequences.

3.8 Aggregation of Entity Events

The above equivalence relations defined for entity states and messages are now ex-
tended to entity events. Entity events that have the same observable effect in the image
global state space are aggregated to the same image entity event. The images of the
three types of entity events (s,r,+m), (s,r,-m) and (s,r,a) are (s’,;r’,+m’), (s’,;r'-m’) and
(s’,1",a) respectively.

An image event whose occurrence does not have any observable effect in the image



15

global state space is said to be a null tmage event. An image internal event (s',r',e) is a
null image event if 8" = r’. Image send events involving null image messages and infinite-
buffer channels are treated as image internal events in T}; in this case the image event
(s',r',-4) is represented as (s',r’,a), and it is a null image event if s" = r’. Finally, image
receive events involving null image messages must have s = r’ by definition; hence such
receive events are null image events if the channel involved is an infinite-buffer channel.

The set of image entity events for P, is defined by

T, = {(s’,r’,x") : (s,7r,%X) ¢ T, where x = +m, -m or «,
and the image of (s,r,x) is not a null image event}
Finite state machines example (cont.)

Recall that messages a; and b, have null images. From Figures 4(a) and 5(a), the
events in P, having ngll images are (0,1,+b,), (1,2,a), (2,0,-a,), (0,3,e), (3,4,-ay), (4,3,0),
and (5,6,4+b,). Event (3,5,-a,) has the image (0',5’,-a5). Event (4,5,-a3) has the image
(0°,5;-a}). Events (5,0,+b,), (5,4,4b,), (6,4,+b), and (6,2,+b,) are treated as equivalent
and have the image (5°,0’,+b}). Hence,

T; = { (0°,6",-a}), (0',5",-3)), (5°,0",+b)) }.

From Figures 4(b) and 5(b), the events in P, having null images are (0,3,0),
(3,4,-b,), and (1,5,4a,). The image of (4,3,+a,) is (0°,0',+a5). Events (0,1,+a,), (3,1,+a,),
and (4,5,+a,) are treated as equivalent and have the image (0,1, 4a5). Event (4,5,4+a,)
has the image (0’,1',4a3). Events (1,2,e) and (5,6,a) have the image (1',2,a). Events
(2,0,-b;) and (6,4,-b,) have the image (2,0',-b}). Therefore,

T; = €(07,07,+a)), (07,17,+ap), (07,1°,+ag), (1°,2°,a), (2°,0°,-b)}.
Full-duplex data transfer example (cont.)

The entity events of the image protocol for the projected function of one-way data
transfer from P, to P, are shown in Tables 2 and 3. They can be derived using the
above definition as illustrated in [14, 21]. In Table 2 for example, SEND DATA’ is the
image of events SEND DATA and SEND _DATA&ACK of P; RE(T_ACI'\" is the
image of REC ACK and REC_DATA&ACK. The events SEND ACK,
START BUSY, STOP _BUSY and REC__DATA of P, have null images. B -

3.7 Channel Events

The image of a channel event should describe the effect of the event that can be
observed in the image channel state space. We now show that for every channel event e
in E,, we necd to specify an image channel event e’ in E; which is identical to e. Hence,
we do not aggregate events in E,. We need to consider two possible cases.

First, Cy is a finite-buffer channel (null image messages are included in M} ). Let
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m, be a sequence of messages in C,. If we observe in the image channel state space an
error event occurring to my, its effect is identical to that of the same channel event oc-
curring to my. Hence, for a finite-buffer channel, E} must be identical to E, .

Second, C, is an infinite-buffer channel (null image messages are deleted from M, ).
Now, if we observe in the image channel state space the effect of an error event occur-
ring to my, it is either nil or in the form of an error event of the same type occurring to
my. Suppose that the error event is not a loss of the first message in m;. The uniform
error model requires that E; contains error events of this type specified for all positions
or pairs of positions of Cy. On the other hand, if the first message in m, is lost, the ob-
servable effect in the image channel state space is either nil or that of an identically
defined event. Hence, for an infinite-buffer channel also, Ei( must be identical to Ek.

3.8 An Image Protocol System

The specification

g

o M T4 Ep, gy fori=1,2,..., I,

ix
k=1,2,....,K

defines an image protocol system. Here, g;, the image of g, is the initial state of the

image protocol. Due to aggregations, an image protocol system is always smaller than the

original protocol system.

Finite state machines example (cont.)

We have already obtained the image state spaces Sj={0",5"} and S,={0",1",2},
the image message sets Mj={aj a3} and Mjy={b}}, and the image event sets T} =
{ (0757 -a5), (075 -a3), (57,0°,4+b}) } and T, = {(0°,0",+a5), (0,1’ 4a}), (0",1"+a}),
(1'2",e), (2.0°-b]) }. These quantities define the image protocol system which is shown
in I'igures 6(a) and 6(b). The channels C; and C, in the image protocol system have the
same characterization as in the original protocol system. (We have not yet specified the
event sets k£, and E,, for these channels.)

Full-duplex data transfer example (cont.)

For P, and P,, we have already obtained their image state spaces to be defined by
the state vectors <VS, D OUT, SOURCE> and <VR, ACK _DUE, SINK> respec-
tively, their image message types to be (DATA’d) and (ACK’) respectively, and their
image events shown in Tables 2 and 3. These quantities define the image protocol sys-
tem. The channels C; and C, in the image protocol system have the same characteriza-
tion as in the original protocol system.
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4. PROPERTIES OF IMAGE PROTOCOLS

For the original protocol system with global state space G and initial state g,
“assertions of its safety properties are predicates on G, while assertions of its liveness
properties are predicates on the set of paths in G. The validity of such assertions can be
decided by examining the reachability graph R.

Recall that an image protocol is specified just like any real protocol. It has the fol-
lowing set of events
I K
Er=(UTY UCU ED.
i=1 k=1
E’ gives rise to a set of transitions 7 in the global state space G'. The transition system
(G',7') governs the logical behavior of the image protocol system. Let R’ denote the rea-
chability graph from gj. Let R} denote the set of global states reachable from g. Infor-
mally, an image protocol system is faithful if any logical property, safety or liveness, that
can be stated for the image protocol system holds in the image protocol system if and
only if it holds in the original protocol system.

When an assertion stated for the image protocol system is considered in the context
of the original protocol system, each image protocol quantity x’ (entity state, message or
event) appearing in the assertion denotes any protocol quantity in the original system
whose image is X'.

An image protocol system as defined in Section 3 is in general not faithful.
However, we show in Section 4.1 below that image protocols have the following nice
property: Any safety property that holds in the image protocol system also holds in the
original protocol system. Given a safety assertion to verify for a protocol function, this
property of image protocols can be used as a terminating condition for the stepwise
refinement process to find an image protocol with adequate resolution. In Section 4.2, we
formally define faithfulness for an image protocol system. This definition involves an ex-
amination of the reachability graphs R and R’. In Section 4.3, we give sufficient con-
ditions for an image protocol system to be faithful. These conditions can be checked by
examining individually the entity and channel events of a protocol system. These con-
ditions are the weakest sufficient conditions that can be stated without any knowledge of
R and R’

4.1 Safety Properties of Image Protocols

The results below apply to any image protocol system obtained according to the
definitions in Section 3. Let the original protocol system be characterized by (G,7), and
the image protocol system by (G’,7).

Lemma 1. Given a protocol system and channel states m and n in M,, for any Kk,
if a channel event in E, can take C, from m to n, then in an image protocol system, ei-
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ther m’ = n’ or a channel event in E} can take C; from m’ to n’. (A proof of Lemma 1
is given in Appendix IL)

Lemma 2. For any two global states g and h of the original protocol system, if g is
extendable to g,h, then in an image protocol system, either g’ = h’ or g’ is extendable to
g’ h’. (A proof of Lemma 2 is given in Appendix II.)

Theorem 1. The image of every path in (G,7) is a path in (G,7).

Coroliary 1. Given any initial global state g,, the image of every path in R is a path in
R

Corollary 2. {g' : g« R} C R, '

The above theorem and corollaries follow readily from Lemma 2 (proofs are given in Ap-
pendix II).

Observation. Suppose that a safety assertion has been found to be invariant in an
image protocol system. Note that a safety assertion is invariant if it is true on a superset
of R} in G’. By Corollary 2, the safety assertion must also hold invariantly in the original
protocol system.

Finite state machines example (cont.)

Given the initial state (0’,0’;<>,<>) for this image protocol system, and assum-
ing channels C; and C, to be error-free (E; and E, are empty sets), it is easy to verify
that the following assertion holds for the image protocol system.

P, is in state 5" = Exactly one of the following holds:
(a) message a; or ay isin C, or
(b) P, is in state 1" or 2, or
(¢) message b} is in C,, or
(d) P, is in state 0" and channels C; and C, are empty (deadlock situation).

Note that P, in state 5’ means that in the original protocol P, is in any state whose
image is 5’. Similarly, message b} is in C, means that in the original protocol any mes-
sage whose image is b} is in C,.

We can verify whether this assertion is valid for the original protocol by examining
the reachability graph of the original protocol system in Figure 3. However, by Corol-
lary 2, we know that the above assertion is valid for the original protocol system.
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The assumption of error-free channels is necessary for the above assertion to hold
in both the original and image protocol systems. This assumption is not required in or-
der for the nice property of image protocols stated in Corollary 2 to hold.

Full-duplex data transfer example (cont.)
Assuming C; and C, to be error-free channels, the following safety assertion has

been found to hold for the one-way data transfer image protocol constructed in Section
3.8

1. SINK[i] = SOURCE]i] for 0 < i < VR.

[ ]
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3. (DATA’,d) in CHANNEL1 = (D _OUT)
and (d = SOURCE[VS-1])
and (exactly one DATA’ message in CHANNEL1)
and (not ACK _DUE) and (VS = VR + 1)
and (no ACK’ message in CHANNEL?2).

4. ACK_DUE = (D_OUT)
and (no DATA’ message in CHANNEL1)
and (VS = VR) and (no ACK’ message in CHANNEL2)

. ACK’ in CHANNEL2 = (D_OUT)
and (no DATA" message in CHANNEL1) and (VS = VR)
and (not ACK _DUE)
and {exactly one ACK’ message in CHANNELZ2)

(W]

6.not D OUT = VS = VR

By Corollary 2, the above assertion holds in the original full-duplex data transfer
protocol.

Again, the assumption of error-free channels is needed for the above assertion to
hold because the protocol is relatively simple and is not designed to handle errors. With-
out this assumption, no meaningful assertion can be stated. For larger protocol examples
involving error-prone channels, the reader is referred to [19, 20].

4.2 Conditions for Faithfulness

Liveness properties of a protocol system are concerned with the future behavior of
paths in the reachability graph R. Consider an image protocol system with reachability
graph R, Our definition of faithfulness is formally stated as follows:

Definition (Faithful Image Protocol). For every path w in R and every path u’ in R’
such that w'=u’, the following two conditions hold:
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(F1) If w can be extended to a path x in R then u’ can be extended to a path v’ in
R’ such that x'=v". ‘

(F2) If u’ can be extended to a path v’ in R’ then w can be extended to a path x
in R such that v =x".

The above two conditions guarantee faith fulness of the image protocol’s sa fety
properties as a result of the following implications:

(F1) = R, D {g’ : g ¢ R}

(F2) = R, C {g’ : geRD
where R{ s the set of reachable states of the image protocol system, and {g": g ¢ R_} is
the set of images of reachable global states of the original protocol system.

To be able to characterize the liveness properties of R given the liveness properties
of R’, we assume that the original protocol system  satisfies the following fairness
assumption: No event will be indefinitely delayed if it is enabled infinitely often. Given
the fairness assumption, conditions (F1) and (F'2) guarantee faithfulness of the image
protocol’s liveness properties.

We have proved that all image protocols as constructed in Section 3 satisfy con-
dition (F'1). However, an image protocol system satisfies condition (F2) only if it has ade-:
quate resolution. To check if (F2) holds requires an examination of R and R’. However,
the complexity of R is to be avoided unless it has a special structure that facilitates the
checking of (I'2). We give in Section 4.3 sufficient conditions for an image protocol to
satisfly (F2). These conditions can be checked by examining individually the entity and
channel events of the original protocol system, without any knowledge of R or R".

4.3 Sufficient Conditions Without Knowledge of R or R’

To satisfy condition (F2) above, we require that channels in the original protocol
system satisfy a finite lifetime assumption, and each event in the image protocol system
is well-formed. These requirements are now explained below.

4.3.1 Assumption about the original protocol system

Finite lifetime assumption: The first message residing in a channel will be
deleted in finite time.

The finite hfetime assumption is satisfied by protocol systems in several ways.
First, this assumption is satisfied by protocol systems which have been carefully designed
to completely avoid "unspecified receptions" [24]. In any reachable state of such a sys-
tem, if m is the first message in channel C| whose receiver P, is in state s, there exists a
receive event (s,;r,+m) in T, for some r.

We shall refer to such protocol systems as having a complete sct of receive events.
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If we do not know whether the original protocol system has a complete set of
receive events, then unspecified receptions can be avoided by augmenting each entity
event set T, with a receive event set L; containing receive events of the form (s,8,4m).
Two cases are of interest:

Case 1. Exhaustive specification

L= {(s;s,+m) 18 ¢ 5, m ¢ M, for all Cy in the incoming set of P}

Case 2. Complementary specification

L, = {{s,8,+m): s ¢ S;, m ¢ M for all Cy in the incoming set of P,

such that (s,r,+m) is not in T, for some r}

Since occurrences of events in L; do not change the state of P;, they can be inter-
preted not as entity receive events but as events that enforce a finite lifetime for mes-
sazes in a channel. Specifically, a message residing at the head of a channel will be
deleted by some “channel controller® within a finite time. Finite lifetimes for messages
are highly realistic. First, messages propagating within a physical channel have a small
transit time. Second, if a channel is logical and messages are actually travelling within a
store-and-forward communication network, they are often subject to mechanisms that
“enforce bounds on their lifetimes [22].

Whether we assume Case 1 or Case 2 above depends upon the magnitude of mes-
sage lifetimes compared to the magnitude of a receiving entity’s reaction time to handle
receive events. If a receiving protocol entity can always execute an enabled receive event
for a message prior to the expiration of the message’s lifetime, then the complementary
specification of 1; is realistic; otherwise, the exhaustive specification should be assumed.

Observation. An exhaustive L; is logically equivalent to a set of loss events
specified for the first position of channel C for every channel in the incoming set of P;.
The finite lifetime assumption is automatically satisfied if such loss events are already
specified in the channel event sets.

In summary, the original protocol system can satisfy the finite lifetime assumption
in one of three ways. First, it has completely specified receive events; in this case, the L;
sefs are null. Second, it is augmented by a complementary specification of receive events
in {L;}. Third, it 1s augmented by an exhaustive specification of receive events in {L.}. It
should be clear that in an actual system, the {L;} sets do not have to be explicitly
specified and stored.

Lastly, images of events in L, are defined in the same way as image receive events
in Section 3.6.



4.3.2 The well-formed property

The well-formed property of events in an image protocol system is next defined.
The image events in T; for entity P, are first considered.

Definition. For a and b in S;, b is infernally reachable from a if a’ = b’ (they
have the same image) and there is a sequence of internal events in T, causing state
changes inside a’ that will take P; from a to b.

A send event involving P; and C, for some k, can be regarded as an internal event
for the above definition if C| is an infinite-buffer channel and the message being sent has
a null image. Under these conditions, the send event {a,b,-m) ¢ T, can be treated as an
internal event (a,b,a) ¢ T,

Definition. An image internal event of P;, (s"1,e) ¢ T} where s” 3£ 1, is well-
formed if for every a whose image is s’, there is some b ¢ S, that is internally reachable
from a and (b,c,a) ¢ T, for some ¢ e 1.

Again, 1n the above definition, a send event (b,c,-m) ¢ T, where m ¢ M;, for some k
can be used instead of (b,¢,e) if m has a null image and Cy is an infinite-buffer channel.

H

Definition. An 1mage send event of P, (s'r'-0') € T}, is well-formed if for every a
whose image iIs &7, there is some b ¢ S; that is internally reachable from a and (b,c-y) « T,
for some ¢ ¢ 1’ and some y whose image is n’.

Definition. An image receive event of Py, (s 4n’) ¢ Ty, is well-formed if for
every a whose image is s', the following holds: for every y whose image is n’ there is some
b ¢ 5; that is internally reachable from a, and (b,c,+y) ¢ T, for some ¢ ¢ 1.

If in any of the above definitions of well-formed events, the length of the internal
path 1s 0 (i.e., b = a}, then we say that the image event is strongly well- formed.

Note from the construction of T} that for every e’ e T, there is an event e ¢ T,
whose image 1s ¢’

Finite state machines example (cont.)

We will now show that the image events in T} are well-formed. (Refer to Figures 4

\ -3
and 5.) First, consider event (0',5",-a5) ¢ T}. Because of the paths 1-2>2—1 50253

and 4-4>3, state 3 is internally reachable from states 1, 2, 0 and 4. From state 3, the
event (3,5,-a,) can be executed. Hence (07,5’ ,-a}) is well-formed.

Because of event (3,4,-a;), where a; has a null image, state 4 is internally reachable
from state 3, and hence from states 0, 1 and 2 also. From 4, event (4,5,-a5) ¢ T can be
exccuted. Thus, event (0°,5°-a3) ¢ T} is well-formed.
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Because of the events (5,0,+b,), (5,4,+bs), (6,4,+b,), and (6,2,+b;) in T,, image
event (5,0',--b}) ¢ T} is strongly well-formed.

Next, we will show that the image events in T} are well-formed. Consider image
event (07,0".+a}) « T5. Because of events (0,3,0) and (3,4,-b,) in T,, state 4 is internally
reachable from 0 and 3. These and the event (4,3,+a,) ¢ Ty make image event (07,0, +a))
well-formed. i

Image event (0°,1°,+a}) e T} is strongly well-formed because of events (0,1,4+a,),
(3.1,+a,), and (4,5,4a,) in T,.

Image event (0',1,4+a}) ¢ T} is well-formed because of event (4,5,+a3) in T,, and
because 4 is internally reachable from 0 and 3. ‘

Image event (1',2,e) ¢ T is strongly well-formed because of events (1,2,e) and
(5,6,) in T,

Image event (2°,0'-b}) ¢ T} is strongly well-formed because of events (2,0,-b,) and
(6/4,"1)3) 11] ,rg

We conclude that all entity events of the image protocol shown in Figure 6 are
well-formed.

We next consider image events in E; for channel C,. Note that the occurrence of a
channel event affects only the state of the channel. Thus, channel events are analogous
to internal events of entities; the well-formed property of channel events is defined
similarly.

Definition. An image channel event e’ ¢ E} 1s well-formed if given any two dis-
tinct message sequences m’ and n’ in M} such that e’ can take G from m’ to n’, the fol-
lowing holds: for every message sequence p ¢ M, whose image is m’, there is a sequence
-of channel events in E that can take C from p, via states each with image m’, to some
message sequence ¢ whose image is n’.

In the above definition, if the sequence of channel events consists of only one event,
then e’ is said to be strongly well- formed.

The channel event sets defined in Section 2.2 have two properties. Firstly, we have
shown that for any channel C,, the image event set E| remains the same as E.
Secondly, we have the following result.

Lemma 3. Each event in E} is well-formed. (A proof of Lemma 3 is given in Ap-
pendix II.)

(A channel event set E,, that is more general than those defined in Section 2.2, can
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be specified as an arbitrary subset of M, x M, . In this case, the above definition for well-
formed image channel events must be applied to check each image event in Ej} to see if it
i1s well-formed.)

Lemma 4. Given two distinct global states g’ and h’ of an image protocol system
with well-formed events, if g’ is extendable to g’,h’, then for any global state f in G such
that f = g'. f is extendable to a path w such that w’ = g’ h’. (A proof of Lemma 4 is
given in Appendix II.)

Consider a protocol system characterized by (G,r) and an image protocol system
characterized by (G',7), the following theorem implies that condition (F2) needed for
faithfulness is satisfied if all events of the image protocol in T}, L, EE} for all i and k are
well-formed. Note that events in E are well-formed by virtue of Lemma 3. Events in L;

are well-formed if L; is given by the exhaustive specification (or is null).

Theorem 2. Given an image protocol system with well-formed events, for any path w in
(G,7) and u" in {G',7'} such that w' = u’, if u’ is extendable to a path v', then w is ex-
tendable to a path x such that x’ = v'.

Corollary 3. Given any initial global state gy ¢ G and the corresponding image global
state g « G, for any path w in R and u’ in R’ such that w’ = u’, if v’ is extendable to a
path v’ in R’, then w is extendable to a path x in R such that x’ = v’

Corollary 4. R, C {g': g ¢ R }.

Theorem 2 follows readily from Lemma 4. Proofs of the preceding theorem and
corollaries are given in Appendix I

Theorem 3. An image protocol system with well-formed events is faithful.

Theorem 3 1s an immediate consequence of corollaries 1-4 and the definition of faithful-
ness. The original protocol system is assumed to satisfy the fairness and finite lifetime as-
sumptions.

Full-duplex data transfer example (cont.)

The image entity events in Tables 2 and 3 can be shown to be well-formed (see [14,
21] for details). Let €, and C, be error-free channels. Then, in addition to the safety
assertions stated earlier for the image protocol system, it can also be easily shown that
the variable VR in P, grows without bound. Thus, the following liveness property is es-
tablished:

For any integer n > 0, the image protocol will eventually satisfy:

SOURCE[] = SINK][i] for 0 < i < n.

IFrom Table I, we sce that the receive events of the original protocol system are com-
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plete. Assuming that the scheduling of events in P; and P, satisfies the fairness assump-
tion, the one-way image protocol constructed is faithful and the above liveness property
holds for the original full-duplex protocol as well.

5. STEPWISE REFINEMENT ALGORITHMS

Given an assertion A, describing the desired logical behavior of a given protocol
system, our objective is to find the smallest image protocol with sufficient resolution to
verify whether Ay holds in the original protocol system.

We start with an image protocol with sufficient resolution to describe Ay A se-
quence of image protocols with increasing resolution is then constructed by stepwise
refinement. Fach successive protocol in the sequence 1s obtained by a finer partitioning
of the original protocol’s entity state spaces and/or message sets. Thus, each protocol in
the sequence is actually an image protocol of all succeeding protocols constructed. (This
property facilitates the verification of safety assertions in Section 5.2.)

Two stepwise refinement algorithms with different termination conditions are
presented in the next two subsections. The choice of a termination condition depends
upon whether Ay is a liveness or a safety assertion. Assuming that Ay is a decidable
property of the original protocol system, the following algorithms always terminate. In
the worst case, they terminate with the original protocol.

5.1 Termination Based Upon the Well-Formed Property
Algorithm 1. Find an image protocol for verifying a liveness or safety assertion A,
(1) *Initial step®

partition the entity state spaces so that image entity states in {S[} have
enough resolution for describing Ag;

(2) "Image protocol construction®
obtain the image message sets {M] } based upon {Sl}; obtain the image en-
tity events based upon {Si} and {M};

(3) check each event for well-formedness;

(4) if all events are well-formed then terminate algorithm
"We have a faithful image protocol for verifying Ay"

(5) else "Refinement step®
the point(s) of failure in events that are not well-formed indicate refinements
necessary in the partitioning of {S;}; update {S;}; go to step (2)

(End of Algorithm 1)
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By using the well-formedness of image entity events as the termination condition,
Algorithm 1 does not involve any characterization of the reachability graph of each in-
termediate 11mage protocol constructed.

In step (2}, the image message sets {M;, } are derived from the entity state space
partitions {5} as defined in Section 3.2. We have assumed that this resolution of the
image message sets is adequate to describe Aj. As discussed in Section 3.2, given {S]} the
resolution of an 1mage protocol can also be increased by increasing the resolution of the
image message sets. This provides an extra degree of freedom which may be utilized in
steps (1) and (5) of the above algorithm.

Full-duplex data transfer example (cont.)

We will use this example protocol to illustrate Algorithm 1. We wanted to verify
that the original protocol satisfies:

DP, @ SINK,[i] = SOURCE,i] for 0 < i < VR,
DP,: VS, > VR, > VS, - 1

In st.vp (1), the initial resolution of the entity state spaces is defined by the vari-
ables SOURCL and VS in P and SINK and VR in P,,.

Next in step (2), we construct an image protocol. The image states of P, and P,
are given by the values of <VS, SOURCE> and <VR, SINK> respectively. By ex-
amining the state changes in the image entity state spaces, we obtain the following image
message sets. In My, (ACK) has a null image, and (DATA,d) and (DATA&ACK,d) have
the same image (DATA’,d). All the messages in M, have the null image. Thus M| =
{(DATA’ d) : d « DATASET} and M, is empty. The events of this initial image protocol
are shown in Tables 4 and 5. In P, SEND DATA and SEND DATA&ACK have the
image SEND _DATA’ In P,, REC_DATA and REC_DATA&ACK have the image
REC DATA’ The remaining entity events have a null image.

Having obtained the above initial image protocol, we determine in step (3),
whether all its events are well-formed. Consider the event SEND DATA’. From the
events of P, in the original protocol, we see that SEND DATA and
SEND _DATA&ACK can occur only when BUSY = D OUT = False. If BUSY =
True, then internal event STOP _BUSY can set BUSY = False. However if D _OUT =
True, there is no sequence of null image send or internal events of P, that will set
D OUT to False. Hence SEND DATA’ is not well-formed and we go to step (5).

The point of failure is the absence in the image protocol of variable D OUT of
-P,. Hence, we update the entity state space of P; to be defined by <VS, D OUT,
SOURCE>, and go back to step (2) and repeat the procedure. Note that there has been
no attempt at verification of the image protocol.
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In the next iteration we would include ACK _DUE of P,. In the iteration following
that, we would obtain the well-formed image protocol shown in Section 4 (and Tables 2
and 3), and terminate the algorithm.

5.2 Termination Based Upon Safety Properties of Image Protocols

Given a safety assertion A, we present another algorithm to find an image
protocol with sufficient resolution to verify Ay Unlike Algorithm 1, A, 1s verified for
each image protocol constructed. This verification of A is aided by the fact that a safety
property that holds for an intermediate image protocol also holds for all succeeding
image protocols. The termination condition for this algorithm is based upon Corollary 1.

In what follows, we use A, to denote the set of states in G on which the safety
assertion is true. We use B to represent safety properties that have been found to hold
for the image protocols already constructed. B can be thought of as a superset of R} of
the current image protocol. '

Algorithm 2. Find an image protocol for verifying a safety assertion A,

(1) *Initial step®
partition the entity state spaces so that image entity states in {S{} have
enough resolution for describing Ay; let B be G’ *nothing is known initially *;

(2) "Image protocol construction™®
obtain the image message sets {M} } based upon {8}}; obtain the image en-

tity events based upon {8} and {Mj };

(3) verify A, given B for this image protocol;

{4) if A, holds then terminate algorithm
"A, also holds in the original protocol system"

(5) else "We have found a sequence of image events ej,e;,...,e , referred to as a
test sequence, that takes the image protocol system from gg to some g’ ¢ Ay"
consider those event sequences ej,e,,....,e. where m > n, whose image equals

the test sequence;

(5.1) if any of these event sequences can occur in the original protocol system
then terminate algorithm
Ay does not hold in the original protocol system"

(5.2) else *Refinement step®
by observing how the test sequence is prevented from occurring in the
original protocol system, refinements necessary in the partitioning of
{S;} are obtained; update {S;}; if it is observed that the image protocol
satisfies some safety property B’ then update B to be B N B’; go to step
(2)
(End of Algorithm 2)
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In practice, since image protocols are relatively small, many safety properties can
often be observed by inspection. Once a safety property has been proved, it is accumu-
lated into B and it will hold for all succeeding image protocols. We note that the smaller
B is, the easier it is to verify A,. Methods to verify A, (given B) are described in Section

As in the case of Algorithm 1, the resolution of the {M; } obtained from {Si} in
step (2) can be increased further if needed to describe Ay in step (1) or in the refinement
step.

Full-duplex data transfer example (cont.)

We will use this example protocol to illustrate Algorithm 2. The initial resolution
of the entity state spaces in step (1) and the initial image protocol in step (2) are the
same as in Algorithm 1 (see Tables 4 and 5).

In step (3), assuming that channels C; and C, are error-free, we can easily verify
that this initial image protocol satisfies DP,. However, this image protocol does not
satisfy DP,.  For instance, from the initial state the image protocol can execute
SEND DATA’ twice in succession. The image protocol would then be in a state with
VS=2, VR=0 and CHANNEL1=(DATA’,SOURCE[1]),(DATA’,SOURCE|0}).  This
state clearly violates DP,,.

Next, in step (5), we have to determine whether the test sequence SEND DATA’,
SEND _DATA’ can occur in the original protocol. From the initial state we observe that
once P, exccutes a SEND-DATA’ (either SEND _DATA or SEND_DATA&ACK),
D _OUT is set to True, and another SEND _DATA’ cannot occur. Further D OUT is
reset to False only in REC__ACK or REC__ DATA&ACK. But for either of these to oc-
cur, P, must exccute either SEND _ ACK or SEND _ DATA&ACK. For that to occur P,
must have ACK _ DUE=True. But ACK _DUE is set to True only when REC DATA
or REC__DATA&LACK occurs at P,. Neither of these events has a null image. Hence we
conclude that the original protocol cannot execute an event sequence whose image equals
the test sequence SEND DATA’ SEND DATA’.

This brings us to step (5.2). The test sequence is prevented from occurring due to
the variable D OUT of P,. Hence, we update the image entity state spaces of P, and
P, to be <VS,D__OUT,SOURCE> and <VR,SINK> respectively. Also, B can now be
set to DP;, which has already been established. We now go to step (2) and repeat the
iterative step.

In the next iteration we would include ACK _DUE of P,. In the iteration following
that, we would have DP, holding for the image protocol in Tables 2 and 3. Note that

property DP; nced not be verified again for any of the future image protocols that we

obtain, since it has been shown to hold at the initial image protocol considered above.
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5.3 Verification Methods

Whether we use Algorithm 1 or Algorithm 2, we need to verify A, for an image
protocol system. With Algorithm 1, this verification is done for the well-formed image
protocol obtained. With Algorithm 2, we need to verify A (given B) for each image
protocol constructed in step (3).

One way to verify A, for an image protocol system is by generating the reachable
set R of states starting from gy. This can be done by brute-force (assuming that R} is a
small finite set) or by symbolic execution [5]. Either A, holds at each state in R or a test

sequence is obtained.

Another way to verify Ay is to use the method of weakest preconditions [7]. The
objective here is to find an inductively complete set that is a subset of Ay N B. We ex-
pand on this method here.

For a protocol system with global state space G’ and initial state gy, A is an induc-
tively complele set if the following conditions hold:

(a) gy ¢ A, and
(b)V g ¢ A, Ve ¢ B if e is enabled at g, then e'(g’) ¢ A.

The class of inductively complete sets is closed under intersection, i.e., if A and B are in-
ductively complete sets, so is A N B. It should be obvious that R is the smallest induc-
tively complete set of the protocol system.

Algorithm 3. Verify A, given B for a protocol system

(1) *Initial step™
C = ;\0 N B:
1= 1

{2) "Find weakest preconditions"
A= 1{g « C|Ve ¢E, if e is enabled at g’ then e'(g’) ¢ C};

1
(3) if g, € A, then
A, does not hold for the protocol system®
obtain a test sequence by examining A, |, A, ,,...,Aq; terminate algorithm

(4) else if (g, ¢ A, and A; = C) then terminate algorithm
"A, C Ayls inductively complete and A, holds”

(5) else C = A;; i:=1+ 1; go to step (2)
(End of Algorithm 3)

If it is observed that the protocol system satisfies some safety property B’ then C 1s
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updated to A, N B’ in step (5) of the above algorithm. Such observations will speed up
the algorithm’s search.

6. CONCLUSIONS

The method of projections is intended to reduce the complexity of analyzing multi-
function protocols. We show how to construct image protocols for individual protocol
functions. Image protocols are specified like any real protocol. Each image protocol is ob-
tained by aggregating entity states, messages and events of the original protocol system.
As a result. an image protocol is smaller (never larger) than the original protocol, and
can typically be more easily analyzed. Our method effectively breaks up a protocol
analysis problem into smaller problems. Unlike the straightforward approach of decom-
posing protocol entities into functional modules, our method is not handicapped by -
dependencies that exist between functional modules due to shared variables and shared

messages.

Given an assertion A, stating the desired logical behavior of a protocol system
with respect to a particular protocol function, we have presented two stepwise refine-
ment algorithms for finding an image protocol with sufficient resolution to verify Ay Al
gorithm termination assumes that A, is a decidable property of the original protocol sys-
tem. Termination of these algorithms makes use of either one of the following two impor-
tant propertics of image protocols.

First, any safety property that holds for an image protocol system also holds for
the original protocol system. Second, given that the original protocol system satisfies a
fairness assumption in its event scheduling and its channels satisfy a finite lifetime as-
sumption, an image protocol system with well-formed events is faithful in all its safety
and liveness properties to the original protocol system. A faithful image protocol can al-
ways be constructed by increasing the resolution of its entity state spaces and message
sets. We propose that a multi-function protocol may be considered as well-structured if it
possesses small faithful image protocols for its individual functions.

In this paper a protocol system is specified by sets of entity states, messages and
events. A set-theoretic notation is used for stating the definitions and properties of image
protocols. These results are very general since sets have no internal structure. However,
application of these definitions and properties requires operations on sets. Such applica-
tion is straightforward for protocol entities specified by a finite state machines for-
malism, but rather cumbersome for protocol entities specified by a programming lan-
guages formalism. A more structured specification of protocol entities and messages is
presented in [21]; specialization to such a model leads to some efficient rules for image
protocol construction. In addition, time variables and time events useful for modeling
global timing relations in a protocol system are developed therein. An application of the
method of projections to verify the HDLC protocol is presented in [20]. This serves as a
rigorous exercise to illustrate the applicability of the method of projections to the
analysis of real-life protocols.
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APPENDIX I. EXTENSIONS TO THE PROTOCOL SYSTEM
MODEL

Many extensions to the protocol system model are possible without affecting the
properties of image protocols presented in Section 4. Almost all such extensions are con-
cerned with generalizing the model of channel behavior.

The channel model described in Section 2.2 is already quite general. However, in
some real systems, additional features in the channel model are desirable. For example,
control messages in the BSC protocol are not protected by error detection [15]. If a BSC
control message has bit errors, it may be received and mistaken by the receiving entity
as some other control message. Such behavior can be modeled as a new type of error
event. In general, channel events can be specified as a subset of My x M,. In this case,
Lemma 3 no longer applies and all image channel events must individually satisfy the
well-formed property.

The method of projections allows very general channel behavior because its objec-
tive is limited to defining image protocols that preserve some logical properties of a given
protocol system. We must keep in mind that if channels have many different types of er-
ror events, communication protocols have to be extremely complex in order to possess
desirable logical properties. Thus for protocols with limited capabilities, such as the full-
duplex data transfer example in this article, we must assume that the channels are well-
behaved in order for them to possess desirable properties. The assumption of error-free
channels in our examples is due to the simplicity of our example protocols and not re-
quired by the method of projections.

Moulti-Destination Channels

A channel can be in the incoming channel set of more than one protocol entity. It
is a broadcast channel if it is in the incoming set of every protocol entity. When one of
these protocol entities executes a receive event, the message being received is not deleted
from the channel after the event occurrence. For a multi-destination channel, we assume
that the message at the head of the channel has a finite lifetime which is enforced by
some "channel controller®. (See [20, 21] for discussions on the modeling of real-time and
global timing relationships in a system.)

We shall refer to protocol entities that can receive messages from channel C, as its
eligible receivers. The equivalence relation used in the definition of image messages is
modified as follows: two messages m and n in My, are treated as equivalent only if their
receptions cause identical state changes in the image state spaces of all eligible receivers
of C. Also, messages in M;, have a null image if (and only if) their receptions do not
cause any state change in the image state space of each of the eligible receivers of C,.

Lastly for a multi-destination channel, any image receive event (s’,r’,4+m’) where
s’=r1" is a null image event since m is not deleted from the channel by receive events.



The proofs in Appendix II are given with this extension incorporated into the
protocol svstem model.

Channel Insertions/Deletions

For the sake of clarity, we have specified that a send event appends a message to
the end of a channel's message sequence, and only the first message in the channel is
eligible for reception. This requirement is necessary only when null image messages are
deleted from the image message set of a channel (i.e. infinite-buffer channel). If null
image messages are included in the image message set of Cp, a send event can insert
anywhere into the message sequence in Cp, and any message in C, can be made eligible
for reception. The proofs in Appendix Il can be trivially extended to accommodate this
generalization. Note also that relaxing the assumption that only the first message in the
channel is eligible for reception will also allow us to relax the finite lifetime assumption
in Section 4.3.1.
Message Priority Classes )

Messages in the message sets M, of C, may be specified as belonging to different
priority classes. Two types of behavior may depend upon a message’s priority class. First,
error events of a channel Cy can be defined for each position of C; as well as the priority
class of the message residing in that position. Messages in some classes can be made in-
vulnerable to a particular type of error. For example, the following specification can be
made: A loss event for the i-th position of C is enabled if m; has a message in that posi-
tion and it helongs to a class that is vulnerable to a loss.

Second, the bumping rule in Section 2 can be generalized to the following: The
selection of 2 message to delete may be specified by any rule that depends upon the posi-
tions and priority classes of the messages in the channel.

In the construction of an image protocol, messages in M, can be aggregated to
form the same image message only if they have the same priority class and invul-
nerablility to errors. Note that if M} includes null image messages, we have to define dif-
ferent #’s, one for each combination of priority class and invulnerability.

The proofs in Appendix Il are given with this extension incorporated into the
protocol system model.

Initial State of the Protocol System

For notational simplicity, we have assumed that the initial state g, of the protocol
system is uniquely specified and R is the reachability graph from g,. Note that all lem-
mas and theorems in this article do not depend upon an initial state g;. Thus instead of
specifying a single initial state, a set G, of possible initial states can be specified.
Redefine R to be the reachability graph from G, and R’ to be the reachability graph
from Gy=1{g"g:G,}. Proofs of the four corollaries can be trivially extended to accom-
modate this generalization.
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APPENDIX II. PROOFS

The proofs are given with some of the extensions in Appendix I incorporated. into
the protocol system model.

Proof of Lemma I

For message sequences m and n in M, suppose that a loss event in E, can take m
to n. Then, n is obtained by deleting a message y from m. If Cy is a finite-buffer channel,
{hen the corresponding image message y' is in m’, and the same loss event in Ej can
delete v’ and take the channel to state n’. If Cy is an infinite-buffer channel, then null
images are not included in m’. If y has a null image, then m’ = n’; otherwise, y’ is in m’
and there is a loss event in E} that can delete y’ and take the channel to state n'.

Similar arguments can be used for duplication and reordering events.
(End of proof of Lemma 1.)

Proof of Lemma 2

Since ¢ is extendable to gh , there is an event e in E that takes the protocol sys- —
tem from g to h. The event e can be either a channel event or an entity event. Ifeisa
channel event. then the statement in Lemma 2 is implied by Lemma 1, since a channel
event changes the state of the channel only. We next consider the three types of entity
events. In the rest of this proof, let g = (s{,55,...,8p; 1_'31,_1132,...,1_1}_1{) with the 1mage
g = (8],85,8p) mj.m,...,myc).

Case 1. ¢ is an internal event of P,. Since e is enabled at g, e = (s;,1,0) for some
r.eS;. his obtained from g by replacing s; with r;. Now, consider the image state g’ and
the image event ¢ = (si,rla). If si =rj, then g’ = h'. If s] # 1}, then e’ is not null and
belongs to T e’ is enabled at g’ and takes the image protocol systern to a state {’, where
{" is obtained from g’ by replacing s} with ;. It is easy to see that ' is the same as the
image of h.

Case 2. ¢ is a send event involving P, and C,. Since e is enabled at g, e = (s;T3-n)
for some r; ¢ 5; and some n ¢ M,y Then, h is obtained from g by replacing s, with r; and
appendmg n to the tail of my. (\ssume no bumping for now.) Consider the image state
¢ and the image event e = (sirj,-n’). If e’ is a null image event, we have g’ = h’.
Otherwise, ¢’ belongs to T}, e’ is enabled at g’ and takes the image protocol system to
the image global state " which is obtained from g’ by replacing s; with r; and appending
n' to the tail of my. (For an infinite-buffer channel, if n’ is a null image message, its in-
sertion has no effect on the channel state. The image channel state of Cy in ' remains
the same as mj.) It is easy to see that f” is the same as h’, the image of h.

Now suppose that bumping occurred. Let the message bumped be y; y is either the
message sent or a message in m,. Consider the image message y’' corresponding to
y. Note that cach message in my and its image in my must have the same priority class
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and occupy the same position in Cy. Hence y’ can be bumped in the image protocol sys-
tem. Again, 1t 1s easy to see that {’ is the same as h'.

Case 3. ¢ 1s a recelve event involving P, and C,. Since e is enabled at g, the fol-
lowing two conditions hold. First, m; is not empty; let n ¢ M, be the first message in m;.
Second, e = (s;1;,+n) for some r; ¢ S;. Then, h is obtained from g by replacing s; with r,
and removing n from m,. (Let C, be a single-destination channel.) Consider the image
state g’ and the image event e = (s;ri,+n’). If e’ is a null image event, then g’ = h’.
Otherwise, e belongs to Ti. (If C; is an infinite-buffer channel, we also know that n’ is
not a null image message.) e’ is enabled at g’ and takes the image protocol system to the
image global state f’, which is obtained from g’ by replacing s; with r; and removing n’
from the head of m. It is easy to see that [’ is the same as h’, the image of h. Lastly, if
Cy 1s a multi-destination channel, the occurrence of e does not remove n from my and
the occurrence of e’ does not remove n' from my. { is still equal to h’.

{(End of proof of Lemma 2.)

Proof of Theorem 1

The proof is by induction on path length. A unit-length path in (G,7) corresponds -
to a global state g in G. The image of g is g, which is a unit length path in (G’,7).

For some positive integer n, assume that the image of every path in (G,7) of length
n is a path in (G',77). We will show that the image of any path of length n+1 is a path in
(G',7"). Let w=uf_  be a path of length n+1 in (G,7), where u = forfysesfpg- Ob-
viously, u is a path of length n in (G,7). From the above hypothesis, u’ is a path in (G',7)
and the last state in u”is f, ;. If ff = f] |, then w’ = u’ and the image of w is a path in
(G7) I f) % 1) . then by Lemma 2, f | is extendable to f]

7

n-ply. Hence u’ is extend-
able to u’,f which is w’, and the image of w is a path in (G',7).

(End of proof of Theorem 1.)

Proof of Corollary 1
The first element of any path w in R is g, Let the image of w be w'. From
Theorem 1, w' is a path in (G',7"). The first element of w’ is g;,. Hence, w' is a path in R’.
(End of proof of Corollary 1.)

Proof of Corollary 2
For any reachable state g ¢ R, there 1s a path w leading from g, to g. From Corol-
lary 1, w’ is a path in R’. The last element of w'is g'. Hence, g’ is in R_.
(End of proof of Corollary 2.)

Proof of Lemma 3

Consider message sequences m' and n’ in M} and an error event in E} that can
take m’ to n. Suppose that null image messages are included in M, so that each element
¥y in m’ has a corresponding element y at the same position in any p whose image is m’.
Also all messages with the same image have by definition identical priority and invul-
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to some ¢ whose image is n’. Each event in E} is strongly well-formed.

Let ¢, be an infinite-buffer channel and E, specified by the uniform error model.
Suppose that a loss event is specified for the first position of E; (which is equal to E,).
Consider a message sequence m’ with y’ as its first element. Any message sequence p
whose image is m’ must contain a corresponding element y that is preceded by null
image messages (if any). The same loss event in E; can delete the null image messages
one by one and then delete y in p. Hence, this loss event is well-formed (but not strongly
well-formed). Other error events (loss, duplication or reordering) in I, when present, are
specified for all positions of Cy for each type of events. Consider message sequences m’
and n’ in M, and an error event in E that can take m’ to n’. Each element y’ in m’ has
a corresponding element y in any p whose image is m’. The position of y in p may be dif-
ferent from that of y’ in m’. Since the uniform error model specifies this type of error
event for all positions of Cy, an error event of the same type exists that can take p to
some ¢ whose image is n’. Such error events are strongly well-formed.

With duplication events, remember that all messages with the same image must
have the same priority class when applying the bumping rule. ]
(End of proof of Lemma 3.)

Proof of Lemma 4

Since ¢’ is extendable to g’ ,h’, there is an event e’ ¢ E' that takes the image
protocol system from g’ to h’. Let g" = (s],55,....s; m},mb,....myc). e can be either a chan-
nel event or an entity event. If e’ is a channel event in E}, then h' is the same as g’ ex-
cept for the state of channel Cp. Let ny be the state of channel € in h’. From Lemma 3,
we note that the same channel event will take any p whose image is my to some g whose
image is ny. Henee, it will take any f; whose image is g’ to some f, whose image is h’. We
next consider e to be an image entity event of PI. Three cases are considered for the
three types of entity events. Since the image protocol system has well-formed events, e’ is
well-formed in each case. Let f; = (a},a5,...,a5 Py,Ros---PK) be any global state whose

image is g'.

Case 1. ¢ is an image internal event of P.. Since e’ is enabled at g', T; contains
e’ == (sir;,e) for some rj ¢ S. b is the same as g’ except for the state of Pi. Since e’ is
well-formed, we know that there exists some b e Si that is internally reachable from a;,
and event (b.c,a) exists in T, such that b’ = s} and ¢’ = rj. The sequence of events that
makes b internally reachable from a, will extend f; to some global state f; the image of
each element in the extension is g. In the global state f , the state of P; is b and (b,c,a)

in T; will take f, to some {,4+1 whose image is h'".

Case 2. ¢ is an image send event involving P} and C,. Since e’ is enabled at g', T}
contains e’ = (s,ri-n’) for some r; ¢ S} and n’ e Mj. h’ is obtained from g’ by replacing
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s; with 1l and appending n’ to the tail of my. (Assume no bumping for now.) Since e’ is
well-formed. we know that there exists some b ¢ S; that is internally reachable from a;,
and event (b,c-y) exists in T, for some ¢ and some y such that b’ = s, ¢ =1} and
v’ = n’. The sequence of events that makes b internally reachable from a; will extend f;
to a global state f : the image of each element in the extension is g’. In the global state

f,. the state of P, is b and (b,¢,~y) in T; will ta.k‘e f, to some f, | whose image is h’.

- Now assume that bumping occurred. Let z’ be the message bumped; z’ is either the
message n’ that was sent or a message in m;. Consider the message z corresponding to
z". Since the bumping rule depends only on positions in C, and message prioritv classes,
both of which are preserved when aggregating messages, z can be bumped in the orlgmal
protocol system. Again, f | has the image h'".

Case 3. ¢ Is an image receive event involving P} and €. Since ¢’ is enabled at g,

T; contains ¢" = (s;r,+n’) for some r] ¢ S; and n’ ¢ M. h’is obtained from g’ by replac-
ing s; with r; and removing n’ from the head of my. (If Cp is a multi-destination channel,
n' is not removed from my.) Consider the state of channel C, in any global state f;
whose image is g'. If null image messages are included in M}, then the first element in
the channel state p, has the image n’. If null image messages are deleted from M (ie.,
Cy is an infinite-buffer channel), then the message y in p, corresponding to the image
message n’ may be preceded by messages with a null image. By the finite life-time as-

sumption of the original protocol system, these messages having a null image will be

deleted in finite time (each message deletion is an event that affects only the state of the
channel). Suppose now that the first element in channel C; is y with the image n’. Since
e’ s well-formed, we know that there exists some b in S, that is internally reachable from
a;, and event (b.c,+y) exists in T, for some ¢ such that b = 8]
of events that makes b internally reachable (as well as those events that delete null
image messages in front of y in an infinite-buffer channel) will extend f, to some global
state f; the mnge of each element in the cxtension is g'. In the global state f_, the state
of Pyis b and (bye,4y) in T; will take f, to some fy41 whose image is h'.

(End of proof of Lemma 4.)

and ¢’ = r. The sequence

Proof of Theorem 2

Let the last element in u’ be g’ ¢ G’ and the last element in w be fe¢ G. Since

w’ = u’, we must have {" = g’. To prove Theorem 2, it suffices to show the following: if

xtendable to a path y’ in (G',7), then f is extendable to a path z in (G,7) such that
This can be easily shown using Lemma 4 and applying induction.

(End of proof of Theorem 2.)

g’ is ex
7=y

Proof of Corollary 3

The corollary follows immediately from Theorem 2.
(End of proof of Corollary 3.)
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Proof of Corollary 4
Any g in R lies on a path u’ from gj to g'. Since gg is in R, from Corollary 3, g,
can be extended to a path w such that w’ = u’. Let the last element in w be f. We must
have f ¢ R, and ' = g’
(End of proof of Corollary 4.)
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Figure 1. The three functions of an HDLC protocol.
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Figure 2. An illustration of the projection idea.
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Event Name

1. SEND _DATA

2. SEND DATAZACK

3. SEND_ACK

4. START BUSY
5. STOP_BUSY
6. REC_DATA

7. REC_DATAZACK

8. REC_ACK

TABLE 1. Events of entity P, in

Enabling Condition

not BUSY and not D _OUT

not BUSY and not D_OUT and ACK DUE

not BUSY and ACK DUE

not BUSY

BUSY

first(CHANNELZ) = DATA
first (CHANNEL2) = DATA&ACK
first (CHANNEL2) = ACK

Action

SDATA := SOURCE[VS]:;
put (CHANNEL1, (DATA,SDATA)):
VS = VS + 1; D _OUT := true

SDATA := SOQURCE[VS];

put (CHANNEL1, (DATAQACK,SDATA));
VS := VS + 1; D QUT := true;
ACK DUE := false

put (CHANNEL1, (ACK));
ACK _DUE := false

BUSY = true

BUSY := false

it

get (CHANNEL2, (DATA,RDATA));
SINK[VR] := RDATA;
VR = VR + 1; ACK DUE := true

(DATAZACK,RDATA)) ;
:= RDATA; VR := VR + 1;
= true; D_OUT .= false

get (CHANNEL?2,
SINK[VR]
ACK_DUE

get (CHANNEL2, (ACK));
D OUT := false

the full-duplex data transfer protocol.
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Event Name Enabling Condition Action

1. SEND DATA” not D_OUT SDATA := SOURCE[VS];

put (CHANNEL1, (DATA', SDATA));
VS (= VS + 1; D OUT := true

2. REC_ACK’ first (CHANNEL2) = ACK’ get (CHANNEL2, (ACK'));
- D OUT := false

TABLE 2. Events of P, in the image protocol for one-way data'transfer.

Event Name Enabling Condition ’ Action

1. REC DATA’ first (CHANNEL1) = DATA’ get (CHANNEL1, (DATA', RDATA));
- SINK[VR] := RDATA;
VR := VR + 1; ACK DUE := true

2. SEND _ACK’ ACK _DUE putCCHANNELl, (ACK'));
B ACK DUE := false

TABLE 3. Events of P, in the image protocol for one-way data transfer.

Event Name Enabling Condition Action

1. SEND DATA’ SDATA := SOURCE[VS];

put (CHANNEL1, (DATA', SDATA));
VS := VS + 1

TABLE 4. Events of P, in the initial image protocol.

Event Name Enabling Condition Action

1. REC DATA’ first (CHANNEL1) = DATA’ get (CHANNEL1, (DATA’, RDATA));
- SINK[VR] := RDATA;
VR := VR + 1

TABLE 5. Events of P, in the initial image protocol.






