51

relations between sentences as [Hobbs 77] (pll0) " an operation which
matches successive sentences against a small number ‘of common
patterns and builds up a tree-like structure representing the text’s
patterns of coherence.” There are a number of important ways 1in
which NEXUS differs from Hobbs’ theory of coherence. First, Hobbs
presents a general theory of rhetorical coherence, while NEXUS
represents a theory of event/state conceptual coherence. Secondly,
Hobbs® theory, when applied to text, produces a single tree-like
structure; NEXUS produces any number of concept trees. But the nost
important distinction has to do with the difference between the two
sets of coherence relations, the methods used to compute coherence,

and the resulting representations they produce.

Hobbs’ relations are really a set of meta~relations defined
over his dictionary His dictionary is composed of a set of inference
rules attached to each word in the dictionary. The patterns he uses
to construct the cocherence relations are coded as a list of
relationships that have to be established between the predicates or
arguments which compose the representation of the two sentences he 1is
trying to connect. NEXUS does not try to establish meta-relations
between concepts. Instead it copies relationships between concepts
in the dictionary. To see how these two theories differ in practice,
we will look at two of Hobbs’ examples. From Hobbs® 77 IJCAI paper

[Hobbs 77] (pll3)

52

Republicans were encouraged about their prospects.
The party chairmen believed that Dewey would be elected.

Hobbs connects these two sentences with his example coherence

relation, which is defined (pl113):

The predicate and arguments of the assertion of the
current sentence stand in a subset or element-of relatioms to
those of the previous sentence.

To connect these two sentences NEXUS would trace through the subnet
of its dictionary depicted in figure 2-5.
Believe (mmmmmmmmmx Inspire
prec |

| sc

!

v
Encourage

Figure 2-5: Believe and Encourage
To represent the connection between the sentences, Hobbs’ system
establishes a rhetorical relationship, while NEXUS selects the mesh
" of event/state concepts which are implicitly or explicitly used by
the text; Hobbs® system characterizes the text by the style
techniques employed by the author, while NEXUS’ representation
captures the event/state concepts implicitly in the text. From a
rhetorical point of view, the second sentence is an example of the
first. From a concept coherence point of view, concepts like
‘encourage’ and ‘believe’ invoke a network of concepts including

"inspire’.

Another example, from Hobbs paper on coherence and

coreference [Hobbs 791 (p78):

53

John can open Bill’s safe.
He knows the combination.

Here Hobbs uses his elaboration coherence relations to connect the

two sentences.

S1 is an Elaboration of S0 if a proposition P follows=—
from the assertions of both S0 and Sl (but Sl contains a property
of one of the elements of P that is not in S0).

To connect these two sentences NEXUS would use the subset of its
dictionary depicted in figure 2-6; to ‘open’ a safe one must ‘know’
the combination. >

know(combination ...) <{=—————-v open(safe ...)

Figure 2-6: Opening a safe
Again, the connection Hobbs establishes is rhetorical, while NEXUS’
is conceptual. From a style point of view, the second sentence
elaborates on the first. From a concept coherence point of view,

‘opening a safe’ probably entails ’knowing the combination’.

2.4.7 Perspective Summarized

In this section we have investigated the breadth and nature
of NEXUS’ representation scheme by comparing it to other schemes

discussed in the literature.

From an analysis of scripts and plans we saw that NEXUS’
seven coherence relations will cover the same territory. Of course

the goals of the these systems are different. Scripts represent

54

highly stylized routines, plans more general routines, and NEXUS the

conceptual coherence of event/state descriptions in text. .

There are correspondences between NEXUS and each of these
systems. If a2 a piece of text is covered by a single gcript then
NEXUS will construct an instance of a single concept. If a goal and
implementation of a plan are covered by a D-GOAL and a planbox or
script, NEXUS collects together both the goal and the implementatioﬁ
of the plan into a structured chunk of information. Furthermore
scripts and plans, in NEXUS, can be differentiated by the fact that
script relationships have tighter restrictions on how the case

arguments match.

From "The Margie Story" we learned that NEXUS could represent
text which neither scripts nor plans account for; it could represent

£

the connection between the descriptions the wind carried the
balloon” and ‘the balloon burst’. We alsc saw that to represent this
story NEXUS produced a number of concept trees, and discussed the
difference between a story tree representation, which represents the
overall structure of a story, and NEXUS’ representation, which

captures the implicit relaticnships between the event/state concepts

used in the text.

The section on "A Black and Yellow V-2 Rocket" discussed

Simmons’ schema/narrative trees, which combine story structure

55

information with event schemas. Each event in the tree was composed
of a setting and a sequence of events. We learned that NEXUS could
represent the sequence portion of the trees, but not the setting
portion. The other importance of this example was that it provided

evidence that coherence packets could be corganized into story trees.

The "Passing the Salt" example demonstrated the difference
between speech-act and concept oriented representations. For a
speech-act representation to account for this example it needs to
include characterizations of belief and knowledge spaces, plans, and
goals. NEXUS represents speech—act text by collecting together
instances of concepts without committing to an interpretation of the

speaker’s and hearer’s belief and knowledge spaces.

Finally, the discussion of Hobbs’ work explicated the
difference between representations of the rhetorical coherence of
text and NEXUS’ representation of the conceptual coherence. A
rhetorical coherence representation establishes meta-relations
between sentences. NEXUS’ representation is a map of the implicit

relationships between event/state concepts used in the text.

Chapter 3

The Construction and Use of the Dictionary

3.1 The Dictionary

3.1.1 The Dictionary as a Semantic Network

The dictionmary can be thought of as a semantic network. What
is a semantic network? It is a graph - a collection of nodes and
interconnecting arcs, semantic because the nodes represent concepts
and the arcs define associations between concepts. In this study the
nodes represent events or states and the arcs one of the seven

relations that we described in the previous chapter3 .

In chapter two we saw numerous examples of semantic net
representations of text. Each representation discussed was, in fact,
a semantic net. Figure 3-1 depicts a subnet of event/state concepts
as might appear in the dictionmary. The node labelled ‘have’ is a

state that can occur as a consequent of either a “giving” or an

3The discussion of semantic nets will be at what Brachman [Brachman
79] call the concept level.

57

GIVE(agt,obj,ben) consg ante .
\ > HAVE(agt,obj) (===m——— EAT(agt,obj)

EXCHANGE(agtl,agt2,0bjl,0bj2) ==—=w=—- |

{
| |m—————————— SELL(agt,obj,rec,money)
|

]
|
sc |
!

| ————— BUY(a *,obj,ae,money)

l
TRADE(agtl,agt2,0bjl,obj2)

Figure 3-1: A section of a semantic network.
“exchange’. The arc from “eat’ to ‘have’ represents an association
between ‘eating’ and ‘having’; to ‘eat’ one must ‘have’ the thing
that is being eaten. In a similar vein, the arcs from “trade’,’buy’,
and ‘sell’ denote their taxonomic relationship to the concept

“exchange’.

Given a pair of sentences like,

(1) John bought some food.
He ate it.

a net interpreter could use a path-based inference scheme to find an
association between the ‘buying’ and ‘eating’. Starting at the ’buy’
. nbde the 1interpreter would traverse the subclass arc to the
‘exchange’, traverse the consequent arc tec the ‘have’ node, and then
~move from ‘have’ to ‘eat’ via the antecedent* arc. Its reasoning at
each stage would be something like: " A kind of exchange is buying, a

consequent of an exchange is that the participants end up having

58

{possessing) something, and a condition for eating is that the eater

has (possess) that which is eaten."”

But, unfortunately, an interpreter could use the same network

to relate mistakenly sentences like:

(2) John bought a kite.
He ate.

A consequent of ‘buying’ a kite is ’‘having’ a kite, and an antecedent
of ‘eating’ a kite is ’‘having’ it? To avoid this kind of faulty
reasoning, constraints are attached to arcs; So, to traverse the arc
from ‘have’ to ‘eat’, the object of “have’ must match the default
value, “food’, for the object of eating, and the agent of the two
relations must match, thus insuring coherency and in the process

resolving ellipsis and some references.

There are several reasons for choosing to work with semantic
networks. First, and most importantly, the proximity of concepts in
the network reflects the strength of associations between those
concepts. For example, the close association between ’“having’ and
‘eating’ concepts 1is captured by their close connection 1in the
dictionary’s semantic net. Schubert et. al. [Schubert 79] describe

the ‘proximity principle’ as follows:

The fundamental assumption in the use of semantic nets is
that the knowledge required to perform an intellectual task
generally lies in the semantic vicinity of the concepts involved
in the task.

59

Secondly, as a natural by-product of storing the dictionary’s
knowledge in a semantic network, guide-posts for knowledge retrieval
are incorporated into the net; to move between nodes in the network
there must be an arc, or set of arcs, connecting the two nodes. Thus
the search for an association between two concepts 1is controlled

because the arcs serve as indices.

Furthermore, constraints can be attached to arc selections.
If a node oy has m arcs associated with it, ay sees ap, and the
search process arrived at node n; via arc aj then a proper subset of

the ares a; .. as;_q7 and a; .. a_ can be used to depart from node
1 i-1 i+] P

m
0. For example, suppose the search process was trying to cqnnect
the events described in (1). Suppose the search process began at the
node associated with buy and moved to the node associated with have.
Two of the arcs accessible to it at this point are a consequent arc,
which goes from give to have, and an antecedent* arc, which goes from
have to eat. It should not try the first of these arcs because a
path containing a consecutive pair of consequent and consequent® arcs

makes no sense; it would be equivalent to stating that a ‘having’

event was an immediate consequent of two non—associated events.

Another advantage of semantic networks 1is the relative
independence of the network and the processes that interpret it. So
the content of the dictionary can be modified, and consequently

TRACE s output, without necessitating changes to TRACE. Vica versa

60

is also true; TRACE can be changed without modifying entries into the
dictionary. This flexibility greatly aids the development of the

dictionary.

Given that we choose to represent the dictionary’s knowledge
with a semantic network there still remains the dissue of how to
select arc types. In part we've said that we've selected them
because they were produced by an analysis of text, but that doesn’t
answer questions like: What are the advantages of the seven arcs that
were chosen, why not a different seven arcs? Why not 50 arc types or
only 17 There are several criteria that should be applied to
choosing arc types. One has to do with their associative power; how
much of the data can be covered by the relation types allowed in the
network. The previous chapter established the adequacy of the
relations for representing a large domain of coherence in text.
Because of the reciprocal relationship between the dictionary and the
coherence representations of text (i.e. The representations are
copies of the relevant portion of the dictionary.), this effectively
demonstrates that the relations can cover a wide variety of the
relationships between concepts that are to be included din the

dictionary.

A second criterion considers the computational advantages of
the arc types. For example, what happens as the number of arc types

is varied? Consider the extreme cases. Suppose the net allows only

61

one arc type, named ‘intrinsic’. What was previously covered with
seven arc types o227 now be covered with one. Where before the
relationship between throw and move was described as consequent, now
it would be described “intrinsic’, as would the relationships between
carry and hold (previously coordinates) and the relationships between
clean and wash (previously subsequence), etc. The disadvantage of
having only one arc type is that the structure of the net would
provide less useful processing information because it no longer would
make any distinctions between types of relationships. So TRACE could
no longer use the names associated with the arcs to constrain the
path finding algorithm. Also the representations (explanations)
TRACE produces would be less informative, and consequently the range
of questions that the structure helps answer would be considerably

shrunk, and the capacity to produce useful summaries reduced.

Consider the other extreme case, where the net has too many
arc types. In the extreme case there are arc types for every
possible relationship between event/state concepts, and consequently
no generality in processing. TRACE would need special heuristics for
each arc type in order to control the path finding algorithm. Also,
since the representations (semantic nets) that TRACE produces are
copies of the relationships between concepts in the dictionary,
interpretations of the TRACE-produced representations would be
directly affected by the number and types of relations.

Consequently, QUEST and SUM’s heuristics would also become more

62

specilalized. The point is that some of the finer relationships can
be collapsed into a single relationship, because the various
interpreters do not process them differently. With an expanded set
of relations the net would fail to capture these process—oriented

generalities.

Consequently our goal lies somewhere in between. We want a
small enough set of arc types so that the structure captures process-—
oriented generalities, which will lead to simple (elegant) algorithms
for interpreting the net. But we also want the set of arc types to
be large enough to allow us to represent a variety of relationships
between concepts. Thus we can use the structure, instead of

additional inference based on content, to process knowledge.

A third criterion is: Do the arc types of the dictionary
support concept generalities? This translates into a requirement
that some of the arc types be taxonomic, and therefore exploitable
for property inheritance. For the example depicted in Figure 1,
because ‘trade’, ‘buy’, and ‘sell’ are taxonomically related to
‘exchange’ they inherit its consequent relationship with ‘have’; thus
it is not necessary to include specific consequent arcs from each of

the subclasses of “exchange’ to "have’.

To summarize, we have already shown that the arc types cover

a large domain of knowledge. It remains for us to show that the arc

63

types can represent structurally useful information and thereby can
be used to construct simple, elegant, and computationally. efficient
net interpreters. Also we need show that NEXUS supports event/state
concept generalities. In this chapter we will tackle these issues
with regard to the dictionary and TRACE, and in chapter four the

derived effects of these decisions with regard to SUM and QUEST.

3.1.2 Notation & Terminology

Each node in the Dictionary’s network represents an event or
state. A node has a name and a set of case arcs associated with it.
For example, the concept “give’ has the name ‘give’ associated with
it and the case relations agent, object, recipient, location, time,
etc. Attached to each arc in the network is a set of constraints.
For example, one of the arcs from ‘give’ to ‘have’ has the
constraints that both the agents of ‘give’ and "have’ and the objects
of “give’ and ‘have’ must match. Numbers and # marks are appended to
words to differentiate between various sense meanings; thus agent and
agentless uses of move would be designated move2# and movel#,
respectively. Attached to each node in the network is a template
that lists default values for matching. So for a drinking event the

default value for the object being ingested is a liquid.

All the knowledge in the network is stored in relational
form, Relations between nodes in the network are stored in a 4-

tuple.

64

[relation, event/statel, event/state2, (constraints)]

So the antecedent relation between eating and having' would be

represented:
[ante eat havel# ((MATCH agt agt) (MATCH obj obj))]

Roughly the relation states: "There exists an antecedent relationship
between ‘eating’ and “having”. To establish this relatiomship the
agents and objects of ‘eating’ and ‘having’ must match.' MATCH is
one of a set of functions that are used to match the values of case
arguments of two different instantiated event/state concepts. For
MATCH to succeed, its two arguments must be identical, or one must be
a pronoun form of the other, or they must have a taxonomic
relationship, or one of the arguments 1is empty (i.e. (MATCH JOHN
JOHN) = True, (MATCH JOHN HE) = True, (MATCHFPERSON JOHN) = True,

(MATCH JOHN NIL) = True).

Another example is the relationship between the concepts
"lose’ and “find’.

{seq find lose ((MATCH agt agt) (MATCH obj obj)
(MATCH~C-NOTRANSFER tv not))]

Here the relationship should be read: " A sequel of “find’ is ‘lose’
if the agents and objects of ’‘find’ and ‘lose’ match, and if the
truth—-value argument associated with find is ‘not’". MATCH-C~-
NOTRANSFER succeeds only if the instantiated instance of ‘find’ has a

truth-value argument whose value is '"not", so (MATCH-C-NOTRANSFER NOT

NOT) = True and (MATCH-C-NOTRANSFER NIL NOT) = False.

65

The default values for each node are stored in a 3-tuple.
(template event/state (list of default values)).
For example, the default object of an eating event is food.
(template eat ({(obj food) ...))

The template for eat could be used to prevent an interpreter from
wrongly associating the concepts ‘buying’ and ‘eating’ described in
example (2). Suppose the interpreter has moved through the network
from the ‘buy’ node to the ‘have’ node. The 1instantiated value of
‘have’ would be: (have (agt Johm) (obj kite)). To traverse the arc
from "have’ to ‘eat’ the objects of ‘eating’ and “having’ must MATCH.
Since the sentence "John ate" doesn’t have an object argument, the
interpreter would use the default object value of eat to traverse the
arc from ‘have’ to ‘eat’. (MATCH KITE FOOD) fails, so the

interpreter correctly fails to find an association.

3.1.3 Converting to 4-tuples & Inheritance

Coherence diagrams were converted by hand to 4—tuples via a
three step process. Each relation was converted to an arc, and each
event/state concept to a node. Constraints were identified where
pairs of arguments needed to match to insure coherency. Given the

representation,

(drop agt peasant obj axe
ante (hold agt peasant obj axe
coord* (chop agt peasant ae tree)))

the coordinate relationship would be converted to

(arriving) must be on water, and the its instrument a boat. The
subsequence relationship between travel and arrive is refined to be,
in the case of travel3#, a subsequence relationship between travel3#

and dock.

So a pair of sentence like:

John travelled to San Francisco.
He docked late in the evening..

could be connected either by descending the subclass arc from travel
to travel3# and the subsequence arc from travel3# to doék, or by
descending the subsequence arc from travel3# to arrive and from
arrive to dock. In either case, because of the templates, the
instrument and the location of the travelling will be marked as

“boat’ and ‘water’ respectively.

3.2 Overview of TRACE

TRACE uses the knowledge base to construct coherence
representations of segments of text. The relational knowledge base
represents intrinsic relationships between event/state concepts. A
segment of text is coherent if it is an instantiation of some portion
of the knowledge base. The ccoherence representations that TRACE
constructs are a map of a successful trace of an inference path
between two concepts in the knowledge base; each concept lying on an

inference path between the two instantiated concepts is added to the

69

representation. We can think of the procedure that TRACE follows as
a process which reveals, or uncovers, the relevant portions of the

underlying conceptual knowledge of event/state concepts.

TRACE considers each new event or state in sequence. Its
strategy is to take the new concept and see if it can relate it to a
previously instantiated portion of the knowledge base. Figure
3-2 shows the top—level flow of control. TRACE begins (step 1) by
getting the first event/state description. A stack of schemas,
SCHEMAS, is kept which holds in reverse textual order previously
instantiated portioms of the knowledge base (i.e. schemas). Since
SCHEMAS 1is initially empty TRACE takes the failure branch of step Z,
adds the new event/state description (step 2a) to SCHEMAS, and then
goes back to (1) and gets the next event/state description. Again it
proceeds to step 2 getting the schema at the top of SCHEMAS. Next,
TRACE converts the schema to a goal-event-list format (step 2b) by
deleting from the schema events which were marked as Dbeing
“completed’. The goal-event-=list is a list of events that TRACE
tries to connect to the new event description. ‘Completed events’
are events that have been concluded and will not continue to be

described in the text. For a trio of sentences like:

The pig trotted to the stream.
She washed the laundry.
She dried the laundry.

when TRACE tries to relate the “drying’ to the ‘washing’ schema on

70

the stack of schemas, ‘trotting’ is deleted from the goal-event-list

because the “washing’ event concluded it. .

At step 3 TRACE tries to find an inference path from the new
event/state concept to one of the instantiated concepts in the
schema. If TRACE fails to find an inference path it goes back to
step (2). If TRACE succeeds, it adds the new inference path to the
schema (step 4), and then gets the next event/state concept (step l).

1. Get the next event/state description.

2. Get the next dinstantiated portion of knowledge base
(schema).

a. If it does not exist add the new event/state
description to the stack of schemas. Go to step l.

b, If it does exist convert it to goal-event-list
format by deleting all ‘completed’ events.

3. Trace an inference path between the new event description
and one of the concepts included in the schema.

a. If it fails go to step 2.
4, Add a new inference path to the schema.
5. Add the schema to the stack of schemas.

Figure 3-2: Flow of Control

TRACE wuses two major procedures to construct coherence
diagrams (step 3). TFIND-PATH attempts to find a path between the new
event and one of the non-completed instantiated event/state concepts

in the schemna. TRY=-PATH checks the semantic constraints attached to

71

each relationship along the inference path, simultaneously performing
reference resolution, marking ‘completed’ events, and add'n; the new
event to the schema. If TRY-~PATH fails FIND-PATH continues its

search for an inference path.

FIND~PATH’s basic algorithm consists of spreading across the
space of general concepts seeking a path of relations from the new
instantiated event/state concept to one of the concepts attached to
the schema. It begins by asserting the new event as the source and
the list of non~completed instantiated concepts currently in the
schema as the gocal. The search proceeds in a breadth-first fashion,
expanding the smallest frontier at each step. Relations are
exploited to control the size of the search space; for any arbitrary

concept a proper subset of its relationships can be expanded and used

to continue the path-finding process. When FIND-PATH succeeds it
passes the iInference path back to TRACE. If TRY~PATH subsequently

rejects the path, FIND-PATH picks up where it left off.

Let’s gegin by seeing how the search process would work if
FIND-PATH did not 1limit the arc selection process at each step.
Figure 3-3 shows ; subgraph of the knowledge space. A kind of WORK
is CHOP. A sequel to chopping down a tree is that the tree FALLs. A

coordinate of CHOP is HOLD. A coordinate of CARRY 1is HOLD. An

72

WORK(agt ,loc,instr)
{sc {(match agt agt),{match loc loc)
] ,{match instr instr)}

v

|-CHOP(agt,loc,instru) |

! !

Iseq {(match-c2 ae tree) jcoord{(match agt agt)
!‘ . ,(match ae obj)} | (match instr obj)}
! !
| CARRY ! f
| ! i
v | | conseq {(match obj obj)}
FALL \] DROP > (FALL)
coord | | l
{(match agt agt) | ! Jante {{(match agt agt)
(match obj obj)}i ! | {(match obj obj)}
| / |
v / 1
HOLD e o e i

Figure 3-3: A subgraph of the knowledge space.

73

antecedent of DROP 1is HOLD. A consequent of DROP is FALL.

Constraints are shown in curly brackets.

Suppose FIND=PATH is trying to find a relationship between
the schema produced by previous text, " The peasant worked all day.

He was chopping wood.", and a new sentence, '"He dropped his axe."

New instantiated event concept:
(drop agt peasant ob]j axe)
Schema: ((sc (work agt peasant per (all day))
(chop agt peasant ae wood)))

The source list would contain the concept ’“drop’. The goal list
would contain the concepts ‘work’ and ‘chop’. Since the source list
contains a smaller number of concepts, FIND-PATH would begin by
expanding the ‘drop’ concept. In this case ’‘drop’ participates in
two relationships; the path from ‘drop’ to ‘hold’ and the one from
‘drop’ to “fall’ are added to the source list. Next, FIND-PATH tries
to expand the goal list. Three paths are added to the goal list:
work=chop, chop—~fall, and chop~hold. At this point FIND-PATH has
found two paths from ‘chop’ to “drop’ (i.e. chop-fall-drop and chop~-
hold=drop). Suppose FIND=PATH returns the chop~fall-drop path first.
Because the object of the “fall’ sequel of ‘chop’ is constrained to
be a tree TRY-PATH would reject this path. Next FIND-PATH returns

the chop—hold=drop path, which TRY-PATH will accept.

Arc selection can be restricted by limiting the combinations

of consecutive arc types; structurally we know that the cross product

74

of certain relations will lead to incorrect interpretations. During
the selection process FIND~PATH avoids illegal combidations of
relations by using the arc most recently added to the path as a
filter. The cross product restriction can be characterized as one of

two types, identity or bridge.

The identity of an instantiated event/state concept is the
collection of event/state concepts which are its taxonomic offspring.
The identity of chopl# is specified by its subsequences, coordinates,
and subclasses. Here the restriction is motivated by the observation
that an instantiated event/state concept cannot simultaneously be
part of the identity of two different event/state concepts. For
example, the concept ‘hold” is a coordinate of both ‘chopping’ and
‘carrying’; but an instantiated ‘hold’ event, as in ‘hold the axe’,
can not simultaneously be a coordinate of a ’‘chopping” and a
‘carrying’. Either a ’chopping’ event or a ’‘carrying’ event is
occurring, but not both; thus as FIND-PATH expands a path it can not
traverse a coord arc and then subsequently traverse a coord* arc.
Similar restrictions can be placed on the arc pairs sc/sc* and

subseq/subseq®*.

The temporal relations act as bridges between event/state
identities. This type of restriction is motivated by observations
like: an instantiated event/state concept cannot simultaneously be

the consequent of two different concepts. For example, suppose FIND~-

75

PATH has traversed a seq arc from chopl# to fall, it cannot
subsequently traverse a consq* arc from ‘fall’ to ’“drop’; to do so
would be tantamount to inferring that the “falling’ could have
occurred as an outcome of two disjoint events, ’chopping’ and

‘dropping’. Either a tree fell because it was chopped down, or it

fell because it was dropped by a machine - but not because both
events occurred.4 Other restrictions of the bridge type include
restrictions on the arc pairs consq/consq*, ante/ante*, and
consq/seq*.

3.2.2 TRY-PATH

TRY-PATH traverses the path produced by FIND-PATH, testing
the semantic constraints, performing reference resolution, and
filling arguments. The input to TRY-PATH is a list of 4~—tuples,
which represent the path and a list of instantiated concepts. As

previously described, the 4-tuples are of the form:
[relation eventl event2 ((matchfnl argl arg2) ...)]

For each &4-tuple in the path TRY-PATH cycles through a two step

41f TRACE traverses a conseq arc from ’‘buy’ to ‘have’, it cannot
subsequently (immediately) traverse an consq* arc from "have’ to
‘give’; to do so would be tantamount to inferring that the ‘“having’
could have occurred as a consequent of two disjoint events, ‘buying’
and ‘giving’. Either someone has a book because it was given to him,
or he has a book because he purchased it — but not because both these
events occurred.

76

process. For each constraint it checks that the indicated arguments
match. If an argument is missing it uses the default value for that
argument as a basis for matching. If all the constraints are met it
replaces the old arguments attached to an event by the new argument
values which were derived from the matching process. If one of the
constraints fails TRY-PATH fails. To succeed TRY-PATH must traverse
the path twice, once in each direction. This is necessary because
TRY-PATH is propagating argument values across the path, so in the
worst case arguments must be propagated from either end across the

entire length of the path.

Each of the match functions has four parameters, two input
and two output. The input parameters represent current values, the
output parameters replacement values. Given the constraint (MATCH
agt agt), if MATCH is called with the input parameters ‘John’ and
‘he’, MATCH will return the values ‘John’ and ’John’. Thus the new

agent values for both events will be ‘John’.

Suppose TRY-PATH 1is testing the coordinate relationship

between instantiated ‘chopping’ and "holding’ events.
(coord chopl holdl ((Match agt agt) (Match imstr obj)))

Furthermore, suppose that the list of instantiated concepts has the

following values for chopl and holdl:

(. . . (chopl (agt peasant)) (holdl (agt he)) . . .)

77

TRY~-PATH begins by attempting to match the agents of chopl and holdl.
The agent value for chopl is ‘peasant’, the agent value for holdl is
‘he’. Procedure MATCH successfully matches ‘peasant’ and ‘he’,
returning the replacement value “peasant’ for both output parameters.
Next the instrument of chopl is matched against the object of holdl.
Chopl has no instrument value, but the default instrument value for
chop2# 1s “axe’. Holdl has neither an object argument nor a default
value for its object argument, so TRY-PATH uses the value nil. Again
MATCH succeeds producing the value “axe’ for both output arguments.
After replacing old values by new values, the instantiated concept

list now looks like:

(. « « (chopl (agt peasant)(instr axe))
(holdl (agt peasant)(obj axe)) . . .)

It is because the match function returns replacement values that TRY-
PATH can fill missing arguments and perform reference resolution. In
the above example, as TRY-PATH traverses the arc from chopl to holdl
it resolves the 'he’ reference. So FIND-PATH, in effect, orders the
the possible pairings of referent and reference, and TRY-PATH

determines if the resolution is correct.

Consider a path which TRY-PATH has rejected. Suppose TRACE
is trying to connect the event concepts described in the following

pair of sentences.

The pig cleaned the laundry at the stream.
She trotted home.

An antecedent of ’cleaning’ is that the laundry must be
‘moved’ to the place where it is ‘cleaned’.

A subclass of ‘moving’ is ‘carrying’.
A coordinate of “carrying’ is ‘travelling’.
A subsequence of ‘travelling’ is ‘movingl#’.
A subclass of “moving” is “trotting’.

Figure 3-4: A Path That FIND-PATH Suggests

[ante clean move2# ((match loc dest) ...)]
[sc movel2# carry ((match dest dest) ...)]
[coord carry travel ((match dest dest) ...)]
[coord travel movel# ((match dest dest) ...)]

[sc movel# trot ((match dest dest) ...)]

Figure 3-5: The Constraints Attached to Each Arc in the Path

79

Figure 3-4 shows a path that FIND-PATH suggests to TRY-PATH. TRY-
PATH will eventually reject this path because the destination of the
“trotting’ does not match the location of the ‘cleaning’. To see how
this works we need to look at the counstraints that are attached to
each arc along the path (see figure 3=5). Figure 3=5 only shows the
relevant constraints. As TRY-PATH tests the path the location of the
‘cleaning’ will be propagated thru the concepts ‘movel#’, ‘carry’,
‘travel’, and ‘movel#’ until it is matched against the destination of
the ‘trotting’. The destination value of ‘movel#’ (stream), derived
from the ‘cleaning’, will fail to MATCH the destination of the

“trotting’ (home), consequently TRY-PATH rejects the path.

3.2.3 Some Rejected Heuristics

3.2.3.1. Match~Foci

MATCH-FOCI was intended to act as a coarse filter to the
computation process. It was to be the first approximation to the
likelihood that the new event/state description could be added to a
schema. If the new event and the events in the schema share no
argument values then MATCH-FOCI would reject the pairing of event and

schema from further consideration.

The focus of an event description was defined to be the

values associated with the case arguments attached to the

instantiated concept. The focus of a schema was defined to be the

80

set of values associated with the case arguments attached to each
instantiated concept in the schema. MATCH-FOCI intersected the two
sets of values, using the match function MATCH to determine if the
instantiated event/state concept shared a common focus with the

schema.

Suppose MATCH-FOCI was given the following event and schema

descriptions:

New instantiated event concept: (eat agt John obj apple)
Schema: ((subseq (clean agt Mary obj clothes)
(wash agt Mary obj clothes))
(subseq (clean agt Mary obj clothes)
(dry agt Mary obj clothes)))

The focus of the instantiated event concept includes the values:
John and apple. The focus of the schema includes the values: Mary
and clothes. The event and schema contain no common focus, so ﬁATCHa
FOCI would correctly inform TRACE that it should not try to find a

path between the ‘eating’ event and the schema.

Suppose MATCH~FOCI was instead given the event and schema:

New instantiated event concept:
(carry agt Mary obj clothes dest home)
Schema: ((subseq (clean agt Mary obj clothes)
(wash agt Mary obj clothes))
(subseq (clean agt Mary obj clothes)
(dry agt Mary obj clothes)))

The focus of the instantiated event concept and the schema share a
focus, both Mary and clothes, so MATCH-FOCI would allow TRACE to try

to find a path between the “carrying’ event and the schema.

81

One problem with MATCH-FOCI was that it turned out not to be
too useful. MATCH-FOCI blocked only one potential pairing of schema
and event. When MATCH-FOCI was removed TRACE was able to find a
novel (good) interpretation for their connection (See the subsection
on "The TALE of the Pig" for further details.). The other problem
with MATCH—FOCI is that the matching it needs to perform can become
as complicated as the TRACE’s path finding/testing process. An

example is the pair of sentences:

John went to the restaurant.
The waiter came to the table.

For MATCH-FOCI to determine that the waiter’s ’‘coming to the table’
could be related to John’s “trip to a restaurant’ it must find a path
either from waiter to restaurant or from table to restaurant. The
space of concepts that MATCH-FOCI would need to use in order to find
these connections would be at least as complicated as NEXUS’

event/state concept space.

3.2.3.2. Temporal Orderings

Ideally FIND~-PATH would not have to consider every incoming
and outgoing arc during its expansion phase. Perhaps_ arc selection
could be restricted on the basis of the temporal orderings of events
in the story. FIND-PATH could expand forward from previous events
and backwards from a new event. Paths on the source list would be
expanded via prec, ante, consqg*, and seq* relations, and paths on the

goal list expanded via prec*, ante¥*, consq, and seq relatioms. Both

82

types of paths could be expanded via the taxonomic arcs. TFor the

previously discussed pair of sentences:

The pig cleaned the laundry at the stream.
She trotted home.

FIND-PATH would never find the erroneous path from ‘trotting’ to
‘cleaning’ depicted in figure 3-4. For FIND-PATH to find this path
it wmust either move temporally backwards from the ‘cleaning’
described in the first sentence, or forwards from the ‘trotting’

t

described in the second.

Unfortunately, such a restriction on arc selection also would
cause TRY-PATH to miss some good paths. Take a simplified version of

an example which occurred:

The pig cleaned the clothes.
She gathered the laundry.

In this case the connection between ‘cleaning’ and “gathering’ is:

l. After ‘cleaning’ the laundry the pig ‘moves’ it home.

2. To ‘move’ the laundry the pig must ‘have’ it.

3. A consequent of “gathering’ is ‘having’.
But to find this connection FIND-PATH needs to move forward from
‘gather’ to ‘move’; ‘gathering’ can only be related to “cleaning” if

its purpose, ‘moving’, which occurs after it, is found by TRY-PATH.

Other examples of this phenomenon occurred during the testing

phase, forcing the eventual rejection of this heuristic.

83

3.3 Limitations

Woods [Woods 75] was the first to raise issue on éhe logical
adequacy of semantic nets. He argued that there was not a theory of
semantic nets (circa 1975), that even though the notion of semantic
nets was an attractive one it was still an unﬁroven assumption that

they were adequate for representing knowledge in general.

Clearly NEXUS does not represent a theory of semantic nets at
the epistemic level. Our interest has been to use semantic nets as a
conceptual tool (abstraction), not to investigate their foundations.
Our method has been to separate semantic nets, the abstract data

type, from semantic nets, the concrete representation.

The theory presented in this dissertation is a theory of
event/state coherence. It matters little to its concerns whether the
net, as we think of it, 1is in fact represented in terms of
epistemologically sounder networks such as NETL [Fahlman 77], or
KLONE [Brachman 78, Brachman 79], or the partitioned networks of
Hendrix [Hendrix 75, Hendrix 79]; we are perfectly happy to work with
semantic nets at what Brachman [Brachman 79] calls the conceptual
level. It is to our advantage that many of the complex issues dealt

with in these other nets is hidden by an abstraction [Parnas 72].

The remainder of this section attempts to point out some of
NEXUS’ limitations when compared to systems whose major concern is

the semantic net itself and not the usages of it.

84

First, current efforts in semantic nets are concerned with
working on larger pieces of knowl=:lz2 than single nodes. . Nodes are
grouped together into subnets which are dealt with collectively, and
are frequently referred to as structured nodes. Minsky’'s frame
theory paper [Minsky 73] and Schank & Abelson’s book on script and
plan theory [Schank & Abelson 77] were the first to conceptualize
this effort. Frames were a more general theory; the i1dea was to

"“chunks’ of reasoning, language,

gather together and structure
memory, and ’perception’ (p2ll)." Scripts were only concerned with
stereotyped situations. Neither theory was committed to semantic

nets, but for those who were it meant that single nodes (concepts)

had to be gathered together and dealt with collectively.

For example, Hendrix [Hendrix 79] uses three methods for
structuring, partitioning, his network: spaces, vistas, and
supernodes. Arbitrary groups o¢f nodes and arcs can be bundled
together into spaces, which are the fundamental units, along with
individual nodes and arcs, of partitioned networks. Vistas represent
pictures of the semantic net from various vantage points; they are
composed of an arbitrary bundle of spaces, and can be used to reduce
the size of the network for various interpreters. Supernodes are
used to name a space, and therefore make the proposition denoted by

the space available to other concepts in the network.

Nexus does not provide any general structuring techniques,

85

but there are two ways in which its net is structured. First, each
node in the network represents a structured concept, it bundles
together an event with its case related constituents (In a
partitioned network each node in NEXUS would be a space.). Concepts
in the network are also structured by the coherence relatiomns; the
‘chunk’ travelling is composed of all the event/state concepts which

are related to it by one of the seven coherence relations.

Another important issue in the literature on semantic
networks is structured inheritance. One of the favorite targets has
been the isa link. Brachman [Brachman 82] claims that it has been
used to mean any number of things, sometimes by the same system.
Typically isa links have been used to represent both inheritance
between concepts, and instances of concepts. So, for example, an

‘elephant isa animal’ and a ‘Clyde isa elephant’.

NEXUS uses different methods to represent inheritance between
concepts and instances of concepts. The subclass relation is used
for inheritance between concepts. The relationship between a concept
and its dinstance 1is represented typographically; a concept is
designated by its lexical name, and an instance of a concept by
appending a number to the name of the concept it is an instance of.
So ‘carry’ is the name of a concept, and “carryl’ is the name of an
instance of a concept. To traverse an ‘arc’ from ‘carry’ to ‘carryl’

NEXUS strips the number off of ‘carryl’. But again some issues have

86

been finessed. For example, NEXUS fails to differentiate between
subclasses and conceptual instances; a subclass of “travelling’ is
‘crossing’, and a conceptual instance of “travelling’ is “travelling

by boat’. NEXUS uses a subclass arc for both types of relationships.

Another problem with NEXUS is that it uses the same set of
arcs for representing relationships between concepts and
relationships between instances of concepts. For example, to say
that a coordinate of the concept ‘carry’ is the concept "hold’ is not
the same thing as saying that a coordinate of an ’‘instance of carry’
is an ‘instance of hold’. Technically the usage of coherence
relation coordinate between the instances of concepts means: these
are instances of concepts which are related by the coherence relation
coordinate. NEXUS leaves it to the dinterpreter to distinguish

between the two meanings of the coherence relations.

Finally, TRACE’s interpretation of the net 1is not much
different from Quillian’s [Quillian 68] original conception of a
‘spreading activation’ of concepts across a semantic network. It
differs in twec regards: 1) constraints are attached to each arc in
the network, and 2) the cross—product of certain pairs of arcs are
not permitted during TRACE’s search phase. TRACE makes no attempt to
control visibility of the net during its search phase. Context
mechanisms for controlling the wvisibility of the net have been

suggested by M.K. Smith [Smith 82] and Grosz [Grosz 77].

Chapter 4

Results

In this chapter we continue the examination, which began in
chapter two, of NEXUS’s representation scheme. Here we will show
some sample protocols from TRACE in action. It is dimportant to
remember that for each of the examples described in this chapter
TRACE uses the exact same dictionary of 150 (or so) event/state

concepts.

Table 4-1 shows the distribution of coherence relations in
the final output of each of the eight examples. The majority of the
relations that TRACE used in its final output were taxonomic
(subclass, subseq, coord). A lot of this has to do with property
inheritance. The reader should recall that as the net was compiled
the subclass relations were exploited to reduce the amount of
redundant information, therefore it 1s not surprising that TRACE
makes frequent use of taxonomic arcs. For example, the network
contains the information that a precedent of ‘cleaning’ laundry is
‘moving’ the laundry to the place where it will be ‘cleaned’. So if
the text says, '"The pig trotted to the stream. She cleaned her

laundry."”, TRACE must use a combination of taxonomic arcs in order to

S

87

88

get at the precedent relationship (i.e. ‘trotting’ is a subclass of
‘moving”, which 1is a ’subsequence’ of ’‘travelling’, which is a
‘coordinate’ of ‘carrying’, which is a subclass of ‘moving2#’, which

is a precedent of “cleaning’).

The temporal relations are fairly evenly split between before
and after categories. Sixteen of the relationships were either
antecedent or precedent. Fourteen of them were either consequent or

sequel.

Table 4~2 shows some statistics gathered during TRACE’s
processing of the samples. Columns two and three show the size of
the search space for each example. So for "The Margie Story", during
its search phase, TRACE encountered 48 different concepts, 63 if
concepts which lay on more than one path are included in the count.
Column four shows the number of paths that TRY-PATH rejected during
its processing of each example, the next column shows the number of
correctly found paths, and the last, the average length of the paths.
The average path length is comﬁuted by dividing the number of
relations in the representation produced by TRACE by the number of

paths (i.e. #relationships/(#input=-concepts - 1)).

"The Wishing Ring'" is somewhat of an anomaly. Why was it
necessary to reject so many paths? Most of the paths that TRY-PATH

rejected centered around the concept “having’. Part of the input for

89

story subclass subseq coord ante <conseq prec seq
peasant 2 1 1 1
wtell 2 3 3 1
margie 2 1 3 1 1
rob 5 3 1 1 2 1
rest 5 5 1 1 2
wish 2 2 2 2 1
waterman 4 3 4 1 1 1
pig 7 4 3 2 1 11
total 27 22 12 11 6 5 8
Table 4-1: Distribution of Relations

peasant = "The Clever Peasant and the Czar’s General"

wtell = "The Archer, William Tell"

margie = "The Margie Story"

rob = "Robbing a Liquor Store"

rest = "The Restaurant Story"

wish = "The Wishing Ring"

waterman= "The Waterman and the Peasant'

pig = "The Tale of the Pig"
story # of # of rejected accepted average path

concepts concepts/dups length

peasant 17 21 0 3 6/3 - 2
wtell 39 49 3 5 9/5 - 1.8
margie 48 63 2 5 11/5 = 2.2
rob 48 86 4 6 17/6 - 2.83
rest 46 109 8 7 15/7 - 2.14
wish 46 112 34 5 10/5 - 2
waterman 115 196 12 6 15/6 - 2.5
pig 88 219 6 9 23/9 - 2.35

Table 4-2: Search Space Size

30

this example includes a “having’. As TRACE tried to add it to the
schema it was constructing, multiple short ‘having’ paths were
rejected; ‘having’ is related to a large number of concepts, and
TRACE needed to sift through these in an attempt to find the correct

path.

Table 4~3 compares longest, second longest, and average path
lengths. The average path length does not vary much from 2. The
longest path TRACE makes is a path of length 6 which occurs in "The

Peasant and the Waterman'.

story longest-path second-longest average path
length
peasant 4 1 6/3 = 2
wtell 3 2 9/5 -1.8
margie 3 2 11/5 = 2.2
rob 4 3 17/6 - 2.83
rest 4 3 15/7 = 2.14
wish 3 2 10/5 - 2
waterman 6 2 15/6 = 2.5
pig 4 4 23/9 - 2.35

Table 4-3: Path Lengths

Table 4~4 gives a list of the concepts which appeared in
TRACE’s output. This does not represent a complete list of concepts,
some of the concepts that are in the network, which were derived
during the analysis stage, were not needed for any of the examples
that TRACE was tested on. But just same they were partially tested
because they were included in the search space, and rejected, in part
because of their constraints, by TRY-PATH if they appeared in an

erroneous path,

word

pig waterman wish rest rob Margie archer peasant

appear
break
burst
carry
catch
chop
clatter
come
cry
depart
descend
dig
dive
drop
dry

eat
escape
fall
farm
feed
find
follow
gallop
gather
get
get2#
getaway
give

go

grow
hang
have
havel2#
hear
hit
hold
labor
leave
leavel#
movel#
movel#
order
perceive

1

Pt ot fad et

kot s ot

N W

Table 4-4:

Number of Times Concepts Appeared in TRACE’s Output

91

word plg waterman wish rest rob margie

archer

peasant

plow

push

rein

rob

ride

say

scour 1
seat

see 1
seek

sell

serve

soak 1
sound

spy 1
stop

swim

take

tell

tip

travel 2
travell#
trot 2
uncover
unhappy
walk

want

wash 1
watch 2

1

pt

total 24

24

12 16 15 12

Figure 4-4, continued

10

92

93

4.1 The Tale of the PIG

This is a more complicated version of the paragraph of text

from The Tale of the Pig than the one we previously discussed. 1In

this version of the paragraph many of the descriptions of the pig’s
activities are embedded in sentences describing the perceptions of a

prince.

One day while the pig trotted toward the stream, carrying
a neat little bundle of clothes, she was spied by a prince. He
watched while the animal expertly soaked and scoured the laundry.
He watch the pig cleverly hang the clothes in the sun. (We will
skip some text where the pig steps in the bubbling water,
instantly changes into a beautiful young women, and recites a
jingle that say she will be pig to a man weds her.) The pig
gathered up the laundry and trotted home.

Figure &4-1 shows TRACE’s processing of the paragraph.
Beginning at line 1 the input to TRACE is shown =~ a list of case
representations of the sentences of the text. The case
representations have been simplified. In general the input
representations do not include information like tense, wmood,
determiners, etc. TRACE can handle this information, but it really
does not use it to aid processing. By paring the text hopefully

increased comprehensibility has been achieved.

Note that events embedded in other events are extricated in
their case representations. So the text says "The prince watched the
pig cleverly hang the c¢lothes 1in the sun.", and the case

representations (lines 7 and 8) breaks the sentence into two units

94

((TRACE

1 ((TROT1 (AGT PIG) (TWD STREAM)) *kkkk TNPUT *%kk%k
2 (CARRY1l (AGT PIG) (OBJ CLOTHES))

3 (SPYl (PERCEPTOF PRINCE) (THM PIG))

4 (WATCH1 (PERCEPTOF HE) (THM (AND SOAK1 SCOURL)))
5 (SOAK1l (AGT PIG) (OBJ LAUNDRY))

6 (SCOURI (AGT PIG) (OBJ LAUNDRY))

7 (WATCH2 (PERCEPTOF HE) (THM HANG1))

8 (HANG1 (OBJ CLOTHES) (IN SUN))

9 (GATHERI (AGT PIG) (OBJ LAUNDRY))

10 (TROTZ (AGT PIG) (DEST HOME)))

11((((GATHER! (AGT PIG) kukFkk QUTPUT #%*es
(0BJ LAUNDRY)
12 (CONSQ (HAVE2#96 (AGT PIG) (OBJ LAUNDRY))))
13 (APPEAR26 (PERCEPTOF PRINCE)
(OBJ PIG)
(LOC WATER)
14 (COORD (SEE23 (THM PIG)

({PERCEPTOF PRINCE)
(LOC WATER)

15 (sC (SpYl (THM PIG) (PERCEPTOF PRINCE)
(LOC WATER)))
16 (CONTINUATION (WATCH1 (THM (AND SOAK1 SCOURL))

(PERCEPTOF PRINCE)
(LOC WATER)))

17 (CONTINUATION (WATCH2 (THM HANGL)
(PERCEPTOF PRINCE)
(LOC WATER)))))

18 (PREC (COME40 (AGT PIG) (DEST WATER))))
19 (CLEANS3

(AGT PIG)

(LOC WATER)

(OBJ CLOTHES)
20 (ANTE (MOVE2#88
(AGT PIG)
(OBJ LAUNDRY)
(DEST WATER)
21 (SC (CARRY! (AGT PIG)
(OBJ LAUNDRY) -
(DEST WATER)

Figure 4~1: The Tale of the Pig = 24 event/state concepts

22

23

24

25

26

27

28

29

30

31

32
33

34

35

(COORD (TRAVEL17 (TWD STREAM)
(AGT PIG)
(DEST WATER)
(SUBSEQ (MOVEL1#20
(DEST WATER)
(OBJ PIG)
(TWD STREAM)
(SC (TROT! (DEST WATER)
(AGT PIG)
(TWD STREAM)))))
(SC (COME40 (AGT PIG)
(DEST WATER)))))II)))
(SEQ (MOVE2#103
(AGT PIG)
(OBJ LAUNDRY)
(DEST HOME)
(SOURCE WATER)
(SC (CARRY166 (AGT PIG)
(OBJ LAUNDRY)
(DEST HOME)
(SOURCE WATER)
(COORD (TRAVEL140 (AGT PIG)
(SOURCE WATER)
(DEST HOME)
(SUBSEQ
(MOVE1#137 (OBJ PIG)
(SOURCE WATER)
(DEST HOME)
(sC (TROT2 (DEST HOME)
(SOURCE WATER)
(AGT PIG)))))
))))
(ANTE (HAVE2#96 (AGT PIG) (OBJ LAUNDRY)))))
(SUBSEQ (WASH80 (AGT PIG)
(0BJ LAUNDRY)
{LOC WATER)
(SUBSEQ (SOAK1l (AGT PIG)
(OBJ LAUNDRY) (LOC WATER)))
(SUBSEQ (SCOUR1 (AGT PIG)
(OBJ LAUNDRY) (LOC WATER)))))

Figure 4-1 continued

95

36

37

(SUBSEQ (DRY94 (AGT PIG)
(LOC WATER)
(OBJ CLOTHES)
(SC (HANGl (IN SUN)
(LOC WATER) (OBJ CLOTHES)))))))))))

Figure 4-1 concluded

96

97

connected by hangl, which is the theme of the ‘watching’ and the the

name of the “hanging”’ event that occurs.

There are several noteworthy aspects of TRACE’s output.
First, this example introduces the concept of continuation. It is
not unusual to find instances of event/state concepts repeated 1in
text. Usually the repetition of an event description both adds new
information and conveys a sense of duration. TRACE handles
repetitions by marking the relationship between the two descriptions
as ‘continuation’. In this example the concept of ’‘seeing’ is
repeated. The initial ’“seeing’ (see 1line 14), motivated by the
connection between ‘spying’ (line 15) and appearing (line 13), is
connected to the second ’“seeing’, a ’‘watching’, at line 16 via a
continuation arc. So the prince’s “spying’ of the pig (line 15)
continues as he ‘watches’ (line 16) the pig “socak” and “scour’ the
laundry. And again the ‘seeing’ is continued as the prince ‘watches’

(l1ine 17) the pig “"hang’ the clothes in the sun to “dry’.

Some simple constraints are used by TRACE to control the
construction of continuation bridges between concepts. So TRACE

would not connect sentences like

The pig trotted to the stream.
The pig trotted home.

via continuation arcs since the destinations of the two events do not

match.

98

FIND~PATH checks to see 1if a concept is a continuation of
previous one before beginning its breadth first search through the
dictionary network. Two descriptions are potentially in a
continuation relationship if both concepts are 1in a subclass
relationship to the same concept, or one concept is a subclass of the
other, or they name the same event concept. If FIND-PATH fails to
establish a continuation relationship it calls BREADTH to continue
the search for connections between the new concept and previous

concepts.

Another noteworthy aspect of this example 1is the connection
that TRACE finds between the prince’s ’‘spying’ and the pig’s
‘trotting’ and ‘carrying’. Roughly the representation says:

1) The pig ‘appeared’ in the perception of the prince. (line 13)

2) For the pig to “appear’ she had to “come’ to the (line 18)
water.

3) ‘Coming’ is a subclass of ‘travelling’. (line 25)

4) ’Travelling’ is a part of the “carrying’ event {(line 21)

described in the text.
5) For the pig to ‘appear’ someone had to “see’ her. (line 14)

6) A subclass of “seeing’ is ‘spying’. (line 15)

TRACE’s finding this connection was not expected. It was not
included in the analysis of this paragraph. Originally the MATCH~
FOCI mechanism prevented FIND-PATH from attempting to connect these

concepts. The concept of ‘appearance’ was derived from some text in

99

another folktale. Originally, a focusing mechanism had prevented
TRACE from trying to find coherence paths between the ’‘carrying’ and
“spying’. When the focusing mechanism was removed TRACE produced the

representation shown above.

Also of interested is the TRACE’s handling of ‘completed’
events. When the ’“soaking” (line 5) is added to the schema the
‘trotting” (line 1) and ‘carrying’ (line 2) are marked as
‘completed’. Event/state descriptions which follow the ‘soaking’ no
longer include “trotl’ and ‘carryl’ and the event/states that connect
them in the.search space. Similarly when the “gathering’ (line 9) is
added to the schema ’‘soaking” (line 5), ‘scouring’ (line 6), and
‘hanging’ (line 8), as well as all the other instantiated parts of
the ‘cleaning’ (lines 19 and 33 thru 37) are marked as ‘completed’.
Before TRACE prints out its representation of the text it strips the
‘completed’ markings from the events which were concluded as the text

progressed.

Finally, of interest is the fact that instances of the
conceptual path from ‘moving’ to ‘trotting’ occur twice in the
output: once when the pig moves the laundry to the stream (lines 20
thru 24), and a second time when she moves the laundry home (lines 26

thru 31).

100

4.2 The Peasant and the Waterman

This example comes from "The Peasant and the Waterman'. In

this chapter we have already discussed parts of it.

A peasant was chopping a tree in the woods by the lake.
He dropped his axe and it fell with a splash into the water.
Quickly he dove into the lake, hoping to find his precious axe,
his only axe. But no matter how many times he swam toc the bottom
of the icy lake, no axe did he sece.

Figure 4-2 shows TRACE's input (lines 1 thru 9) and output (lines 8
thru 25). There are a number of interesting aspects to TRACE's
processing of this text. The first is that it handles the dropping
| without any difficulty.

1) When the peasant ‘chopped’ wood he ‘held’ the (1ine 9)
axe.

2) In order for the peasant to “drop’ the axe (line 11)
he must first ‘hold’ it.

In terms of scripts, Schank and Abelson [Schank & Abelson 77] refer
to this kind of problem as an obstacle; an enabling condition for
“chopping” (i.e. ‘holding the axe’) is missing when the peasant
‘drops’ the axe. TRACE handles obstacles in the same manner that it
handles any other case. Because the text describes a ‘chopping’,
‘holding’ is implicitly in the text, which has a relationship with
‘dropping’; there is an implicit relationship between the concepts
‘chopping’ and ‘dropping’ and when they appear in the text TRACE
finds the connection. To TRACE there is no difference between the
methods it uses for connecting ’‘chopping’ and ‘dropping” and the ones

it uses to connect, for example, ‘washing’ and ‘drying’. For TRACE

