*(SPRINT (TRY WATERMAN))
((TRACE

1

2
3
4
5
6
7
8

10
11
12
13

14
15
16
17

18

((CHOP!

(DROP1
(FALL1
(DIVEL
(FIND1
(SwWIMl

(AGT (PEASANT (DET INDEF))) *kkxkk [NPUT *kdskx:
(AE TREE) (LOC (WoODS (BY LAKE))))

(AGT HE) (0BJ (AXE (POSSRBY PEASANT))))

(OBJ AXE) (TNS PAST) (DEST WATER))

(AGT HE) (DEST LAKE))

(OBJ (AXE (MOD (AND PRECIOUS ONLY)))))

(AGT HE) (DEST (LAKE (MOD BOTTOM))))

(SEE1l (PERCEPTOF HE) (0OBJ AXE) (TV NOT)))
((((CHOPl (AE TREE) kkkkk® QUTPUT *****

{LoC (woODS (BY LAKE)))

(AGT (PEASANT (DET INDEF)))

(INSTR (AXE (POSSBY PEASANT)))

(COORD (HOLD246 (AGT (PEASANT (DET INDEF)))
(OBJ (AXE (POSSBY PEASANT))))))

(DROP1 (AGT (PEASANT (DET INDEF)))

(OBJ (AXE (POSSBY PEASANT)))
(ANTE (HOLD246 (AGT (PEASANT (DET INDEF)))
(OBJ (AXE (POSSBY PEASANT)))))
(CONSQ (FALL1 (TNS PAST)
(OBJ (AXE (POSSBY PEASANT))) (DEST WATER))))

(SEEK403 (AGT PERSON)

(OBJ- (AXE (MOD (AND PRECIOUS ONLY))))
(COORD (TRAVEL256 (DEST (LAKE (MOD BOTTOM)))
(LOC LAKE)
(AGT PERSON)
(SC (TRAVEL2#254
(AGT PERSON)
(DEST (LAKE (MOD BOTTOM)))
(LOC LAKE)
(SUBSEQ (DIVEl (AGT PERSON)
(DEST LAKE)))
(SUBSEQ (SWIML (AGT PERSON)
(DEST (LAKE (MOD ROTTOM)))
(LOC LAKE)))))))
(SEQ (FIND! (AGT PERSON)
(TV NOT))
(0BJ (AXE (MOD (AND PRECIOUS ONLY))))

Figure 4-2: The Peasant and the Waterman
14 event/state concepts

18

21

22

23

24

25

102

(SUBSEQ
(PERCEIVE429
(PERCEPTOF PERSON)
(TV NOT)
(THM (AXE (MOD (AND PRECIOUS ONLY))))
(SC (SEE1 (OBJ AXE)
(PERCEPTOF PERSON)

(TV NOT)
(THM (AXE (MOD (AND PRECIOUS ONLY)
22300))

(FOLLOW271 (AGT PERSON)
(OBJ (AXE (POSSBY PEASANT)))
(COORD (TRAVEL256 (DEST (LAKE {MOD BOTTOM)))
(LOC LAKE)
(AGT PERSON)))
(COORD (MOVE1#360
(OBJ (AXE (POSSBY PEASANT))
(DEST WATER) ‘
(SC (DESCEND278
(0OBJ (AXE (POSSBY PEASANT)))
(DEST WATER)
(SC (FALL1 (TNS PAST)
(O0BJ (AXE (POSSBY PEASANT)))

(DEST WATER))N
Figure 4~2 concluded

103

to say that omne is a detour path and another a normal path would be
misleading, because both sets of concepts are related in the

dictionary.

Also consider the path that TRACE finds between the “falling’

(line 16) and the ‘diving’ (line 16).

1) When the axe “fell’ it ‘descended’. (line 253)
2) ‘Descending’ is a kind of ‘moving’. (line 23)
3) If a person ‘follows’ an object the object (line 23)

is moving.

4) Another part of ‘following” is that the person (line 22)
doing the ‘following’ is ‘travelling’.

5) A kind of ‘travelling’ is ‘travelling in water’. (line 15)

6) A part of “travelling in water’ is “diving into (line 16)
water.

TRACE found this connection on its own. The concept of ‘following’
was derived from a different piece of text ("The Fox and the Wren").
In order to find this connection TRY-PATH rejects a number of other
paths suggested by FIND-PATH. One of the paths that TRY-PATH rejects
is a path from divel to falll.

1) ’"Diving’ is a part of “travelling in water’.

2) ‘Travelling in water’ is a kind of “travelling’.

3) A part of ‘travelling’ is ‘moving’.

4) A kind of ‘moving’ is ’‘descending’.

5) A kind of ’‘descending’ is ‘falling’.

TRY~-PATH rejects this path because the agent of the “diving’ becomes

104

the agent of ’travelling’, which will not match, but must match, the

object of “falling’, i.e. he and axe - not match.

Another path that TRY-PATH rejects when it tries to connect
the ’diving’ to a previous schema is the path from "dropping’ to
“holding”.

1) An antecedent of ‘dropping’ is the object dropped must be "held’.
2) ‘Holding’ is a part of ‘carrying’.

3) Another part of “carrying’ is ‘travelling’.

4) A kind of “travelling’ is “travelling in water’.

5) A part of “travelling in water’ is ‘diving’.

The comnection between ‘dropping” and "holding’ is a part of the path
which connects ‘chopping’ (line 8) to ‘dropping’ (line 9). When TRY~
PATH tested this path it marked the ’chopping’ and its subpart
‘holding” as being terminated. The ’‘chopping’ and ‘holding’ are
‘terminated” and not ‘completed’ because the ‘chopping’ event was
interrupted before it reached its normal conclusion. We
differentiate between “terminated’ and ‘completed’ events because a

‘terminated’ event can be re-~initiated. For a trio of sentence like:

The peasant chopped wood.
He dropped the axe.
He picked it up and continued chopping.

The second ‘chopping’ event is a continuation of the first one, 80 to
have marked the first ‘chopping’ as ‘completed’ would have be an

error.

105

Because the ‘holding’ has been ‘terminated’ TRY-PATH rejects
the the path from ‘diving’ to ’‘holding’ (i.e. a ‘carrying’ has not

occurred).

Notice the ’‘seeking’ event that TRACE constructs. The
peasant sought the axe (line 13), but failed to find it (line 18).
He sought the axe by ‘travelling” to the bottom of the lake (line
14), by ‘diving’ into the water (line 16) and ’‘swimming’ (line 17).
He never found the axe because he did not ’‘perceive’ it (line 19)

(i.e he did not ‘see’ it (line 20)).

4.3 The Wishing Ring

This example comes from "The Wishing Ring".

John labored in the fields. Never did he grow enough to
feed his family. Never did he have an extra penny. Never did he
eat at the village inn. One day he was plowing in the fields.

For this sample of text TRACE constructs a schema composed of four
subschemas: ‘eating’, ‘feeding’, ’selling’, and ;1aboring’. The
central subschema is the “laboring” (line 13).

1) John ‘labors’ in the field by ‘farming’. (line 14)

2) Part of ‘farming’ is ‘“growing’, and John does not (line 17)
‘grow’ enough to "feed’ his family.

3) Another part of ‘farming’ is “plowing’. (1ine 18)
4) A consequent of ‘farming’ is that John ‘has’ (owns) (1ine 15)
a crop.

5) If John ‘owns’ a crop than he can ’have’ physical (line 16)

106

*(SPRINT (TRY WISH))

((TRACE
1 ((LABORI (AGT JOHN) (LOC FIELD)) kkxkk INPUT ***%*.
2 (GROWL (AGT HE) (TV NOT) (QTY ENOUGH) (FOR FEED1))
3 (FEEDl (AGT HE) (AE (FAMILY (POSSBY HE))))
4 (HAVEl (AGT HE) (OBJ (PENNY MOD EXTRA)) (TM EVER))
5 (EAT1 (AGT HE) (LOC (INN MOD VILLAGE)) (TM NEVER))
6 (PLOW! (AGT HE) (LOC (FIELD (POSSBY HE)))))
7 ((((EAT1 (TM NEVER) kkkEE QUTPUT #**#k
(AGT JOHN)
(LOC (INN MOD VILLAGE))
8 (PREC (HAVEl (TM EVER) (AGT JOHN)
(0BJ (PENNY MOD EXTRA)))))
9 (FEED! (AGT HE)
(AE (FAMILY (POSSBY HE)))
(0BJ FOOD)
(ANTE (HAVE2#487 (AGT JOHN) (OBJ CROP))))
10 (SELL506 (AGT JOHN)
11 (ANTE (HAVES519 (OBJ CROP) (AGT JOHN)
(SC (HAVE2#487 (AGT JOHN) (OBJ CROP)))))
12 (CONSQ (HAVEl (TM EVER) (AGT JOHN)
(0BJ (PENNY MOD EXTRA)))))
13 (LABOR1 (AGT JOHN)
(LOC (FIELD (POSSBY HE)))
14 (SC (FARM486 (AE CROP)
(AGT JOHN)
(LoC (FIELD (POSSBY HE)))
15 (CONSQ (HAVE488 (AGT JOHN)
(OBJ CROP)
16 (SC (HAVE2#487 (AGT JOHN)
(OBJ CROP)))
))
17 (SUBSEQ (GROWL (TV NOT)
(QTY ENOUGH)
(FOR FEED1)
(AGT JOHN)
(AE CROP)
(LOC (FIELD (POSSBY HE)))))
18 (SUBSEQ (PLOWL (AGT JOHN)

(LoC (FIELD (POSSBY HE))))))
20220

Figure 4-3: The Wishing Ring = 12 event/state concepts

107

possession of it.
What 1is interesting about the ‘laboring” subschema that TRACE
constructs 1s that it gathers together events thatroccur over a range
of time (i.e.''Never did he grow enough to feed his family") with
events occurring at a particular time (i.e. "One day he was plowing
in the fields"). From TRACE’s vantage point the text, in either
case, 1is using the exact same event/state concept, and is therefore
coherent. This example indicates another way in which event concepts
can be broken up in text; as an introduction an event concept may be
described over a range of time, followed by a description of a part

cf the event at some particular time.

‘Having an extra penny’ (line 12) 1is connected to the
"laboring” subschema, because John can ‘have’ money by ‘selling’
(line 10) his crop. To “sell’ his crop John must ‘have’ it (lines 11

and 16).

‘Feeding his family” (line 9) 1is connected to ‘laboring’,

because to ‘feed’ his family John must "have’ food (lines 9 and 16).

"Eating at an Inn’ is related to ‘laboring’ via ’selling’.
To “eat’ at an Inn (line 7) John must “have’ an extra penny (line 8).
John can ‘have’ an extra penny (line 12) if he ’“sells’ his crop (line

lo)o

108

Also notice that when TRACE connected the ’‘feeding’ to the
“laboring’ it created a ‘having’. Consequently it was possible for
TRACE to mark ‘having an extra penny’ as a continuation of ‘having’
food. TRY-PATH rejects this path because the objects of the two

“havings’ do not match (i.e. MATCH(extra penny, food) = false).

4.4 The Restaurant Story

In chapter two we discussed NEXUS’ representation of 'The
Restaurant Story", here we show TRACE’s processing of it. For the

reader’s convenience the text of the story is repeated.

John went to a restaurant. The hostess seated John. The
hostess gave John a menu. The waiter came to the table. John
ordered a lobster. He was served quickly. He left a large tip.
He left the restaurant.

Figure 4-4 show TRACE’s handling of the text. '"The Restaurant Story"
represents a fuller exploration of the concept of eating at a
restaurant than the one touched upon in "The Wishing Ring". To find
the coherence of the text in "The Wishing Ring” example TRACE needed
the knowledge that to eat at an inn John would need money. To build
a representation of the restaurant story TRACE needs more detailed

knowledge about eating at restaurants and inns.

Notice that TRACE needs one tree to represent the text of
"The Restaurant Story'. To ‘eat’ at a restaurant (line 9) John

needed to ‘travel’ (line 10) to the restaurant. John “travelled’ to

109

*#(SPRINT (TRY REST))

((TRACE

1 ((GOl (AGT JOHN) (DEST RESTAURANT)) kkkkk INPUT #kk*% °
2 (SEAT! (BEN JOHN) (AGT HOSTESS))

3 (GIVEL (REC JOHN) (AGT HOSTESS) (OBJ MENU))

4 (COMEl (AGT WAITER) (DEST TABLE))

5 (ORDERI (AGT JOHN) (OBJ LOBSTER))

6 (SERVEl (BEN HE))

7 (LEAVE2#1 (AGT HE) (OBJ TIP1#))

8 (LEAVEl (AGT HE) (SOURCE RESTAURANT)))

9

((((EAT651 (OBJ LOBSTER) kkkkk QUTPUT ***%%
(AGT JOHN)
(LOC RESTAURANT)
10 (ANTE (TRAVEL654 (AGT JOHN)
(DEST RESTAURANT)
11 (SUBSEQ (MOVEL#652 (OBJ JOHN)
(DEST RESTAURANT)
12 (sc (Gol (AGT JOHN)
(OBJ JOHN)
(DEST RESTAURANT))))))
)
13 (SUBSEQ (ORDER701 (REC WAITER)
(INSTR MENU)
(AGT JOHN)
(OBJ LOBSTER)
14 (PREC (TRAVEL688 (DEST TABLE)
(AGT WAITER)
15 (SC (COMEl (AGT WAITER)
(DEST TABLE)))))
16 (CONTINUATION (ORDER1 (AGT JOHN) (OBJ LOBSTER))))
)
17 (SEQ (TIP728 (AGT JOHN)
(REC WAITER)
18 (SC (GIVE727 (AGT JOHN)

(REC WAITER)
(OBJ TIPL#)
19 (SC (LEAVE2#1 (AGT JOHN)
(OBJ TIPLEM)))
)

Figure &4~4: The Restaurant Story — 16 concepts

20

21

22

23

110

(SUBSEQ (SEAT1 (LOC RESTAURANT)
(BEN JOHN)
(AGT HOSTESS))
(SUBSEQ (GIVEl (REC JOHN) (OBJ MENU)
(AGT HOSTESS)))
))
(SEQ (DEPART755 (AGT JOHN)
(SOURCE RESTAURANT)
(SC (LEAVEl (AGT JOHN)
(SOURCE RESTAURANT)))))
(SUBSEQ (SERVEl (OBJ LOBSTER) (BEN JOHN)
(AGT WAITER)))))))))

Figure 4-4 concluded

111

the restaurant by ‘moving’ to it (line 11), by ‘going’ to it (line
12). Once he was at the restaurant he was ‘seated’ by the waitress
(line 20) and ‘given’ a menu. Next, after the waiter “came’ to the
table (lines 14 and 15), he ‘ordered’ his food. The waiter ‘served’
him food (line 23). Before he ’“left’ the restaurant (line 21), he

‘left a tip (lines 19, 18, and 17).

Consider some of the references that TRACE resclves as it
constructs a representation of the text. Because John ‘ordered’
lobster TRACE infers that John ate lobster (line 9). TRACE infers
that John ordered his food from the waiter (line 13). The text does
not explicitly state that the waiter “served’ John his food, but
TRACE infers it (line 23). TRACE infers that John was the he who was
‘served’ (line 23). TRACE infers that John was the he who “left’ a
tip (line 19). John “leaves’ a tip and TRACE infers that the waiter.
was meant to be the recipient (line 17). TRACE infers that John was

the he who “left’ the restaurant {(line 22). In each of these cases

TRACE resolved references as TRY-PATH tested a path.

4,5 Robbing a Liquor Store

Here we show TRACE’s processing of the '"Robbing a Liquor
Store" story. For the reader’s convenience the text of the story has

been repeated.

John wanted money. He got a gun and walked into a liquor
store. He told the owner he wanted some meoney. The owner gave
John the money and John left.

112

Figure 4=5 shows TRACE’s output for the story. The central schema is
“robbing”. To ‘rob’ a liquor store (line 13) John needs to “travel’
to the liquor store (line 14). He ’travels’ to the liquor store by
‘moving’ (line 15), by ’‘walking’ (line 16). John’s motive for
‘robbing” the liquor store is that he ‘wanted’ money (line 17). John
‘had’ a gun (line 21). When he got to the liquor store he “told” the
owner he ‘wanted the money’ (line 20). Then the owner ‘gave’ John

the money (line 22). John made his “getaway’ (line 23).

‘Getting a gun’ (line 10) is connected to ‘robbing” because
if John ‘gets’ a gun then John ‘has’ a gun (line 12) which is a

precedent of ‘robbing’ (line 21).

‘Leaving the liquor store’ is connected to ‘robbing” it
because a sequel of a ‘robbery’ is a ‘getaway’ (lines 23), which is a
kind of ‘escape’, which is a kind of “leaving’. What is interesting
about this connection is that in the process of connecting the
‘leaving’ to the ’robbery’ TRACE finds a more precise term,
‘getaway’~ thus demonstrating TRACE’s potential for word sense

disambiguation.

113

*(SPRINT (TRY ROB))

((TRACE
1 ((WANT!l (AGT JOHN) (OBJ MONEY)) kkkkk INPUT ***k%k
2 (GET1 (AGT HE) (OBJ GUN))
3 (WALK!l (AGT HE) (DEST LIQUOR-STORE))
4 (TELLLl (AGT HE) (THM WANT2) (TO OWNER))
5 (WANT2 (AGT HE) (OBJ MONEY))
6 (GIVE (AGT OWNER) (OBJ MONEY) (REC JOHN))
7 (LEAVE (AGT JOHN)))
8 ((((LEAVE (AGT JOHN) kkkkk QUTPUT ***kx
(SOURCE LIQUOR-STORE)
9 (SC (ESCAPES30 (AGT JOHN)
(SOURCE LIQUOR-STORE)
(SC (GETAWAY833 (AGT JOHN)
(SOURCE LIQUOR-STORE))))))
10 (GET! (AGT JOHN)
(OBJ GUN)
11 - (SC (GET2#759 (AGT JOHN)
(OBJ GUN)
12 (CONSQ (HAVE2#769 (AGT JOHN) (OBJ GUN))))))
13 (ROB764 (INSTR GUN)
(OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE)
14 (ANTE (TRAVEL778 (AGT JOHN)
(DEST LIQUOR-STORE)
15 (SUBSEQ (MOVEL1#775 (OBJ JOHN)
(DEST LIQUOR-STORE)
16 (SC (WALK1 (AGT JOHN)
(DEST LIQUOR-STORE))
N
17 (PREC (WANT1 (AGT JOHN)
(OBJ MONEY)
18 (CONTINUATION (WANT2 (AGT JOHN)

(OBJ MONEY)))))

Figure 4-5: Robbing a Liquor Store
15 event/state concepts

19

20

21
22
23

114

(SUBSEQ (SAY819 (TO OWNER)

(AGT JOHN)

(THM WANT2)

(SC (TELL1 (TO OWNER) (AGT JOHN)

(THM WANT2)))))
(PREC (HAVE2#769 (AGT JOHN) (OBJ GUN)))
(SUBSEQ (GIVE (REC JOHN) (OBJ MONEY) (AGT OWNER)))
(SEQ (GETAWAY833 (AGT JOHN)
(SOURCE LIQUOR-STORE))))))))D

Figure 4-5 concluded

115

4.6 The Margie Story

In the chapter two we discussed NEXUS’ representation of "'The
Margie Story", here we show TRACE’s processing of it. For the

reader’s convenience 1 will repeat the text of "The Margie Story".

Margie was holding tightly to the string of her beautiful
new balloon. Suddenly, a gust of wind caught it. The wind
carried it into a tree. The ballcon hit a branch and burst.
Margie cried.

Figure 4=6 shows TRACE'§ handling of the text. In the "The Tail of
the Pig" the concepts ‘moving2#’ and ‘carrying’ were needed to
represent the fact that the pig carried the laundry to and from the
stream. Here the concepts of ‘moving2#’ and ‘carrying’ are needed to

connect carryl to holdl. The path from carryl to holdl is:

1) A kind of “taking’ is ‘catching’. (line 14)

2) If an object is “taken’ then it was previously {line 15)
‘heldl”’.

3) The thing that ‘takes’ the object ‘has’ it. {(line 16)

4) To ‘move’ an object the agent of ‘moving’ must (1ine 10)

‘have’ it.

5) A kind of ‘moving’ is ‘carryingl’. (line 11)

The concepts ‘moving2#” and ‘carrying’ are also needed to
connect carryl to hitl.
1) “Carryingl’ is a kind of ‘moving2#’. (line 10)

2) A part of the fact that the wind is ‘carrying’ (line 12)
the balloon is that the balloon is “movingl#’.

3) For the balloon to ‘hitl’ the branch it had to be (line 21)

116

*(SPRINT (TRY MARGIE))
L({TRACE ((HOLDI (AGT MARGIE) FhEkkk INPUT **k*%

W00 N O B o N

10
11

12
13

14
15

16
17

18
19
20
21

{OBJ BALLOON) (INSTR STRING))
(CATCHI (AGT WIND (MOD GUST)) (OBJ IT))
(CARRY1 (AGT WIND) (OBJ IT) (DEST TREE))
(HIT1 (OBJ1 BALLOON) (ORJ2 BRANCH))
(BURSTL (OBJ IT))
(CRY1 (AGT MARGIE)))
((((CRY1 (AGT MARGIE) #%%%% QUTPUT ##*%%%
(PREC (UNHAPPY641 (STATEOF MARGIE))))
(MOVE2#602 (AGT WIND)

(OBJ BALLOON)

(DEST TREE)

(ANTE (HAVE2#608 (AGT WIND) (OBJ BALLOON)))

(SC (CARRY1 (AGT WIND) (OBJ BALLOON)

(DEST TREE)))
(COORD (MOVE1#616 (DEST TREE) (OBJ BALLOON))))
(TAKES92 (AGT WIND)

(OBJ BALLOON)

(SC (CATICH1 (AGT WIND) (OBJ BALLOON)))

(ANTE (HOLD1 (INSTR STRING)

(OBJ BALLOON) (AGT MARGIE))
)

(CONSQ (HAVEZ#608 (AGT WIND) (OBJ BALLOON))))
(HIT1 (OBJ2 BRANCH)
(OBJ1 BALLOON)

(SEQ (BREAK638 (OBJ BALLOON)

(SC (BURST1 (OBJ BALLOON)))

(SEQ (UNHAPPY641 (STATEOF MARGIE)))))
(ANTE (MOVEL#616 (DEST TREE)

(0OBJ BALLOON)))))))))

Figure 4~6: The Margie Story - 12 event/state concepts

117

‘movingl#’.

4.7 The Archer, William Tell

This example comes from the story "The Archer, William Tell".

The text of the paragraph is:

Just then the clatter of horses’ hooves was heard. And
Gessler, the governor general, galloped into the square. His
military retinue followed him. He reined his horse to a stop
before the pole.

Figure 4-7 shows TRACE’s handling of the text. Here again we
encounter the concept “following’. The governor general was ‘moving’

(lines 8 and 17) and his military retinue ‘followed’ (line 7).

What was ‘heard” (line 9) was a sound (line 10), the
“clattering’ of hooves (lines 10 and 15), which was made as the

governor general ‘rode’ into the square (line 12).

His military retinue “followed’ the governor general as he
“travelled” into the square, as he ‘rode’ intoc the square, by

‘galloping’ (line 15), ‘reining’ (Line 13), and ’“stopping’ (line 14).

4.8 The Czar’s General and the Clever Peasant

This example (figure 4-8)is the first paragraph from The

Czar’s General and the Clever Peasant. I have included it for

historical reasons. Trying to find the connection between ‘digging’

and ‘hitting’ initiated most of the motivations of this research.

118

*(SPRINT (TRY WIELL))
((TRACE
1 ((HEAR] (THM CLATTERL)) kkkkk [NPUT **%k%
2 (CLATTER1 (OBJ HOOVES))
3 (GALLOP1 (AGT GOVERNOR~GENERAL) (DEST SQUARE))
4 (FOLLOWL (AGT MILITARY-RETINUE) (OBJ HIM))
5 (REINl (AGT HE) (INSTR (HORSE (POSSBY HIM))))
(STOP1 (AGT HE) (OBJ HORSE) (LOC POLE)))
((((FOLLOWL (AGT MILITARY-RETINUE) #%#%%% QUTPUT ***%%
(OBJ GOVERNOR-GENERAL)
8 (COORD (MOVEL#445
(OBJ GOVERNOR-GENERAL) (DEST SQUARE))))
(HEAR] (THM CLATTERIL)
0 (COORD (SOUND437 (THM HOOVES)
(SC (CLATTER1 (OBJ HOOVES))))))
11 (TRAVEL474 (AGT GOVERNOR-GENERAL)
(DEST SQUARE)
(INSTR HORSE)
12 (SC (RIDE440 (INSTR HORSE)
(DEST SQUARE)
(AGT GOVERNOR-GENERAL)
13 (SUBSEQ (REINl (LOC SQUARE)
(AGT GOVERNOR-GENERAL)
(INSTR (HORSE (POSSBY HIM)))
14 (SEQ (STOP1 (LOC POLE)
(AGT GOVERNOR-GENERAL)
(OBJ HORSE (POSSBY HIM)
DN

~

L %

15 (COORD (CLATTER1 (OBJ HOOVES)))
(SUBSEQ (GALLOP! (AGT GOVERNOR-GENERAL)
16 (INSTR HORSE)
(DEST SQUARE)))))
17 (SUBSEQ (MOVE1#445 (OBJ GOVERNOR-GENERAL)

(DEST SQUARE))II) N

Figure 4-7: The Archer, William Tell - 10 event/state concepts

119

A peasant was digging in his garden one day. His spade
unexpectedly hit a hard object. (It was not a stone. It was not
a root.) He dug around it. soon he uncovered a metal chest.

Placed in parentheses are the sentences that TRACE does not handle.
Both of these sentences are descriptions of objects; in Simmons’
schema/narrative trees they would fall into the setting portion of
the representation. As was stated in chapter two, NEXUS does not
concern itself with setting information. Some of this information is
useful for match thing concepts, but the match functions lie at the

periphery of its concerns.

Figure 4-1 show TRACE’s processing of the paragraph. In this
story we see a repetition of the ‘hitting’ concept that we saw in
"The Margie Story". TRACE conmnects ‘hitting’ (line 5) and ’digging’
(line 8) as follows:

1) Part of ’‘digging’ is ‘pushing’ the spade into (line 9)
the ground.

2) If the peasant ‘pushes’ on the spade then the (line 11)
spade ‘movesl#’.

3) If the spade and a hard object “hit’ then one (line 6)
them must be “movingl#’.

Again we are seeing how the seven coherence relations of NEXUS
capture causal relations; the relationship between the ’‘digging’ and

the "hitting” is causal.

120

#(SPRINT (TRY PEASANT))

((TRACE
1 ((DIGl (AGT PEASANT) *%%kk%k INPUT *kkk%
(LOC (GARDEN (POSSBY HIM)))
(TM (DAY (DET INDEF))))
2 (HIT1 (OBJ1 (SPADE (POSSBY HIM)))
(MOD UNEXPECTEDLY)
(OBJ2 (OBJECT (MOD HARD) (DET INDEF))))
3 (DIG2 (AGT HE) (AROUND IT))
4 (UNCOVERL (AGT HE)
(OBJ (CHEST (MOD METAL) (DET INDEF)))))
5 ((((HAIT] (MOD UNEXPECTEDLY) kx%k%E QUTPUT **k#*
(0BJ2 (OBJECT (MOD HARD) (DET INDEF)))
(OBJ1 (SPADE (POSSBY HIM)))
6 (ANTE (MOVE1#230 (OBJ (SPADE (POSSBY HIM)))
(INTO EARTH))))
7 (UNCOVERI
(OBJ (CHEST (MOD METAL) (DET INDEF)))
(AGT PEASANT)
(LOC (GARDEN (POSSBY HIM)))
8 (SUBSEQ (DIGL (TM (DAY (DET INDEF)))
(INSTR (SPADE (POSSBY HIM)))
(AE EARTH)
(AGT PEASANT)
(LOC (GARDEN (POSSBY HIM)))
9 (SUBSEQ
10 (PUSH234 (AGT PEASANT)
(OBJ (SPADE (POSSBY HIM)))
(INTO EARTH)
11 (SEQ (MOVE2#237
(AGT PEASANT)
(OBJ (SPADE (POSSBY HIM)))
(INTO EARTH)
12 (COORD (MOVEL#230
(OBJ (SPADE (POSSBY HIM)))
(INTO EARTH)))))))
13 (CONTINUATION (DIG2 (AROUND IT)

(AGT PEASANT) NI

Figure 4-~8: The Czar’s General and the Clever Peasant
7 event/state concepts

Chapter 5

Question Answering and Summarizing

5.1 Quest

Question answering can be broken out into two subprocesses,
question identification and answer retrieval. Answer retrieval is
guided by the heuristics associated with each category of question:
it is directed to examine a subset of the relationships established
among event/state concepts in the text. For example, how questions
guide the retrieval process toward the instrumental portion of the
understanding, and why questions towards the causal/temporal portion
of the understanding. Thus the scope of the heuristics is determined

by the semantic relationships supported by the system.

QUEST 1is «concerned with the answer retrieval phase of
question answering. The heuristics it uses are coded as a set of
relationships between known, mentioned in the question, and unknown,
not mentioned in the question, event/state concepts. Associated with
each question type are a list of relationship configuratioms. QUEST
proceeds as a pattern matcher, seeking a subschema in the
representation produced by TRACE which will match the relatiomship

pattern associated with the question type.

121

122

QUEST represents only a part of the answer retrieval process
(see figure 5-1). Its role is to produce candidate answers; it uses
the organization of text produced by TRACE to suggest possible
answers. A later process, which has access to additional semantic
information <(e.g. causal), either rejects or accepts QUEST's
candidate answers. Thus QUEST can be thought of as an early staging

operation in the answer retrieval process.

Suppose QUEST 1is asked a meotive question. One strategy that
QUEST uses for motivation questions is to look for event/states which
are in a precedent relationship to the event described in the

question. For a question like,
Why did John rob the liquor store?

QUEST would select instances of precedent concepts, in this case

there is are two.

Because he wanted money.
Because he had a gun. (7)

A later process would determine that ‘wanting money’ is motivationmal,

and therefore a reasonable answer.

The workhorse of QUEST is a procedure called FIND-MATCH.
FIND-MATCH tries to establish a relationship between a known, named
and dinstantiated, and unknown, neither named nor 1instantiated,

event/state concepts. It has two arguments; the first 1is a pattern

123

ANSWER RETRIEVAL

R L L T TR hkARRRAARERAAKR
* * > * Further *
----- > * QUEST * * Semantic * —m——=
* * < * Tests *
khkhkhhkRhhkk kkkhkhhkhhhhiik
Figure 5-1: Two parts of answer retrieval

that it tries to match, the second a list of concept trees. The
concept trees are stored in tuple form. A So the relationship between

clean and wash is represented:

[(subseq (clean agt pig obj laundry loc stream)
(wash agt pig obj laundry loc stream)) . . .]

The pattern argument is a triple:
[relation eventl event2]

Eventl and Event2 can either be instantiated concepts (i.e. known) or
a variable that could match any arbitrary concept (i.e. unknown).
The relation field is either one of the seven relations supported by

NEXUS or a variable. A typical pattern passed to FIND-MATCH is:
(subseq x (wash agt pig obj laundry))

FIND-MATCH matches the pattern against each triplet in the schema.
If the relationship in the pattern matches the relationship of a
triplet in the schema, FIND-MATCH checks to see if corresponding

events match. For the pattern shown above the subseq relation

124

matches the relation of the first triplet in the schema. X is a
variable so it matches, and is unified, with clean. The two washing
events match because they have the same name and each of the cases of

the pattern-wash match an argument of the schema-triplet-wash.

In the remainder of this section we will see that QUEST can
in fact answer a range of questions. In particular, because the focus
of this research has been on event/state coherence, the kinds of
questions that we will be 1looking at are ones that ask about
relationships between events and states. This means that what has
frequently been referred to as concept completionA(i.e. who, what,
and where questions) and verification questions will not be

discussed.

5.1.1 Enhancement Questions

Enhancement questions ask the reader to embellish with
further details the description of an event that occurred in the
text. Answers to enhancement questions either describe subparts or
instantiated subclasses of the event in question. Some examples from

The Tale of the Pig are listed below. Figures 5-~2,5~3, and 5-4 show

QUEST’s handling of these examples. The figures only show the
concepts which QUEST used in answering the question. QUEST’s output

is the case noted versicn of the answer.

1. How did the pig clean the clothes? By washing and drying
it.

125

2. How did the pig wash the laundry? By soaking and scouring
it.

3. How did the pig dry the laundry? By hanging it fn the
sun.

Not all how questions are enhancement questions. For

example,

How did the pig carry the laundry?
In her hands.

In this case the how question is asking about instruments used in the

event and is therefore a concept completion question.

Enhancement questions direct QUEST to look for subclass,
coordinate, and subsequence relationships between the question
concept and some unknown concept in the text. Calls to FIND-MATCH
take three forms.

[FIND=-MATCH (subclass (clean agt pig obj laundry) x)]

[FIND-MATCH (subseq (clean agt pig obj laundry) x)]

[FIND-MATCH (coord (clean agt pig obj laundry) x) |

For question 1 FIND-MATCH is asked to find, in the schema list
produced by TRACE, an event which is in a subclass relatiomship with
cleaning, or a set of events that are either subsequences or
coordinates of cleaning. For question 1 it finds both washing and

drying are subsequences of cleaning.

Question 2 also uses subsequence relationships to answer the

question, while question 3 uses the subclass relationship.

126

*(SPRINT (TRY Q1))
kkhkkkhkhhkdkhxk QUESTION *r*kikdsksdkkirkhhkk
((QUEST HOW?

(CLEAN (AGT PIG) (OBJ CLOTHES))
kkdhhdhhkRkrRRrhE CONCEPT TREES *kkhkdkkkkkin

(.

(SUBSEQ (CLEAN923 (AGT PIG) (LOC WATER) (OBJ CLOTHES))
(DRY934 (AGT PIG) (LOC WATER) (OBJ CLOTHES)))
(SUBSEQ (CLEAN923 (AGT PIG) (LOC WATER) (OBJ CLOTHES))
(WASH920 (AGT PIG) (OBJ LAUNDRY) (LOC WATER)))
hhhkdkhhhhhhkdhkd ANSWER ARARAAARA AR AR hdhhhhkk
((BY ((WASH920 (AGT PIG) (0OBJ LAUNDRY) (LOC WATER))
(DRY934 (AGT PIG) (LOC WATER) (OBJ CLOTHES)))))))

Figure 5~2: How did the pig clean the clothes?

*(SPRINT (TRY Q2))
EX T3 $ 35 5 5 308 QUESTION LT 2 P bt]
((QUEST HOW?

(WASH (AGT PIG) (OBJ LAUNDRY))
kkhdkhhkhhwhhrt CONCEPT TREES *%#%kikihikikhkkikk

(.

(SUBSEQ (WASH920 (AGT PIG) (OBJ LAUNDRY) (LOC WATER))
(SCOURL (AGT PIG) (OBJ LAUNDRY) (LOC WATER)))
(SUBSEQ (WASH920 (AGT PIG) (OBJ LAUNDRY) (LOC WATER))
(SOAK1 (AGT PIG) (OBJ LAUNDRY) (LOC WATER)))
AkkhdhAkkAidhdh ANSWER HFEhshdkhdkrkihhirrdid
((BY ((SOAK1 (AGT PIG) (OBJ LAUNDRY) (LOC WATER))
(SCOUR1 (AGT PIG) (OBJ LAUNDRY) (LOC WATER)))))))

Figure 5=3: How did the pig wash the laundry?

127

#(SPRINT (TRY Q3))
kkkkkAhhkkxkk* QUESTION #*Fd*dkkkkkdkhdrhhhk

((QUEST HOW?
(DRY (AGT PIG) (0OBJ CLOTHES))
kkhhhkkkhkhhkkR%k CONCEPT TREES #*kkddkkkidkidk

(.

(sC (DRY934 (AGT PIG) (LOC WATER) (OBJ CLOTHES))

(HANG1 (IN-SUN) (LOC WATER) (OBJ CLOTHES)))
kkkkkrhhkhkhhhhkkhhk ANGWER A*Exxkkkhhkhkkk

((BY (HANGl (IN SUN) (LOC WATER) (OBJ CLOTHES))))))

Figure 5-4: How did the pig dry the laundry?

5.1.2 Goal Questions

Goal questions specify an action in the text and ask QUEST to
specify the purpose of that action. Answers to goal questions are
either a state the actor is trying to achieve or that is desired to

occur. Some examples from The Wishing Ring are (see figures 5-5 and

5=6:
1. Why did John labor in the field? So he could feed is
family and sell food.
2. Why did he want to sell food? So he could eat at the inn.

An example from The Tale of the Pig is (see figure 5-7):

3. Why did the pig trot to the stream?
So she could clean the clothes.

An example from The Restaurant Story is (see figure 5-8):

4. Why did John order lobster?
So he could eat lobster.

If the event asked about is a subpart of a second event, then

128

the second event represents the goal (See question 4). If the event
named in the question has a consequent which is an antecedent or
precedes some other event then the later event might be the goal
(Examples of that are questions 1, 2 and 3). There are four types of
patterns that goal questions ask FIND=MATCH to look for:
[AND (FIND-MATCH (CONSEQ QUESTION X))

(OR (FIND-MATCH (ANTE ANSWER X))

(FIND-MATCH (PREC ANSWER X)))]

[FIND-MATCH (ANTE ANSWER QUESTION)]
[FIND-MATCH (SUBSEQ ANSWER QUESTION)]

[FIND-MATCH (COORD ANSWER EVENT)]

[FIND-MATCH (SC ANSWER QUESTION)]

5.1.3 What-Caused Questions

What-caused questions ask the reader to identify the cause of
an event described in the text. Answers to what—caused questions

describe some previous event. Examples from The Czar’s General and

the Clever Peasant (see figure 5-9) and The Margie Story (see 5-10)

are:

1. What caused the spade to hit the hard object?
The peasant pushed the spade into the earth.

2. What ceaused the balloon to burst?
It hit a branch.

3. What caused Margie to be unhappy?
The balloon broke.

What-caused questions direct QUEST to try three different

concept patterns:

129

*(SPRINT (TRY Q10))
FkkhkxRkkkkRkkk QUESTION *kkkokdkhkhskkhhk
((QUEST GOAL?

(LABOR (AGT JOHN) (LOC FIELD))
kkkdkkhkhkkhkkkkhik CONCEPT TREES **kkkhkkihk

(

(ANTE (SELL368 (AGT JOHN)) (HAVE381 (OBJ CROP) (AGT JOHN)))
(SC (HAVE381 (OBJ CROP) (AGT JOHN))
(HAVE2#349 (AGT JOHN) (OBJ CROP)))
(CONSQ (FARM348 (AE CROP) (AGT JOHN) (LOC (FIELD (POSSBY HE))))
(HAVE350 (AGT JOHN) (OBJ CROP)))
(SC (HAVE350 (AGT JOHN) (OBJ CROP))
(HAVE2#349 (AGT JOHN) (OBJ CROP)))
(ANTE (FEED!l (AGT HE) (AE (FAMILY (POSSBY HE))) (OBJ FOOD))
(HAVE2#349 (AGT JOHN) (OBJ CROP)))
(SC (LABORl (AGT JOHN) (LOC (FIELD (POSSBY HE))))

(FARM348 (AE CROP) (AGT JOHN) (LOC (FIELD (POSSBY HE)))))
khkkkkhhhkkhhAkkrdhk ANSWER XAA*AX*AREAKAERK AR A AKA

((SELL368 (AGT JOHN))
(FEEDL (AGT HE) (AE (FAMILY (POSSBY HE))) (OBJ FOOD)))))

Figure 5-5: Why did John labor in the field?

*(SPRINT (TRY Ql1))
kkdkkkxkkhkkkkrd QUESTION **kkkkkkkkhkkkhkkhkkd
((QUEST GOAL?

(SELL (AGT JOHN) (OBJ FOOD))
hkkdkkahkkkhkrkdkit CONCEPT TREES #*#%ddkkkikkdkhhiik

(.

(PREC (EAT1 (TM NEVER) (AGT JCHN) (LOC (INN MOD VILLAGE)))
(HAVEL (TM EVER) (AGT JOHN) (OBJ (PENNY MOD EXTRA))))
(CONSQ (SELL368 (AGT JOHN))

(HAVEl (TM EVER) (AGT JOHN) (OBJ (PENNY MOD EXTRA})))
AEkkkhkhhRAhkRAdx ANSWER *AhkFhrihiis

((EAT1 (TM NEVER) (AGT JOHN) (LOC (INN MOD VILLAGE))))))

Figure 5-6: Why did John sell food?

130

*#(SPRINT (TRY Ql13))
E e Yy T Y T Y T QUESTION AhAkhhhhhhhkhrhdhhdrhrik
((QUEST GOAL?

(TROT (AGT PIG) (DEST STREAM))
EREIRKAIRRARAKAXIXARERR CONCEPT TREES **hkkhkdhrhrrkkss

(

(ANTE (CLEAN923 (AGT PIG) (LOC WATER) (OBJ CLOTHES))
(MOVE2#928 (AGT PIG) (OBJ LAUNDRY) (DEST WATER)))
(SC (MOVE2#928 (AGT PIG) (OBJ LAUNDRY) (DEST WATER))
(CARRY! (AGT PIG) (OBJ LAUNDRY) (DEST WATER)))
(SC (TRAVEL857 (TWD STREAM) (AGT PIG) (DEST WATER))
(COME880 (AGT PIG) (DEST WATER)))
(SC (MOVE1#860 (DEST WATER) (OBJ PIG) (TWD STREAM))
(TROT1 (DEST WATER) (AGT PIG) (TWD STREAM)))
(SUBSEQ (TRAVEL857 (TWD STREAM) (AGT PIG) (DEST WATER))
(MOVE1#860 (DEST WATER) (OBJ PIG) (TWD STREAM)))
(COORD (CARRY1 (AGT PIG) (OBJ LAUNDRY) (DEST WATER))
(TRAVEL857 (TWD STREAM) (AGT PIG) (DEST WATER))))
HRAARARRAARRRRKAARARR KL ANGUER Fhkhdhhiihhihhnhhhhhkiid

((CLEAN923 (AGT PIG) (LOC WATER) (OBJ CLOTHES)))))

Figure 5-7: Why did the pig trot to the stream?

*(SPRINT (TRY Ql4))
kkddkkghkkkxArRRE QUESTION *hHkkdhkkhkhkshdshskhkidk
((QUEST GOAL?

(ORDER (AGT JOHN) (OBJ LOBSTER))
khkkkkkkkRkhkkkx* CONCEPT TREES **%&wskkkkkhaiksk

(.

(SUBSEQ (EAT239 (OBJ LOBSTER) (AGT JOHN) (LOC RESTAURANT))
(ORDER289 (REC WAITER) (INSTR MENU)
(AGT JOHN) (OBJ LOBSTER)))
Ahkhhkhkhhkhrhhhkdhhhi ANSWER hhhkhhhhkhhkhhhbhrhhhhhkihn

((EAT239 (OBJ LOBSTER) (AGT JOHN) (LOC RESTAURANT)))))
Figure 5-8: Why did John order lobster?

131

[FIND-MATCH (SEQ ANSWER QUESTION)]
[FIND-MATCH (CONSQ ANSWER QUESTION)]
[AND (FIND-MATCH (ANTE QUESTION X))
(OR (CONSQ ANSWHWER X)
(SEQ ANSWER X)) |
Question 1 uses pattern 3. An antecedent of "hitting’ is that one of

the object is ’‘movingl#’. A sequel of ’“pushing’ is that the object

‘movesli#’.

Question 2 uses pattern 1. A kind of ’‘breaking’ is
‘bursting’. A sequel of “hitting’ is ‘breaking. Question 3 also uses
pattern l. A sequel of a balloon “breaking’ is that its owner could

be ‘unhappy’.

5.1.4 Motive Questions

Motive questions ask about an actors motive for causing an
event. A particular motive is never necessary, so QUEST’s heuristic
is to retrieve the precedents of the question—concept. Examples from

Robbing a Liquor Store and The Margie Story are:

1. Why did John rob the liquor store? He wanted money.

2. Why did Margie cry? She was unhappy.
Figures 5-12 and 5-13 show QUEST’s handling of the questions. Notice
for the first question QUEST suggests two answers; John robbed the

liquor store because either he had a gun (?) or he wanted money.

132

*#(SPRINT (TRY Q51))
FEEkkAkRARkRARAhR*k QUESTION ***dkhkhhkhakhdhhrhhik
(QUEST WHATCAUSED?
(HIT (OBJ1 SPADE) (OBJZ OBJECT))
kkkkhhhdkERkhkkhkhk CONCEPT TREES ***%kkkhkakkkkkhkkk

(.

(SUBSEQ (DIGI (TM (DAY (DET INDEF)))

(INSTR (SPADE (POSSBY HIM)))

(AE EARTH)

(AGT PEASANT)

(LOC (GARDEN (POSSBY HIM))))

(PUSH42 (AGT PEASANT)
(OBJ (SPADE (POSSBY HIM))) (INTO EARTH)))
(SEQ (PUSH42 (AGT PEASANT)
(OBJ (SPADE (POSSBY HIM))) (INTO EARTH))
(MOVE2#45 (AGT PEASANT)

(OBJ (SPADE (POSSBY HIM))) (INTO EARTH)))
(COORD (MOVE2#45 (AGT PEASANT)

(OBJ (SPADE (POSSBY HIM))) (INTO EARTH))

(MOVE1#38 (0BJ (SPADE (POSSBY HIM)))
(INTO EARTH)))
(ANTE (HIT!l (MOD UNEXPECTEDLY)
(OBJ2 (OBJECT (MOD HARD) (DET INDEF)))
(OBJ1 (SPADE (POSSBY HIM))))
(MOVE1#38 (0OBJ (SPADE (POSSBY HIM))) (INTO EARTH))))
hhhhihhhhcihhkdhkhkiiid ANSWER ERAkAARRhhhkhhhkdhhhhthhhhindhhhidthtthdk
((PUSH42 (AGT PEASANT) (OBJ (SPADE (POSSBY HIM)))
(INTO EARTH)))))

Figure 5-9: What caused the spade to hit the hard object?

*(SPRINT (TRY Q50))
kkdkkkhkdkkhkkkhkkk QUESTION *h&skkkdrkkkshikkshkhkskhdkidsk
((QUEST WHATCAUSED?
(BURST (OBJ BALLOON))
kkkkkkkrhkhrkkkkkk CONCEPT TREES *A***kkkkrkArAxkhkkhhkk

(.

(SC (BREAK148 (OBJ BALLOON)) (BURST! (OBJ BALLOON)))
(SEQ (HIT1 (OBJ2 BRANCH) (0OBJ1 BALLOON))

(BREAK148 (OBJ BALLOON)))
khkhhhkhhrkhhkhhhhrd ANSWER *rddddkkhnkhhdkkhhhhhhhdhdhihnk

((HIT1 (0BJ2 BRANCH) (OBJ1l BALLOON)))))
Figure 5-10: What caused the balloon to burst?

#(SPRINT (TRY Q52))
Akkkkrhkknhkhkkx QUESTION *khhkkkkhihkhsk
((QA WHATCAUSED?

(UNHAPPY (STATEOF MARGIE))
kkkhkkkkkkkkikkx CONCEPT TREES **%kkkkkk

(.

((PREC (CRY! (AGT MARGIE)) (UNHAPPY151 (STATEOF MARGIE)))

(SEQ (BREAK148 (OBJ BALLOON)) (UNHAPPY1S51 (STATEOF MARGIE)))
kkkhkkkkhkkkkhkx ANGWER #*%kkkkhkikikkkhkk

((BREAK148 (OBJ BALLOON)))))

Figure 5=11: What caused Margie to be unhappy?

133

134

QUEST makes one type of call to FIND-MATCH to answer motive

questions,

[FIND-MATCH (PRECEDENT QUESTION ANSWER)]

5.1.5 What~happened Questions

What-happened questions ask the reader toc identify the
outcome of an event. Some examples of what—happened questicns from

The Peasant and the Waterman are (See figures 5-14, 5-15, and 5-16):

1. What happened when the peasant was chopping a tree? He
dropped his axe.

2. What happened when the peasant dropped his axe? It fell
into the lake?

3. What happened when the peasant sought his axe? He didn’t
find it.

One heuristic that QUEST uses for retrieving answers to what-happened
questions is to look for events which follow the question-concept via
either sequel or consequent arcs; a consequent of the peasant
“dropping’ the axe is that it ‘fell’ into the lake, a sequel of the
peasant ‘seeking’ the axe is that he didn’t “find’ 1t. Another
heuristic it uses is to find events that the question—concept either
precedes or antecedes; a part of the peasant ‘chopping’ wood is that

he ‘held’ the axe, which is an antecedent to ’dropping’ the axe.

There are four calls to FIND-MATCH that QUEST makes:

[FIND-MATCH (CONSQ QUESTION ANSWER)]

135

*(SPRINT (TRY Q20))
KhkhhhRRFERIRRRR*ARARRE QUESTION *Hdxddhkhkdkkddkk
((QUEST MOTIVE?

(ROB (AGT JOHN) (LOC LIQUOR-STORE))
hkhkhhkhkhdrkkhhihkthxs CONCEPT TREES *#%*&kkikihik

(.

(PREC (ROB165 (INSTR GUN)
(0OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE))
(HAVE2#170 (AGT JOHN) (OBJ GUN)))
(PREC (ROB165 (INSTR GUN)
(OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE)) .
(WANT1 (AGT JOHN) (OBJ MONEY))))
XTI T3 L 3t ANSWER dkdkdkhhkhkhhhhhdrhhhhkhhd
((HAVE2#170 (AGT JOHN) (OBJ GUN))
(WANT1 (AGT JOHN) (OBJ MONEY)))))

Figure 5-12: Why did John rob the liquor store?

*#(SPRINT (TRY Q21))
khkkkrhhhkrkhkhhhhkikk QUESTION *rdkkidkhdihhdihihd
((QUEST MOTIVE?
(CRY (AGT MARGIE))
hhkhkdhkhkkhkkhhthdkih®d CONCEPT TREES #k*x&kdkhikkkhhdik

(.

(PREC (CRYl (AGT MARGIE)) (UNHAPPY151 (STATEOF MARGIE)))
kkhkhhkhkhkhhkhkhkhrkhd ANSWER Ar*rkkihkkkkhhhkhhkrrs

((UNHAPPY151 (STATEOF MARGIE)))))

Figure 5-13: Why did Margie cry?

[FIND-MATCH (SEQ QUESTION ANSWER)]
[FIND-MATCH (ANTE ANSWER QUESTION)]

[FIND-MATCH (PREC ANSWER QUESTION)]

5.1.6 Enablement Questions

Enablement questions either ask about conditions of events or
events which make another event possible; thus an answer to an
enablement question either describes a condition or an event which

made a condition true. An example from Robbing a Liquor Store is

(see figure 5-17):

1. What did John need to rob the liquor store? He needed to
have a gun.

An example from The Wishing Ring (see figure 5-18) 1is:

2. What did John need to eat at the inn?
He need to have an extra penny.

To answer enablement questions QUESTS 1looks for concepts
either precedent or antecedent to the question concept. So calls to
FIND-MATCH take two forms:

[FIND-MATCH (ANTE QUESTION ANSWER)]

[FIND-MATCH (PREC QUESTION ANSWER)]

137

kkkkkkkhhihhdhhkkhihrhhkk QUESTION *F*rkikkkdirhdiks
*(SPRINT (TRY Q30))
((QUEST HAPPEN?
(CHOP (AGT PEASANT) (AE TREE))
dhhkhkhhkhkRhikhhkhhhhhhkhhhhddk CONCEPT TREES hhhkdiihkdkiih
((COORD (CHOP1 (AE TREE)
(LOC (WOODS (BY LAKE)))
(AGT (PEASANT (DET INDEF)))
(INSTR (AXE (POSSBY PEASANT))))
(HOLD454 (AGT (PEASANT (DET INDEF)))
(OBJ (AXE (POSSBY PEASANT)))))
(ANTE (DROP1 (AGT (PEASANT (DET INDEF)))
(0BJ (AXE (POSSBY PEASANT))))
(HOLD454 (AGT (PEASANT (DET INDEF)))

(0BJ (AXE (POSSBY PEASANT))))))
khhkkhrkhkArhhhhhrhhhhkhkrk ANSWER *F*dddhihdhkhhiikik

((DROP1 (AGT (PEASANT (DET INDEF)))
(OBJ (AXE (POSSBY PEASANT)))))))

Figure 5-14: what happened when the peasant was chopping a tree?

*(SPRINT (TRY Q31))
kkkkkkkkhhkRhrERkkkx QUESTION ***kkkkkkdkskhdkisk
((QUEST HAPPEN?

(DROP (AGT PEASANT) (OBJ AXE))
kkkkkkhkkhkkkrkrA*k %k CONCEPT TREES **&kkkkhkisk

(.

(CONSQ (DROP1 (AGT (PEASANT (DET INDEF)))
(OBJ (AXE (POSSBY PEASANT))))
(FALLL (TNS PAST) (OBJ (AXE (POSSBY PEASANT)))
(DEST WATER)))
hhdkdkhhkhhithhhdhihhkhddh ANSWER khhhkkhArhhkhkhARkh%
((FALL1 (TNS PAST) (OBJ (AXE (POSSBY PEASANT)))
(DEST WATER)))))

Figure 5-15: What happened when the peasant dropped the axe?

*#(SPRINT (TRY Q32))
AxEkkkkkkkhxhhhxkkrk QUESTION **kkkkskkkhkkrkk
((QUEST HAPPEN?

(SEEK (AGT PEASANT) (0OBJ AXE))
kkkkhkkkAhkkhkhkhk%xk CONCEPT TREES *#kkikhkkkk

(°
(SEQ (SEEK611 (AGT PERSON)
(0BJ (AXE (MOD (AND PRECIOUS ONLY)))))
(FIND! (AGT PERSON) (TV NOT)
(0BJ (AXE (MOD (AND PRECIOUS ONLY))))))
khkhhkhkhkhhdhhhhhhdhd ANSWER Frikidkdidhiihihdhsd
((FIND1 (AGT PERSON) (TV NOT)
(OBJ (AXE (MOD (AND PRECIOUS ONLY))})>)))))

Figure 5-16: What happened when the peasant sought the axe?

*#(SPRINT (TRY Q40))
kkkkkkkhhkkkrhkk QUESTION **#kdkkikdkkndsk
((QUEST PREC?

(ROB (AGT JOHN) (LOC LIQUOR-STORE))
kkkkkkhkkkkhkkk® CONCEPT TREES **%*kkkkkxs

(.

(ANTE (ROB165 (INSTR GUN)
(OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE))
(TRAVEL179 (AGT JOHN) (DEST LIQUOR-STORE)))
(PREC (ROB165 (INSTR GUN)
(0OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE))
(HAVE2#170 (AGT JOHN) (OBJ GUN)))
(PREC (ROB165 (INSTR GUN)
{OBJ MONEY)
(AE OWNER)
(AGT JOHN)
(LOC LIQUOR-STORE))
(WANTL1 (AGT JOHN) (OBJ MONEY))))
khkkhhkhhkhhrhhk ANSWER hkhkhhhhkhhkhkhhdhdbhkih
((TRAVEL179 (AGT JOHN) (DEST LIQUOR-STORE))
(HAVE2#170 (AGT JOHN) (OBJ GUN))
(WANT1 (AGT JOHN) (OBJ MONEY)))))

- Figure 5-17: What did John need to rob the liquor store?

139

*(SPRINT (TRY Q41))
KkkkkkhKkR**%x QUESTION *##kkkkkkkkhs

((QUEST PREC?

(EAT (AGT JOHN) (LOC INN))
kkkkkkkkkkkik CONCEPT TREES #***&kskkxk

(.

(PREC (EAT1 (TM NEVER) (AGT JOHN) (LOC (INN MOD VILLAGE)))

(HAVEL (TM EVER) (AGT JOHN) (OBJ (PENNY MOD EXTRA))))
khhhkhhdhkhhkish ANSWER khhkkhhhhhhhhhht

((HAVEl (TM EVER) (AGT JOHN) (OBJ (PENNY MOD EXTRA))))))

Figure 5-18: What did John need to eat at the inn?

5.1.7 Perspective

There 1is not a wealth of relevant question answering
literature. Most of the systems that discuss answer retrieval
heufistics either answer questions about a micro-world [Winograd
72, Scragg 75] or are natural language front-ends for a database

[Woods, Kaplan, and Nash-Webber 72, Waltz 78, Rich 79, Hendrix
77a, Hendrix 77b, Hendrix, Scerdoti, Saglowicz, and Slocum 78]. The
recent work of Lehnert [Lehnert 77] represents the most extensive
exploration of text question answering. Her system , QUALM, uses
representations produced by SAM (a script applier) and PAM (a plan
applier) to answer questions about stories. Lehnert has a
classification of thirteen question types. Table 5-1 shows
correspondences between Lehnert question types and their QUEST
counterparts. QUEST’s question types were derived from Lehnert. In
a couple cases we have changed the names of the question type (i.e.

causal antecedent and causal consequent) because they potentially

140

QUALM QA TYPE QUEST QA TYPE
Causal Antecedent What~Caused & Motive
Goal Orientation Goal

Enablement Enablement

Causal Consequent What—-Happened

Instrumental/Procedural Enhancement
Table 5-1: Lehnert’s Question Typology

could be confused with the coherence relations antecedent and
consequent. In addition causal anteceéent questions have been split
into two categories , and instrumental/procedural questions 1like,
"What did John use to eat with?", which ask about the instrument an
agent uses in an event are not accounted for. 0f the remaining
categories, QUEST does not produce answers for them for one of three
reasons: either the question category does not concern inter—event
relations, or it asks the reader to discuss concepts related to the

text but not needed to understand the text, or it is not a relevant

question type for text.

Consider the heuristics Lehnert suggests for Goal questions.
First QUALM looks for an instantiated script. If it is available
QUALM can retrieve an answer by using script-specific retrieval
heuristics. The script—specific retrieval heuristics are canned
answers which are organized according to question category. QUALM

makes no attempt to generalize and take advantage of the structure of

141

scripts. Since in NEXUS, scripts, like everything else, are
represented using the coherence relations, QUEST can base ‘its answer

retrieval heuristics on the structure of representation.

If QUALM’s script heuristics fail plan-based retrieval
heuristics are attempted. So, for example, if an event which
precedes the question event is causally related, and is part of a
plan, the goal of the plan is the answer to the question. This
strategy 1is analogous to the first of the coherence patterns used by

QUEST to answer goal questions.

Finally caﬁsal retrieval heuristics are employed by QUALM.
During the ©processing of the text scripts were used to make
inferences about the goal structure of the text. These inferences
were added to the causal chain representation. Here the kinds of
heuristics employed are analogous to QUEST’s strategy of ascending

subsequence or coordinate arcs.

Another effort 1in the area of text question answering is
Levine’s [Levine 80] master thesis. It undertook a preliminary
investigation of the utility for answering questions of Simmons’-type
schema/narrative trees. The emphasis of her research was on
translating english forms to answer verification and concept
completion questions. Questions about the relationships between

4

events are largely unexplored. She does discuss some “why

142

questions. Her heuristic is to look for events which precede, via a
sequence arc, the question event. So for "The Black and Yellow V2
Rocket" (see Chapter Two) a question like "Why did radar track the

rocket?" is answered "It was too high to be seen'.

5.2 SOM

Text lies on a continuum, and is din fact, itself, a
summarization. The longest summary, which would not be a summary at
all, would attempt, and fail in that attempt, to explicitly‘describe
every connection among the events and states it included. The
shortest summary names a few events that will implicitly determine
the bulk of the rest of it. TRACE produces the no-summary
summarizations. SUM uses the representations produced by TRACE to

generate the shorter summaries.

In summarizing SUM highlights the most relevant portions of
the text; the events it chooses to describe tell the most about the
event/state concept it is summarizing. For us the importance of a
summarizing capability will be that it demonstrates the utility of
the hierarchical organization of the event/state packets produced by

TRACE.

We can divide SUM’s activities into two types: strategies for
summarizing single and multiple concepts. Single concepts are trees

and normally can be summarized by selecting the top node in the

143

concept’s tree. For multiple concept representations heuristics can

be applied for deleting least significant concepts.

5.2.1 Single Concept Summarization

Because of the hierarchical organization of TRACE’s output
summarization of single concepts 1is straightforward. With one
exception SUM summarizes single concepts by returning the top node in
the concept’s tree. Before considering the exception consider an
example of the rule. For '""The Restaurant Story" TRACE produces a

single concept tree. The text of '"The Restaurant Story" reads:

John went to a restaurant. The hostess seated John. The
hostess gave John a menu. The waiter came to the table. John
ordered a lobster. He was served quickly. He left a large tip.
He left the restaurant.

Figure 5-19 shows SUM’s handling of the story. The input to
SUM is the output produced by TRACE for this story. SUM’s output is
the case version of a summary of the text. The output would

translate in english to: "John ate lobster at a restaurant."

The story does not explicitly mention that John ate at the
restaurant, nor that i1f he did eat he ate lobster, yet the
representation that TRACE built is a tree centered around the concept
‘eating lobster’. Consequently, when SUM selects the top node in the
tree it correctly summarizes the story as an ‘eating’ event. The

algorithm for summarizing single concepts can be formally stated:

144

#(SPRINT (TRY REST-SUM))
((SUM khhhhhhhhih INPUT dhhkdhhkhhhhhbhhhrhdhx ik
((EAT651 (OBJ LOBSTER)
(AGT JOHN)
(LOC RESTAURANT)
(ANTE (TRAVEL654 (AGT JOHN)
(DEST RESTAURANT)
(SUBSEQ (MOVEL1#652 (0BJ JOIN)
(DEST RESTAURANT)
(SC (GOl (AGT JOHN)
(CBJ JOHN)
(DEST RESTAURANT))))
)
(SUBSEQ (ORDER701 (REC WAITER)
(INSTR MENU)
(AGT JOHN)
(0BJ LOBSTER)
(PREC (TRAVEL688 (DEST TABLE)
(AGT WAITER)
(sC (COME!l (AGT WAITER)
(DEST TABLE)))))
(CONTINUATION (ORDER1 (AGT JOHN) (OBJ LOBSTER))
)
(SEQ (TIP728 (AGT JOHN)
(REC WAITER)
(SC (GIVE727 (AGT JOHN)
(REC WAITER)
(OBJ TIPL#)
(sC (LEAVE2#1 (AGT JOHN)
(OBJ TIP1#))))

)))
(SUBSEQ (SEAT1 (LOC RESTAURANT)

(BEN JOHN)
(AGT HOSTESS)
(SUBSEQ (GIVEl (REC JOHN)
(OBJ MENU)
(AGT HOSTESS)))))
(SEQ (DEPART755 (AGT JOHN)
(SOURCE RESTAURANT)
(SC (LEAVEl (AGT JOHN)
(SOURCE RESTAURANT)))))
(SUBSEQ (SERVEl (OBJ LOBSTER) (BEN JOHN)
; (AGT WAITER)))))
hhhkkkhkhkihrhxk ouTPUT RRARERLEAA R AR AkRAhhdhhthkin

((EAT651 (OBJ LOBSTER) (AGT JOHN) (LOC RESTAURANT)))))

Figure 5-19: The Restaurant Story

145

Summarization Rule One -
Delete from the top node in a concept tree any subtrees
which are related by one of the seven coherence relations
or the special relation “continuation’."

The exception is not much harder to handle. The exception
occurs because NEXUS uses property inheritance to represent the net.
In a class/subclass relationship the subclass predicts more than the
parent class. A subclass inherits all the properties of its parent
class. If the parent class is in an antecedent relationship with a
“having’, then the subclass concept inherits this relatiomship. But
vice versa is not the case. If a summary mentions an instantiated
subclass concept the reader can predict all its relationships as well
as the relationships it inherits from its ancestors. If a summary
mentions the parent class instead of the subclass then the reader of
the summary has lost the relationships which the subclass makes
available. So the subclass concept 1s preferred over the class
concept with regards to summarization because it has more predictive

power.

For example, in "The Margie Story" to connect the ’‘carrying’
to the ‘catching’ and ‘hitting’ TRACE climbed up a subclass arc to
‘moving2#’. Figure 5-20 shows the text of the story and the

representation TRACE produces of the ‘moving2#’.

If SUM were to summarize this concept, given the previously

stated summarization rule, SUM would produce the summary; 'The wind

146

Margie was holding tightly to the string of her beautiful
new balloon. Suddenly, a gust of wind caught it. The wind

carried it into a tree. The balloon hit a branch and burst.
Margie cried.

The text of the story.

(MOVE2#602 (AGT WIND)
(OBJ BALLOON)
(DEST TREE)
(ANTE (HAVE2#608 (AGT WIND) (OBJ BALLOON)))
(SC (CARRY! (AGT WIND) (OBJ BALLOON) (DEST TREE)))
(COORD (MOVE1#616 (DEST TREE) (OBJ BALLOON))))

Figure 5-20: The wind carried the balloon into the tree.
moved the balloon into the tree.” But a better summary would be;

"The wind carried the-balloon into the tree. "

To produce this summary SUM must first promote any concepts
which are a subclass to the top node in the concept tree. A subclass
of an event is promoted by replacing the name of the top node in the
tree by the name of its instantiated subclass. So for the example we
have been discussing, before SUM selects the top node of the tree as
the summarization of the concept, ’‘move2#602” gets replaced by
‘carryl’. A more formal statement of the promotion rule is:
Summarization Rule Two - (Promotion)

If the top node in a concept tree has an instantiated subeclass,

promote the instantiated subclass to be the top node in the tree.
Apply this rule before rule one.

147

5.2.2 Multiple Concept Summarization

It is not unusual for TRACE to produce several interconnected
trees as a representation of a plece of text. To summarize a
multiple tree representation SUM needs heuristics for deleting some
of the least significant concept trees. In order to give the reader
a idea of the kind of heuristics avallable, we will discuss two

examples.

The first heuristic SUM can apply is to delete identity
trees. An identity tree occurs when TRACE has to descend a series of
subclass arcs to get a concept which 1is connected (via something
other than a subclass arc) to another concept. An example of this is
occurs in "Robbing a Liquor Store." To connect "John left." to the
the ‘robbing’ concept TRACE descends subclass arcs to the concept
‘getaway’ which is a sequel to a “robbery’. Figure 5-21 shows the
text of the story and the identity tree that TRACE produced as a part

of its output.

For summarization purposes 1identity trees are of little
interest. They occur because TRACE needed a particular sense of a
high level concept to find a connection to another concept. SUM
deals with identity trees by deleting them. SUM recognizes identity
trees by checking to see if all the coherence related subtrees are
subclasses. If they are SUM can delete that tree from its summary

because it 1is an identity tree. So the tree whose top node is

148

John wanted money. He got a gun and walked into a liquor
store. He told the owner the wanted some money. The owner gave
John the money and John left.

The text of the story.

(LEAVEL (AGT JOHN)
(SOURCE LIQUOR-STORE)
(sC (ESCAPE830 (AGT JOHN)
(SOURCE LIQUOR=-STORE)
(sC (GETAWAY833 (AGT JOHN)
(SOURCE LIQUOR-STORE))))))

Figure 5-21: An identity tree.
‘leavel’ is an identity tree and can be deleted. Thus our rule for
identity trees is:
Summarization Rule Three — (Identity Trees)
Delete from the summarization any concepts which are
represented by an identity tree. An identity tree is
a tree for which all event/state coherence related

subtrees are subclasses. Apply rule three before
summarization rules one and two.

A second heuristic that Sum applies to multiple concept
representations has to do with planned behavior. Sometimes the text
of a story describes an event which enables a later event tO oOCCur.
The concept trees associated with such events are preparatory and can
be deleted from the summary. An example of this occurs in "Robbing a
Liquor Store.” That "John got a gun.” is a preparation for a

robbery. Figure 5-22 shows the ‘getting’ and part of the ‘robbing’.

As in the case of identity trees, SUM deals with preparatory

trees by deleting them. A concept tree is preparatory if if has a

149

(GET1 (AGT JOHN)

(OBJ GUN)
(SC (GET2#759 (AGT JOHN)
(OBJ GUN)

(CONSQ (HAVE2#769 (AGT JOHN)
(0BJ GUN))IO)M)
(ROB764 (INSTR GUN)

(OBJ MONEY)

(AE OWNER)

(AGT JOHN)

(LOC LIQUOR-STORE)

(PREC (HAVE2#769 (AGT JOHN) (OBJ GUN)))

Figure 5-22: A preparation of ’robbing’ is ‘getting a gun’.
consequent (or sequel) which is an antecedent (or precedent) of
another event; a consequent of ‘getting” is ’‘having” which is a
precedent of “robbing”. So when SUM summarizes '"Robbing a Liquor
Store" it deletes the ’‘getting’ concept tree from its summary. The
preparatory summary heuristic is:

Summarization Rule Four -~ (Preparatory Trees)
If a concept tree is preparatory delete it from the summary.
A preparatory tree has a consequent (or sequel) which is

an antecedent (or precedent) of some other concept tree.
Apply rule four before rules one and two.

502.3 Summarization

SUM’s algorithm can be summarized as follows:

1) Delete identity trees. (rule 3)
2) Delete preparatory trees. (rule 4)
3) Promote subclass concepts. (rule 2)
4) Delete coherence related subtrees. (rule 1)

Consider how SUM summarizes the story '"Robbing a Liquor

150

Store". Figure 5-23 shows SUM’s handling of this story. The input
are the three interconnected concept trees produced by TRACE. One of
the trees 1is an 1identity tree (leaving), and another one a
preparatory tree (getting). SUM’s output translates in english to
"John robbed the owner of a liquor store with a gun.'" Notice SUM’s

summary is about a ‘robbery’ a concept only implicitly in the text.

Figure 5-24 shows how SUM summarizes the text from "The Tale
of the Pig". Again SUM deletes a preparatory tree; ’gathering’ the
laundry” 1is preparatory for ‘carrying’ it home. In english SUM’s
summary of this text translates to: '"The prince saw the pig appear

at the water. She cleaned her laundry. "

5.2.4 Perspective

A number of researchers have investigated summarization of
text. Table 5-2 compares other contributions to the summarization
literature to SUM. Column one gives the name of the researcher(s).
Column two the base of information they used for summarizing text.
Column three indicates if they had any programmed examples, and four

their summarization techniques.

Both Rumelhart and Correira & Simmons summarize text by level
of tree. Rumelhart works with two trees, one contains the syntactic
structure of the story the other its semantic structure. He

summarizes the text by simultaneously descending both trees, deleting

