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ABSTRACT
A systolic algorithm for multiplying two n X n matrices on a linear
array of 0(n) processors is described that cperates inp O(nz) time. The
algorithm uses simple processing elements requiring no control units or
addressable memory. Previous systolic algorithms for matrix multiplication
on a linear array have had the same processor and time complexity. However
the processors used were complex requiring control units and addressable

Memory.
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1+« INTRODUCTION

In [5], Kung has proposed systolic arrays as a simple and effective
means of employing VLSI technology to handle compute-bound problems. The
basic goal is to achieve more computations per time unit from an existing
system through the addition of an array of simple and identical processing
elements. No major changes to the existing system architecture should be
required; thus the existing memory bandwidth should remain constant and the

device should be interfaced to an existing system bus.

The constraints imposed on the structure of systolic arrays by the above
goals make linear array processors the most useful class of systolic
structures. A number of important computational algorithms fit very
naturally onto a linear processor array, and many such algorithms have been
designed [1, 2, 4, 6, 7]. Others fit more naturally onto two-dimensional
array structures, which unfortunately are poorly suited for the environment
in which they are likely to be used. Matrix multiplication is a problem of
the latter type; it can be implemented very naturally on a square mesh of
processing elements, or, for band matrices, on a hexagonal array [4]. In

{3], a linear systolic array which performs matrix multiplication was
described. The architecture of this device differed in fundamental ways
from that of other systolic devices in that each processing element
contained an addressable memory and a reasonably sophisticated contrel unit
which could respond to control instructions passed through the array. This
design resulted in rather large, complex processing elements which
resembled in many ways miniature versions of traditional instructicon-set

processors.

In this paper we present a linear systolic algorithm for multiplying two



n x n matrices which employs much simpler processing elements. No dynamic
control or addressable memory is required, so the complexity of the control
unit is vastly reduced, and the RAM can be replaced by a simpler and more
compact shift register. Our algorithm requires O(n) processing elements and
requires O(nz) time steps to perform the computation. The rest of the
paper is organized as follows. In section 2 we describe the linear array
model., In section 3 we describe the algorithm to multiply two n x n
matrices, in section 4 we give a proof of its correctness, and in section 5

we generalize the algorithm to handle non-square matrices.

2.LINEAR ARRAY MODEL

The linear array counsists of 3n—-2 identical processors numbered from 1
to 3n~2 as shown in figure 2.1. The entire array 1is driven by a single

phase global clock.,
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Figure 2.1: Linear Array

For the sake of clarity we will be using three matrices, A, B and C
throughout this paper and we wish to compute C=4A x B. The (i,j)th entry in

A, B and C will be referred to as a;;, b and i j

ij> Fij

entry in A, B and C will be referred to as aij’ bij and Cij

respectively. The
(1,5)th

respectively. The elements of A, B and C are pumped into the array through

the input ports IA, IB and IC respectively. The elements of A and B and the



result elements of C flow out of the array through the output ports 0A, OB
and OC respectively. A processor in the array 1s shown in greater detail in

figure 2.2.
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Figure 2.2: A Processor

The processor consists of three input ports IP,, IPp, IP;, three output
ports OP,, OPy and OP;, and two shift registers Sg and S; of lengths 1 and
n-2 respectively. Thus area required by the array is proportional to O(nz),
as is the case with the algorithm in [3]. The input port IP, is directly
connected to the output port OP,. The input port IPp is connected to the
input of the shift register Sp. The inputs from the input ports 1P, and IPp
are fed into the multiplier unit denoted by “[x]” in the figure above. The
output from the multiplier and the input from the input port IP. are fed
into the adder unit denoted by “[+]” in the figure above. The output from
the adder unit is fed into the input of the shift register 5, and the
outputs of Sp and Sy are connected to the output ports OPg and OPp. OP,,
OPg of processor i is connected to IP,, IPg respectively of processor i+l

and OP; is connected to IP: of processor i-l.

In each cycle (which is the same as a clock phase of the global clock)

the processor computes a result value which is the value at IP. in that

C

cycle added to the product of the values at IP, and IPg, .i.e., if a, b and



¢ are the values at 1P,, IPp and IP, respectively in cycle t then the
result computed by the processor in cycle t is ct+a*b. The processor then
transmits a, b and c+a*b to OP,, OPp and OP; respectively at the end of
cycle t, t+l and t+n-2 respectively and so a, b and c+a*b are available at
OFp, OPg and OP; in cycles t+l, t+2 and t+n-1 respectively. The delays are

implemented by the two shift registers.

The processors in the array do not have any decison-making ability.
Hence distinct elements of A, B, and C must not simultaneously reach the

input ports IP,, 1Py, and IPs respectively of any processor.

3. THE ALGORITHM

Herein we describe the algorithm to compute C=A x B on a linear array of
3n—-2 processorse. A, B and C are n x n matrices. The result entries in C are

computed by the following recurrences:

k+1)_ (k
ng >—c§j)+aik * bkj .-(1)

g e (2)

All the entries in C are initialized to ¢ before being pumped into the
array. We will refer to the initial wvalue of Cij as c§§) and the final

(n+l)
value as Cij .

Let ts be the time at which c£%> is fed dinto IC. For at least 3n-2

cycles prior to tg pump 9 into IA. This ensures that the input port IP, of
every processor in the array is initialized to @#. HNext perform the

following steps:

1. Initialize c§§) to ® and pump it dinto IC at time




t H(it+i=2)*n+(i-1)

2. Pump aj j into TA at time ts+(2n—3)*(n—l}+(j~1)*n+(i~1)

3. Pump bij into IB at time ts+(2n—5)*(n~l)+(n~j}+(i~1)*(n+1)

4. For all times less than tgt(2n-3)*(n-1) (which is the time when
ajp 1s pumped dinto IA) and for all times greater than
tgH(n-1)*(3n-2) (which is the time at which a,, is pumped into

IA) pump § into IA.

This completes the algorithm. The final value of €11 is the first result
that comes out of 0C at time ts+(3n—2)*(n~1) and the final value of every

ci; appears in the output port 0C at time tS+(3n—2)*(n—l)+(i+j—2)*n+(i—l\.

If the size of the two matrices is less than n x n then we can add dummy
entries so that the matrices are converted to size n x n. If the size is
greater than n x n then we can decompose the matrices to size n x n and

compute each of the decomposed matrices separately.

Let us illustrate how the algorithm functions through a simple example.
Let A, B and C be three 3 x 3 matrices. In figure 3.1 we illustrate 10
successive time steps in the computation of C=A x B using the above
algorithm. For each time step we show the elements which arrive at the
input ports of the processors. The element within curly brackets in a
processor 1is the value evaluated by that processor in that time step.
Figure 3.1 begins at time step 6 since in the previous time steps § is fed

in at IA.
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4, PROOF OF CORRECTHNESS

In this section we demonstrate that our proposed algorithm functions

correctly.

Proposition 4-1: For any i and j if aij is fed into the input port IA

at time t then the element at the input port 1P, of processor k at time

t+(k=~1) is aij.
Proof: Follows immediately from the fact that at the end of a cycle a
processor pumps the element at its input port IPA directly to its output

port OP, without any intervening shift register.

0

Proposition 4~2: For any 1 and j if b; . is fed into the input port IB

3

at time t then the element at the input port IPy of processor k at time

t+(k“l)*2 is bij.

Proof: Follows immediately from the fact that at the end of a cycle a
processor pumps the element at its input port IPB directly to its output

port 0Py through shift register Sg of length 1.

Proposition 4~3: For any i and j if c;; is fed into the input port IC

J
at time t then the element at the input port IP- of processor k at time

(3n-2-k)*(n-1) is g

Proof: Follows immediately from the fact that at the end of a cycle a
processor pumps the result value computed in the cycle to its output port

OPC through shift register SC of length n-2.
E}

The lemmas and theorems in the remainder of this section are based on




the algorithm described in section 3.

Lemma 4-1: Distinct elements of A, B and C do not simultaneously reach

the input ports IP,, 1Py and 1Pe respectively of any processor.

Proof: Let a5 and ag, be two distinct elements in A that simputaneously

reach the input ports IP, of processor k. Let t;. and teo¢ be the times at

J

which ajs; and ag; respectively are fed into IA. From proposition 4-1 and

k|
step 2 of the algorithm it follows that (j-t) =(s-i)/n. Now [s-i|<n and (j-
q) is an integer. Hence for the equality to hold we must have i=s and j=t.

Hence a; . is not identical to a as assumed.

1] st

Using similar arguments we can show that elements of B and C do not
simultaneously reach the input ports IPB and IPC respectively of any

processor.,

0

Lemma 4-2: For any i and j, the initial value c%%) of €5 j remains

unchanged as cy; travels from IC until it reaches the input port IPq of the

.i

processor numbered n+(i+j)-2.

Proof: Let t. be the time when Cij reaches the input port IPC of a

processor numbered k where n+{(i+j)-1<k{3n~-2.
Now tc=[ts+(i+j~2)*n+(i—l)]+{(3n—2—k}*(n-1)}

From the algorithm the term within the square brackets in the above

expression is the time at which Cij

4-3 the term within the curly brackets is the total time it takes €4 j to

is pumped into IC and from proposition
reach the input port IP- of k after being fed into IC.

Let x be the element at the input port IP, of k at t.. Let ty be the
time at which x is fed into TA. From proposition 4-1 the total time it
takes x to reach the input port of Ip, after it is fed into IA is k-1 and

so t =t +k-1. If x is @ then the lemma is satisfied. By the algorithm, if




£t < ts+(2n—3)*(n~1) then x is @. Hence we must show that tc—(k—l) <
tg+H(2n-3)*(n~1) and this reduces to showing [n*(n+(i+j)-1)-k*n]+{i-n} < 1
The term within the square and curly brackets in the above expression are
both { @ and hence the inequality holds. Hence x is @ and the lenma

follows.

t

Lemma 4-3: For any i and j, the final value c§g+1) of € j remains

unchanged as c¢; ; travels from the output port of processor numbered i+j-1

J

until it reaches OC.

Proof: Let t. be the time cij reaches the input port IPC of a processor

numbered k where I1&kLi+j-2.
Now tc=[ts+(i+j—2)*n+(i—1)}+{(3n—2*k)*(n—l)}

As in the proof of lemma 4-2 the term within the square brackets is the
time at which Cij is pumped into IC and the term within the curly brackets

is the total time taken by c¢ to reach the input port IP. after being fed

ij
into IC.

Let x be the element at the input port IP, of k in t.. Let t, be the
time at which x is fed into IA. The total time it takes x to reach the
input port of IP, is k-1 and so tc=tx+k—l. If x is ¥ then the lemma is
satisfied. By the algorithm if t, > t +(3n-2)*(n-1) then x is @. Hence we
must show that t. —(k-1) > t +(3n-2)*(n-1) and this reduces to showing that

[n*(i+j~2)~k*a]+i > @. The term within the square brackets is > $ and i

> § and hence the inequality holds. Hence x is @ and so the lemma follows.

H
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Lemma 4—~4: For any i and j and for any k, 2¢kgn+l, the time at which
ai(k-1) and b(k*l)j reach the input ports IP, and IPp of the processor
numbered n+(i+j)=~k is the same as the time at which ij reaches the input

port IP- of the same processor.

Proof: Let tos ty and t. denote the time at which ai(k—l)’ b(k~l)j’ and

cij reach the input ports IPA, IPB and IPC respectively of n+(i+j)~k. These

times are given by the following three expressions:
1. tc=[ts+(i+j—-2)*n+(i—l)}+{(3n—2-(n+i+j)+k)*(n-l)}
2. ta=[tS+(2n-3)*(n—l)+(k—-l—-l)*n+i—l}+{n+(i+j)-—k—l}
3. tb={ts+(2n—5)*(n-l)+(n—j)+(k—2)*(n+l)]+{(n+(i+j)~k—1)*2}
The term within the square and curly brackets have the same significance

as in the proofs of lemma 4-2 and lemma 4-3. Each of these expressions can

be reduced to tS+2n2—6n+l+Zi+j+k*n—k. Hence t =ty=t..

U
Lemma 4—-5: For any k, 2¢kgntl, the value of i when it leaves the
k~1
; s %
processor numbered n+(i+l)-k is m§1aim bmj’

Proof: We prove this lemma by induction on k.

Basis: Let k=l. By lemma 4-4, ajis blj and cij appear at the input

ports IP,, IPg, and IP. respectively of the processor numbered n+(i+l)~2 at

the same time. By lemma 4-2 the value of c;; at the input port IR, of this

J
processor is f§ and hence this processor computes ail*blj and so the lemma

holds for the base step.

Induction step: Assume lemma holds for k. Now by lemma 4-~4 a1 bkj and

cjj appear at the same time at the input ports IP,, IPg and IPg

respectively of processor unumbered n+(i+l)-(k+l). The value of i at the
k-1

input port IP; of this processor is ¥ aim*b and this processor

m=1 mj
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computes aik*bkj and adds it to the the value of i3 at its input port IP..

Hence the lemma holds for k+1 and the proof is complete.

n
Theorem 4-1: For any i and j, cij= kz aik*bkj when it leaves OC.
=1

Proof: Immediate from lemma 4-5 and lemma 4-3.

Theorem 4-2: The time complexity of this algorithm is O(nz).

Proof: The difference between the time when €11 is pumped into IC and
the time when «c¢,,, appears at O0C is (3o-2)*(n~-1)+(2n~2) *n+(n~-1).
ITnitialization takes (3n-2) c¢ycles and hence the theorem follows

immediately.

O

5. GENERALIZATION

We generalize the algorithm to handle non-~square matrices where A is a p
x q matrix and B is a q x r matrix and ppr. We use a linear array of
ptqtr—2 processors numbered from 1 to ptgi+r-2. The 1lengths of shift
registers Sy and S5; in a processor are 1 and d-2 respectively where d2p.
Let t,, ty and tg be the times at which aj;, byj; and cqy; respectively are
pumped into IA, IB and IC respectively where ta=tS+(d-l)*(p+r~2)—(q—l) and
tp=tgt(d-1)*(p+r-2)- (q-1)-(q+r-2). The algorithm in section 4 is modified

as follows:
1. Pump c%) into IC at time t_+(i+j-2)*d+(i-1)
2. Pump aij into IA at time ta+(j-1)*d+(i-1)

3. Pump bij into IB at time tb+(r—j)+(i*l)*(P+l)



12

4. For all times less than t, and for all times greater than

t,+(q=1)*d+(p-1) (which is the time at which a is pumped into

Pq
IA) pump @ into IA.

Correctness proofs of this generalized algorithm are similar to those
presented in section 4. In the following thecrem we show that the choice

of d is not arbitrary.

Theorem 5-1: The algorithm ensures that distinct elements of A, B and C

do not simultaneously reach the input ports IP,, IPg and IP, respectively

of any processor if and only if d>p.

Proof:

(only if part): Suppose d<p. Let d=p-m where m)l. Consider the two

distinct elements a(p~m)l and ajg in A, Let ty and ty be the times at which
a(p-m)1 and ay9 respectively are pumped into TA. From step 2 of the
generalized algorithm and proposition 4-1 we can show that t;=t, and hence
two distinct elements of A reach the input port IP, reach the input port

IP, of processor 1 at the same time.

(if part): Let d2p. We will show that distinct elements of A do not
simultaneously reach the input port IPA of any processor. Let aij and a,
be two distinct elements of A that simultaneously reach the input port 1P,
of processor k. From step 2 of the generalized algorithm and proposition
4~1 we can show that (j-t)=(s-i)/d. Now |s~i{<p and d)p. Hence for the
equality to hold we must have i=s and j=t and hence aij and ag, are not
distinct elements of A.

We can prove similarly that distinct elements of B and C do not
simultaneously reach the input ports IPp and IP, respectively of any

pProcessore.
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In the generalized algorithm we have assumed pyr. ILf p<r then we choose

d such that d)r and replace aj s bij and 4 in the generalized algorithm

by bis, ajqi and Cyi respectively.

ji

6, CONCLUSIONS

We have given a systolic algorithm to multiply two m x n matrices on a
linear array of processors having 0(n) processor complexity, O(nz) time
complexity and O(nz) space complexity. The processors used are simple
requiring no control. We then generalized the algorithm to handle non-
square matrices. A clever data arrangement used by the algorithm results
in a linear array without complex control and addressing logic. More
importantly, the linear array uses only three input and three output ports
independent of the sizes of the matrices being multiplied. As a result,
the I/0 bandwidth is a constant for the array. Similarly the size of the

matrices being multiplied using a single chip does not affect pin count

considerations of the chip.

Several variations to this algorithm are possible. For instance the
elements in A, B and C matrices can all move in the same directiom. All

such variations are described in [8].



[4]
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