PROTOCOL VALIDATION BY
MAXIMAL PROGRESS STATE EXPLORATION

M.G.Gouda and Y.T.Yu
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

TR-211 July 1982

Table of Contents
I. INTRODUCTION
11. COMMUNICATING MACHINES
III. SEQUENCES AND LEGAL SEQUENCES
IV. MAXIMAL PROGRESS SEQUENCES
Y. EFFICIENT STATE EXPLORATION
VI. EXAMINING OTHER PROPERTIES
VII. EXTENSION TO MACHINES WITH MIXED NODES

y11I. CONCLUDING REMARKS

=

17

19

26

ABSTRACT

Given two machines which communicate by exchanging messages over Lwo
finite-capacity channels, it is possible to generate all reachable states of
the system and check whether any of them is a nonprogress state. This
technique is called state exploration; and it usually requires large execution
time and storage. In this paper, we discuss a more efficient variation of this
technique. In particular, we show that the task of generating all reachable
states can be divided into two independent subtasks. In each subtask, only
the states reachable by allowing maximal progress for one machine are
generated. We prove that a2 given system cannot reach a nonprogress state iff
none of the states generated in each subtask is 2 nonprogress state. Since
the two subtasks are completely independent, and since in most cases the time
and storage requirements for each subtask are less than those for the
origianal task, maximal progress state exploration can save time or storage
over conventional state exploration. We also show that maximal progress state
exploration can be used to check properties, other than progress, for the
communicating machines; e.g., detecting all executable (and so all

nonexecutable) transitions in the twe machines.

[
[N

ot

I. INTRODUCTION

Many communication protocols can be modeled as two finite state machines
that communicate by exchanging messages over two one-directional, FIFO
channels [2,6,10,12]. Examples of such protocols are X.75 [7], and the call
establishment/clear protocol in X.21 [9], and X.25 [1]. If the two channels
in any such protocol are assumed to have finite capacities, then the protocel
can be validated by generating all reachable states and checking whether any
of them is a nonprogress state. This technique is referred to as state
exploration. Some automatic protocol validation systems based on state
exploration have been developed, and applied with reported success on actual
protocols [3,5,8].

A major problem with state exploration is that it requires large
execution time and storage. The problem is caused by the following assumption
upon which state exploration is usually based. In order to generate all
reachable states of a protocol, one needs to consider all possible progress
speeds for the two machines in the protocol”s model. This assumption leads to
generating many “unimportant” states; it alsc leads to generating the same
state many times since the same state can be reached by many different
progress speeds for the two machines.

To counter this problem, Rubin and West [4] have shown that 1if the two
machines progress in equal speeds, then the resulting reachable states can be
used to detect deadlocks and unspecified receptions (but not necessarily
overflows). This suggests to modify state exploration such that only states
reachable by assuming equal progress speeds for the two machines are generated
and examined. This modified state exploration requires, in most cases, less
execution time and storage than conventional state exploration. (For example,

the idea of restricting the two machines to equal progress speeds has led to

an efficient algorithm to detect deadlocks in the case where the two machines
exchange one type of message [11].) On the other hand, this technique cannot
be used to detect nonprogress since nonprogress can be caused by overflows as
well as by deadlocks and unspecified receptions.

In this paper, we discuss another variation of state exploration where
the state generation task is divided into two independent subtasks. In each
subtask, only states reachable by allowing one of the two machines to make
maximal progress are generated and examined. We show that in this case the
generated states can be used to detect deadlocks, unspecified receptions, and
overfiqws; thus they can be used to detect nonprogress, if any. We also show
that this technique can be used to verify properties, other than progress,
such as detecting all nonexecutable transitions in each machine.

The paper is organized as follows. The model of communicating machines is
discussed in section II. Then in section III, the concept of legal sequences,
upon which conventional state exploration is based, is presented. In section
1V, a special class of legal sequences called maximal progress sequences are
characterized; and we prove that these sequences can be used to detect
deadlocks, unspecified receptions, and overflows. In section V, we discuss how
to perform maximal progress state exploration (which is based on maximal
progress sequences) to detect nonprogress states, if any. 1In section VI, we
prove that maximal progress state exploration can be also used to detect all
nonexecutable transitions. And in section VII, we discuss how to perform
maximal progress state exploration on an extended medel of communicating

machines. Concluding remarks are in section VIII.

Ii. COMMUNICATING MACHINES

A communicating machine M is a directed labelled graph with two types of

nodes called sending and receiving nodes. An output of a sending (or

receiving) node is called a sending (or receiving) edge, and is labelled

send(g) (or receive(g)) for some message g in a finite set G of messages. Each
node in M must have at least one output edge; and outputs of the same node
must have distinct labels. One of the nodes in M is identified as its initial
node; and éach node in M is reachable by a directed path from the initial
node.

For simplicity, this model is a special case of the ome in [2], where no
node is allowed to have both sending and receiving outputs. Later in section
VII, we extend the discussion to communicating machines with mixed nodes
(i.e., nodes that have both sending and receiving outputs).

Let M and N be two comunicating machines with the same set G of messages.

A state of M and N is a four-tuple [v,w,x,¥],

where: v and w are two nodes in M and N respectively, and

x and v are two strings of messages from the set G such that IxI<K and
lyl<k, where x| (or |lyl) is the length of string x (or v,
respectively), and K is a positive integer called the channel capacity
between M and N.

Informally, a state [v,w,%,y] means that the execution of machine M has
reached node v and the execution of N has reached node w, while the input
channels of M and ¥ have the message sequences x and y respectively. The
above definition also implies that each of the two channels between M and N
has a finite capacity of K messages.

The initial state of M and N is [vg,wp,E,E] where vy and wg are the

initial nodes in M and N respectively, and E is the empty string.
Let s=[v,w,x,y] be a state of M and N, and let e be an output edge of

node v or w. A state s” is said to follow s over e, denoted s——e-->s”, iff the

following four conditions are satisfied:

i. I1f e is a sending edge, labelled send(g), from v to v~ in M,

then lyl<K and s”=[v",w,x,y.g], where ".” is the concatenation
operator.

ii., If e is a sending edge, labelled send(g), from w to w~ in N,
then [x|<K and s”=[v,w",x.g,y].

iii. If e is a receiving edge, labelled receive(g), from v to v~ in M,
then x=g.x” and s"={v7,w,x",v].

iv. If e is a receiving edge, labelled receive(g), from w to w° in N,
then y=g.y and s =[v,vw ,x,v7].

Let s and 8~ be two states of M and N, s~ follows s, denoted s——>s”, iff

there is a directed edge e in M or N such that s——e-->s”. If s-->s” then s~

is called a follower of s.

Let s and 8~ be two states of M and N. 8 is reachable from s 1ff s=s8” or

-

there exist states sy,...,5. such that s=sy, 8 =s,, and si-—>si+l for
i=1,...,7~1s

A state s of M and N is said to be reachable iff it is reachable from the
initial state of M and N.

Since the two channels between M and N have finite capacities, the set of
all reachable states is finite; and so usual state exploration techniques
[3,8] can be used to gemerate all reachable states and check whether any of
them is a nonprogress state. There are three types of nonprogress states,
namely deadlock states, unspecified reception states, and overflow states.
These are defined next:

A state [v,w,x,y] is a deadlock state iff v and w are receiving nodes,
and x=y=E (the empty string).

A state [v,w,x,y] is an unspecified reception state 1ff one of the

following two conditions holds.

i. %X=g1.82. +so gy and v is a receiving node and none of its outputs
is labelled receive(gl).

ii. y=g1.89- «.. .8, and w is a receiving node and none of its outputs
is labelled receive(g;).

If condition i holds, then the state is called an unspecified reception state

for M; if condition ii holds, it is called an unspecified reception state for

ND

A state [v,w,x,y] of M and N is an overflow state 1iff one of the

following two conditions holds.

i. Node v is a sending node; and |y|=K.
ii. Node w is a sending node; and |x|=K.

If condition i holds, then the state is called an overflow state for M; if

condition ii holds, it is called an overflow state for N.

A state is called a nonprogress state iff it is a deadlock state, an

unspecified reception state, or an overflow state; otherwise it is a progress
state.
In the above discussion, a state s of M and N is reachable if there exist

states sp,...,8 such that sy is the initial state of M and N, s=s,., and

r

Si-°ei+1’—>si+l for some edge e;;; in M or N, i=0,...,r~1. One can view that

state s is reachable by the "sequence” <ej,...,®y> of edges. It is more

convenient to replace each edge ej in this sequence by a “"symbol™ qi as

follows:

If e, is labelled send{g) in M, then qi=’Msend(g)’.
If e; is ilabelled send(g) in N, then qi=’Nsend(g)’.
If e4 is labelled receive(g) in M, then qi=’Mreceive(g)’.
If e, is labelled receive(g) in N, then qi=’Nreceive(g)’.
Therefore, s is reachable by the sequence of symbols Q=qj<Qge <+¢ -qy>

. 1
where "." is the concatenation operator. The concept of a sequence of symbol

6

which can reach a state is central to the discussion in this paper; and it is

characterized formally in the next section.

I1I. SEQUENCES AND LEGAL SEQUENCES

Let M and N be two communicating machines;

and assume that each of the

two channels between M and N has a finite capacity of K. A sequence (=q;.q3-

ses g, Of M and N is a finite string of symbols which satisfies the following

two conditions:

i. Bach symbol ¢q; in Q has one of the

following four forms:

ii.

“Msend(g)”, “Mreceive(g)~, “Nsend(g)~, “Nreceive(g)”, where g is
some message in the set of messages of M and N. A symbol of the
form “Msend(g)” or “Mreceive(g)” is called an M symbol; similarly,
a symbol of the form “Nsend(g)~ or “Nreceive(g)” is called an N
symbol. -

There are two directed paths D; and Dy which start from the initial
nodes in M and N respectively such that the following two
conditions are satisfied for each i=l,...,r.

a. The ith edge in D; is labelled send{g) (or receive(g)) iff

the ith M symbol in Q is Msend(g) (or Mreceive(g),
respectively).

b. The ith edge in Dy is labelled send{g) (or receive(g)) iff

the ith N symbol in Q is Nsend(g) (or Nreceive(g),
respectively}.

Path Dy {or Dz) is called the projection of Q onto M {or N}, and
can be referred to as Qy {(or Qu, respectively).

Iinformally, a sequence Q defines a relative progress for the execution of

M and N with respect to one another. So, if a symbol Msend(g;) occurs before a

symbol Nsend(gz) in a sequence (§, then Q defines a relative progress where

machine M sends a message g; before N sends a message gj.

Because of the

dependency between the execution of M and that of N, not every relative

progress is possible. In other words, not every sequence that can be defined

can be executed; for instance, a sequence where Mreceive(g) occurs before
Nsend(g) cannot be executed. The class of sequences which can be executed is
called legal sequences and is defined next.

A sequence Q=qj. ... -q; of M and N is called legal if it satisfies the

following two conditions.

i. For any i=l,...,r, if the ith Mreceive symbol (or Nreceive symbol)
in Q is Mreceive(g) (or Nreceive(g)), then the ith Nsend symbol {(or
Msend symbol) in Q must be Nsend{g) (or Msend(g)), and it must
occur before the ith Mreceive symbol (or Nreceive symbol) in Q.

ii. For every prefix P of Q (i.e., P=gqq. -.. Qg where s<r), nMN(P)SK
and nNM(P)ﬁK, where

nMN(P)= The number of Msend symbols in P
- The number of Nreceive symbols im P,

ﬁNM(P)= The number of Nsend symbols in P
- The number of Mreceive symbols in P.

Condition i means that every message should be received after it is sent
and in the same order it is sent. Thus, condition i implies that no deadlock
state can be reached before completing Q. Condition ii means that as the two
machines M and N execute according to the relative progress defined by Q, the
two channels between M and N do not overflow. The concept of a state which is
reached at the end of a legal sequence 1s defined next.

Let §Q be a legal sequence of M and N. Q is said to reach a state

[v,w,x,y] of M and N 1ff the following two conditions are satisfied

i. Nodes v and w are the last nodes Iin pathes Qy and Qy» respectively.
Recall that Qy and Qy are the projections of Q onto M and N,
respectively.

ii. String x (or y) comnsists of all the messages sent along Qy (or QM)
minus those received along Qy (or Q> respectively).

1f Q reaches a state s, then s is said to be reachable by Q.
The next three lemmas follow immediately from the definitions of

rea chable state,” “sequence,” "legal sequence,” and "reachable by."

Lemma 1: A state of M and N is reachable iff it is reachable by a legal
sequence of M and N. [1
Lemma Z: A prefix of a sequence (or a 1legal sequence) of M and N is a
sequence (or a legal sequence, respectively) of M and N. 1

Lemma 3: Let P be a proper prefix of a legal sequence of M and N. Then, the

L]
[e—

state reachable by P is not a deadlock state.

Based on the concept of legal sequences of M and N, usual state
exploration for M and N can be explained as the following three-step

procedure:

;. Generate the legal seguences of M and N, one by one, in the order
of their lengths. Start by the shortest sequence; then generate
ionger and longer sequences. {The shortest legal sequence is the
empty string; it reaches the initial state of M and N.)

ii. For each generated legal sequence G, comstruct the state s
reachable by Q, and check whether or not s is a nonprogress state.

iii. Repeat steps i and ii until one of the following two conditions
holds.

a. A nonprogress state is detected, in which case machines M and
N can reach a nonprogress state.

b. No nonprogress state has been detected and no new states can
be constructed any more, in which case M and N cannot reach a
nonprogress state.

In the next section, we characterize a special class of legal seguences
called maximal progress sequences; then in section V, we discuss how to

perform state exploration based on this special class of sequences.

IV. MAXIMAL PROGRESS SEQUENCES

Let M and N be two machines which communicate over finite-capacity
channels; and let Q be a legal sequence of M and N. Q@ is called a maximal

progress sequence for M iff it satisfies the following three conditions:

i. @ = A1°Bl‘A2'BZ‘ oo .An.Bn , where

n> 1,

Ay (i=1l,...,n) is a string of M symbols,

By (i=1,...,n) is a string of N symbols, and
Ay and B, can be empty strings.

ii. For i=1,...,n, the sequence A{.By. .. -A; must reach a state
[v,w,%x,y] where v 1s a receiving node and x=E (the emptly string).

iii. For i=l,...,n, the sequence Aj{.Bie oeo .B; must reach a state
[v,w,x,y] where x#E, and the largest proper prefix of Aj.Byj. .-»
By must reach a state [v7,w ,x7,y] where x =K.

Informally, a maximal progress sequence for M defines the following
relative order of execution for M and N: First, M executes as much as
possible; i.e., until it reaches a receiving node while its input channel is
empty. Then, N executes until it sends exactly one message to M; i.e., M can
now resume execution. Then, M executes as much as possible, and so on.

The next four theorems, whose proofs are in the Appendix, state roughly
that if a nonprogress state is reachable, then a noONPYoOgress state {(not
necessarily the same one) is reachable by a maximal progress sequence. Notice

that The converse is also true by lemma 1.

Theorem L: If a deadlock state is reachable (by a legal sequence), then either
a deadlock or an overflow state is reachable by a maximal progress sequence

for M. g

Theorem 2: If an unspecified reception state for M is reachable (by a legal

et

sequence), then either an unspecified reception state for M or an overflow

state is reachable by a maximal progress sequence for M. 1

Theorem 3: If an unspecified reception state for N is reachable (by a legal
sequence), then either an unspecified reception state or an overflow state is

reachable by a maximal progress sequence for M.

]

ey

Theorem 4: If an overflow state for M is reachable (by a legal sequence), then

an overflow state is reachable by a Maximal progress sequence for M. i

From these four theorems, if every state reachable by a maximal progress
sequence for M is a progress state, then every reachable state is neither a
deadlock state, an unspecified reception state, nor an overflow state for
M. This does not guarantee that every reachable state is a progress state
since some reachable states can still be overfiow states for N. Therefore, to
ensure that every reachable state is a progress state, it is sufficient (and
necessary) to ensure that every state reachable by a maximal progress sequence

for M or N is a progress state. The next theorem follows immediately.

Theorem 5: A nonprogress state is reachable (by a legal sequence) iff a

nonprogress state is reachable bv a maximal progress sequence for M or K. []

(&)

fomd
o

V. EFFICIENT STATE EXPLORATION

Based on Theorem 5, the following algorithm uses maximal progress state
exploration to decide whether any two communicating machines with finite-

capacity channels can reach a nonprogress state.

Algorithm 1:

Input: Two communicating machines M and N which communicate over two finite-
capacity channels.

Output: A decision of whether M and N can reach a nonprogress state.

Steps:

i. Use Algorithm 2 (discussed below) to generate each state reachable
by a maximal progress sequence for M. If any of these states is a
nonprogress state, then stop: M and N can reach a nonprogress state.

ii. Use an algorithm similar to Algorithm 2 to generate each state
reachable by a maximal progress sequence for N. If any of these
states 1s a nonprogress state, then stop: M and N can reach a
nonprogress state.

{ii. If all generated states in steps i and ii are progress states, then
stop: M and N cannot reach a nonprogress state.]

Now it remains to describe an algorithm to generate and examine all

states reachable by maximal progress sequences for M. (&n algorithm to
generate and examine all states reachable by maximal progress sequences for N

is similar.)
Algorithm 2:

Ianput: Two communicating machines M and N which communicate over two finite-
capacity channels.

Output: A decision of whether any state reachable by a maximal progress
sequence for M is a nonprogress state.

Variables: Two sets of states called OPEN and CLOSE. OPEN contains all the
generated states which have not been examined vyet; and CLOSE
contains the states which have been generated and examined earlier.
Initially, OPEN has the initial state of M and N and CLOSE is
empty. The algorithm terminates when OPEN becomes empty or when one
of the generated states is recognized to be a nonprogress state.

Steps: while OPEN is not empty do

i. remove one state s, selected at random, from OPEN.

ii. if s is a nonprogress state then stop: There is a nonprogress

state reachable by a maximal progress sequence for M.

iii. if s is in CLOSE
then skip

else add s to CLOSE;
if s=[v,w,x,y], where v is a receiving node
and z=E
then a. generate all states s~ such that
g==g=->g”, and
e 1s an edge in N
b. add all the generated states s to OPEHN.
else a. generate all states s such that
g==-g—-->g”, and
e is an edge in M.
b. add all the generated states s~ to OPEN.

endwhile;
if OPEN is empty (at the end of the while-statement)
then stop:

Tach state reachable by a maximal progress
sequence for M is a progress state. [

From step iii, not all followers of a reachable state s are generated.
In particular, from any state s=[v,w,x,y], either machine M or N, but not
both, can progress. 1f v is a receiving node and x=E {di.e., machine M cannct
progress), then only machine N can progress; otherwise, only machine M can
progress. Since from each state, at most one machine can progress, the number
of states generated by Algorithm 2 are, in most instances, less than the
aumber of states generated by conventional state exploration. {It is
possible, however, to construct an M and N such that from each reachable state

of M and N, at most one machine can make a progress. In such cases, the number

©f gstates generated by Algorithm 2 equals the number of states generated by

conventional state exploration.)

o

13

Example 1: Figures la and 1b show two communicating machines M and N
respectively. Assume that M and N communicate over two channels, each with a
capacity of two. Figure lc shows the states of M and N reachable by maximal
progress sequences for M; i.e., those generated by Algorithm 2. The states
reachable by maximal progress sequences for N are shown in Figure 1ld. Since
cach of the states in Figures lc and 1d is a progress state, M and N cannot
reach a nonprogress state by Theorem 5.

Let us compare this maximal progress state exploration with conventional
state exploration. Figure le shows all the reachable states of M and N
generated by conventional state exploration. There is a total of 16 states in
Figures lc and 1ld, compared with 17 states in figure le. {(Notice that we have
counted repeated states since it takes the same amount of effort to generate
and check a repeated state as it is to generate a mnew state.) From this
example, maximal progress state exploration can reduce the total number of
generated states. Nevertheless, its real advantage lies in dividing the space
of reachable states into two independent (but mnot necessarily disjoint)
subspaces, namely the states reachable by maximal progress sequences for M,
and those reachable by maximal progress sequences for N. As discussed next,
this can be exploited to reduce the execution time or storage, required to

perform state exploration.

Reduction in execution time can be achieved by generating the states
reachable by maximal progress sequences for M EEAEEEQllil,With those reachable
by maximal progress sequences for N. For instance, if the states in Figure lc
are generated in parallel with those in FigurE 1d, then the execution time
will be reduced by a factor of two. Obviously, two processors, instead of

one, are required to execute this parallel state exploration.

IaiTial node

Msend(3,)

=

Msend(q,)

/
\3.2.E. 3,
Iy
g 4 lorats
C¢) StaTe explorddion by (d> Stale ex!@g@ra“f’ on by

Maximal progress far’ o] maximal pragress for N

i1 EE

Msend (9,)

Nreceive (32‘}

3

() Conventional stile ex/t:!aréﬁon

Fiﬁa re I ConTinues

15

i6

During state exploration, the distinct states generated earlier are
stored in a set (e.g.,set CLOSE in Algorithm 2) so that they can be compared
with each state generated later. Since the number of distinct states reachable
by maximal progress sequences for M (or N) is usually less than the number of
distinet states reachable by legal sequences, the storage requirement of
maximal progress state exploration is usually less than that of conventional
state exploration. For exemple, a set of seven distinct states is needed to
perform the maximal progress state exploration in Figures lc and id provided
that they are performed 1in segquence, one after another. This is better than

the set of eleven distinct states needed to perform the conventional state

[aw—

exploration of Figure le. [

In summavy, maximal progress state exploration reduces the state
exploration task into two independent subtasks. In most instances, each
subtask requires less execution time and storage than the original task. In
these instances, if the two subtasks are executed in parallel, wusing two
processors instesd of ome, then the execution time of the task is reduced. And
if the two subtasks are executed in sequence on the same processor, then the

storage requirement of the task is reduced.

17

Vi. EXAMINING OTHER PROPERTIES

So far, we have discussed how to use maximal progress state exploration
to examine the indefinite progress of two communicating machines. After
establishing the progress of two machines, it is possible to use the same
maximal progress state exploration to examine other properties as well. On
the other hand, there are some properties which cannot be examined by maximal
progress state exploration at all. In this section, we first prove that all
executable edges (and so all nonexecutable edges) in the two machines can be
jdentified by maximal progress state exploration; then, we show that not all
stable states can be identified by maximal progress state exploration.

A. Executable Edges:

Let M and N be two machines which communicate over finite-capacity
channels; and assume that each state of M and N is a progress state. An edge e
with a tail node v in M is said to be executable iff the following two

conditions are satisfied.

i, If e is a sending edge, then a state of the form [v,w,x,y] is
reachable.

ii. If e is a receiving edge labelled receive(g), then a state of the
form [v,w,g.%X,y] is reachable.

Conditions i and ii imply that the execution of M can progress to node Vv
(the tail node of edge e); then it can progress along e to the next node in
M. Notice that the definition of an executable (or nonexecutable) edge applies
only if the two machines M and N can progress indefinitely.

Let e be an edge with a tail node v in M; and let Q be a maximal progress
sequence for M. Edge e 1s said to be gggggggggg; by sequence G iff the

following two conditions are satisfied.

i. If e is a sending edge, then Q reaches a state [Vv,w,X,¥]e

ii. If e 1is a receiving edge labelled receive(g), then Q reaches a
state [V,w,8.X,V].

From the definitions of “executable” and “executable by"”, the following

lemma is immediate.

Lemma 4: Let e be an edge in M. If e is executable by some maximal progress

sequence for M, then e is executable. i1

The converse of this lemma is also true; it is stated in the following

theoren whose proof is in the Appendix.

Theorem 6: Let e be an edge in M. If e is executable, then it is executable by

some maximal progress sequence for M.

ey
[

From Theorem 6, to establish that an edge in M (or N) is executable, 1t
is sufficient to establish that it is executable by a maximal progres sequence
for M (or N, respectively). For example, the receiving edge from node 3 to
node ? in machine M of Figure la is executable since it is executable by the
following maximal progress sequence for M {see Figure ic):
Msend(gl).Msend(gz).Nreceive(gl).Nsend(g3} which reaches state [3,3,g3,83]-
Similarly, the sending edge from node 2 to node 3 in machine N of Figure 1b is
executable, by the following maximal progress sequence for N (see Figure 1d}:
ﬁseﬁé(gi}gﬁzeceive(gz) which reaches state [2,2,E,E]. Likewise, 1t can be
shown that each edge in M or N of Figure 1l is executable.

Assume that a receiving edge labelled receive(gy) is added from node 3 to
node 2 in machine M of Figure la. The maximal progress sequences for M and W
remain as they are in Figures lc and 1d respectively. Then, the added edge is
nonexecutable since it is nonexecutable by any maximal progress sequence for

M-Q

19
B. Stable States

Let M and N be two machines which communicate over finite capacity
channels. A state [v,w,x,y] of M and N is called stable iff x=y=E (the empty
string).

We show by an example that maximal progress state exploration does not
necessarily identify all stable states of two communicating machines.
Consider the two machines M and N in Figures 2a and 2b respectively. From
Figure 2e, M and N can reach the stable state {2,3,E,E]; but from Figures 2¢
and 2d, this state cannot be reached by any maximal progress sequence for M or
N. Therefore, not all stable states can be identified by maximal progress

state exploration.

YII. EXTENSION TO MACHINES WITH MIXED NODES

The discussion so far has been limited to a model of communicating
machines where no node is allowed to have both sending and receiving outputs.
Since most "real” protocols are defined by communicating machines with such
mixed nodes, it is useful to extend our discussion to communicating machines
with mixed nodes.

Let M and N be two communicating machines (possibly with some mixed
nodes); and assume that the two channels between M and N have finite
capacities. To decide whether M and N can reach a nonprogress state,
Algorithm 1 for maximal progress state exploraiion can still be used with one
modification, namely Algorithm 3 (discussed below) should be used instead of
Algorithm 2. Algorithm 3 is a generalization of Algorithm 2; it generates and
examines all the states reachable by maximal progress sequences for M taking

into account the possibility that M and N may have some mixed nodes.

Algorithm 3:

Input: Two communicating machines M and N, possibly with some mixed nodes,

20

.2151 k338
,3,,.'

(¢) Stafe exlpiorg’?;sn by maximal
progress for M, For convenience,

messaqges g, .9 - are
referred as 1 2, .-+,

(d) Stafe ey,:/ﬁfor&‘?}!en é)z maximal
progress 'for N, For convenier

messages g g --- are
referredas 1 5

!f{‘-gggre 2 Second @x&mpfe,

21

11EE
@l 2.1,E,1)

e i o lorr lan e

(2.2.E,2) (3,3,4.€

(e> Conventional stif- ex/o/om‘f'on For convenjence |
messages §,,9, -+ are referred as J, 2, -

22

which communicate over two finite-capacity channels.

Output: A decision of whether any state reachable by a maximal progress
sequence for M is a nonprogress state.

Variables: Two sets of states called OPEN and CLOSE. Initially, OFEN has the
initial state of M and N and CLOSE is empty.

Steps: while OPEN is not empty do
i. remove one state s, selected at random, from OPEN.

ii. if s is a nonprogress state then stop: There is a nonprogress state
reachable by a maximal progress sequence for M

iii. if s is in CLOSE

then skip

else add s to CLOSE;
case s=[v,w,x,y] of

a. v 1s a sending node or
(v is a receiving or mixed node and x%E):
~-generate all states s’ such that
g==g~=>8", and
e is in machine M
~—add all generated s~ to OPEN

b, v is a receiving node and x=E:
-~ generate all states s” such that
g=-—e-~>3”, and
e is in machine N
-~ add all generated s~ to OPEN.

c. v is a2 mixed node and x=E:
-- generate all states s~ such that
g~—g—~»s”, and
e is in machine M or H.
~- for each generated s~
Do Let s—e—->s”
if e is in M
‘then add s~ to OPEN
elsif {* e is in M and s =[v,w ,x7,w"] where
v is the same mixed node v in s *}
s” is in OPEN or CLOSE
then skip

else write s~ as [vg,w ,x7,y"] and

add it to OPEN
{* vg is called a receiving mixed node.

Dealing with states in which the first
component is a recelving mixed node is
discussed in the next three cases.¥}

23

d. v is a receiving mixed node and x%E:
-- generate all states s” such that
s-—e——>s”, and
e is a receiving edge in M
{* None of the generated states has a receiving
mixed node in its first component*}
—- add all generated s~ to OPEN.

e. v is a receiving mixed node and x=E and
(w is a receiving node and y=E):
-- skip.

f. v is a receiving mixed node and x=E and
(w is not a receiving node or y#E):
-- generate all states s~ such that
s~—e-->s8", and
e is an edge in N
{* Each generated s~ has the same receiving mixed node
in its first component as s¥*}
-— for each generated s”
do let s™=[v g, v ,x",y7]
iﬁA{v’,w',x’,y’] is in OPEN or CLOSE
then skip
else add s” to OPEN

endcase
endwhile;
if OPEN is empty (at the end of the while-statement)
“then stop : Each state reachable by a maximal progress

sequence for M is a progress state.

(]

Example 2: Consider the two communicating machines M and N in Figures 2a and
2b respectively; mnotice that nodes 1 in M and N are mixed nodes. Assuming
that each channel between the two machines has a capacity of three, it 1is
required to decide whether or mot M and N can reach a nonprogress state. This
can be decided by maximal progress state exploration as well as by
conventional state exploration; both techniques are compared next.

Figure 2c shows all the states reachable by maximal progress sequences
for M (i.e., those generated by Algorithm 3). One of these states 1is
[13,3,3,E], where 1; is a receiving mixed node. Similarly, Figure 2d shows all
the states reachable by maximal progress sequences for N. Since each state in
Figure 2c or 2d is a progress state, M and N cannot reach a nonprogress state.
This same result can be obtained by conventional state exploration whose

generated states are shown in Figure Ze.

The total number of states in Figures 2¢ and 2d is 40 which is slightly
better than the 49 states generated in Figure 2e. But as discussed earlier,
the real advantage of maximal progress state exploration is in dividing the
state exploration task into two independent subtasks that can be executed in
parallel to save time or executed in sequence to save storage. Since the
number of states in Figure 2¢ (or 2d) is 20, compared with 49 states in figure
2e, then performing the two maximal progress state explorations in parallel
can reduce the execution time by a factor of 2.5. Also, since the number of
distinct states in Figure 2c (or 2d) is 17, compared with 29 distinct states
in Figure 2e, then performing the two maximal progress state explorations in

sequence can reduce the required storage by a factor of 1.5.

sy

1
3
Example 3: Consider the two communicating machines M and N in Figures 3a and
3b respectively. They represent the call establishment/clear protocel in x.25

[1]; in particular, M models the DTE and N models the DCE and the exchanged

__messages stand for the following meanings:

g stands for call request.

8 stands for call connected.

stands for incoming call.

0w
Lad

g, stands for call accepted.
g_ stands for clear request.
g stands for clear indication.

g7 stands for clear confirmation.

1f maximal progress state exploration and conventional state exploration

are applied to these two machines, the following results can be obtained.

L4

Initial 25
(8, node

(3.} S(3,)

$(9,>:send(g.)
r(g;): receive(g.)

(ay M

reg,)

5¢9,) T

Fe9,)

5(g;): send(g.)
r{g;): receive (_91.)

F{gur@ 3: The call establishment/ clear /om'?&co/ in X.25

26

State exploration Number of Number of generated
me thod generated states distinct states

Maximal progress 107 62

for M

Maximal progress 129 79

for N

Conventional 246 112

method

Therefore, maximal progress state exploration can reduce the execution
time by a factor of 246/129 = 2, and can reduce the storage requirment by a

factor of 112/79 = 1.5. [

VIII. CONCLUDING REMARKS

We have presented & variation of state exploration called maximal
progress state exploration. It has the advantage of dividing the state
exploration task into two completely independent subtasks. In most cases,
each subtask requires less execution time and storage than the original task.
Thgs, by executing these two subtasks in parallel, on the expense of using two
processors instead of one, the required execution time 1s reduced. By
executing these two subtasks in sequence on the same processor, the required
storage 1s reduced.

The actual amount of reduction in execution time and/or storage depends
on the two communicating machines under consideration. In all the examples we
have tried (including those presented in this paper), the reduction in
execution time, measured by the total number of generated states, is about
50%4; and the reduction in storage, measured by the number of distincted
states, is about 30%. More accurate results concerning the actual gain reguire
considering a large population of examples and long experience with the

technique.

27
In this paper, we have only addressed the case of two communicating
machines. Extending maximal progress state exploration to more than two

machines is still an open problem.

We have shown that maximal progress state exploration can be used to
examine properties other than progress; but we have also shown that there is
some property that it cannot examine. A list of all the properties which can

(or cannot) be examined by this technique still requires further researche.

[i]

[2]

[3]

ey
(%
[

[6]

(7]

18]

91

[10]

[12]

REFERENCES

G. V. Bochmann, "Finite state description of communication
protocols,” Computer Networks, Vol. 2, 1978, pp. 361-371.

D. Brand and P. Zafiropulo, "On communicating finite-state
machines,” IBM Research Report, RZ1053(#37725), Jan. 1981. To
appear in JACM.

J. Hajek, "Automatically verified data transfer protocols,” Proc.
Int. Comp. Conf., 1978, pp. 749-756.

J. Rubin, and C. H. West, "An improved protocol validation
technique,” Computer Network, April 1682.

H. Rudin, and C.H. West, "A validation technique for tightly
coupled protocols,” IEEE Tranms. Computers, Vol. C~31, No.7, July
1882.

C. A. Sunshine, "Formal modeling of communication protocols,”

Usc/Inform. Sc. Institute, Res. Rep. 81-89, March 1981,

$.T. Vuong, and D.D. Cowan, "pAutomated protocol wvalidation via
resynthesis: The CCITT X.75 packet level recommendation as an
example,” Tech. Report CS-80-39, Dept. of Computer Science, Univ.
of Waterloo, revised May 1981.

¢. H. West, "An automated technique of communication protocol
validation,” IEEE Trans. Comm., Vol. COM-26, pp.1271-1275, Aug.
1978.

C. H. West and P. Zafiropulo, “Automated validation of a
communications protocol: The CCITT.21 recommendation,” IBM J. Res.
Develop., vol. 22, pp.60-71, Jan. 1978.

v, T. Yu “Communicating finite state machines: analysis and
synthesis,” PH.D Thesis, Dept. of Computer Sciences, Univ. of
Texas at Austin, in progress.

Y.T. Yu, and M.G. Gouda, "Deadlock detection for a class of
communicating finite state machines,” To appear in IEEE Trans. on
Comm., Dec. 1982.

P. Zafiropulo, C.H. West, H. Rudin, and D.D. Cowan, “Towards
analyzing and synthesizing protocols,” IEEE Trans. Comm., Vol.
coM-28, No. &, April 1980, pp. 651-661.

(3]

29

APPENDIX: PROOFS OF THEOREMS

Proof of Thebrem 1:

Let s=[v,w,E,E] be a reachable deadlock state of M and N. Also let Q be a
legal sequence which reaches s, and Qy and Qy be the projection paths o0i §
onto M and N respectively. Hence, Qy is from the initial node to receiving
node v in M; and Qy 1is from the initial node to receiving node w in N. Also,
each sent message in Qy (or QN) must be received in Qy (or Qy» respectively).

Construct a sequence Q° from Q by the following two-step algorithm.

Algorithm A:
i. Initialize Q":= E (The empty string);
i:= 0;
j=0;

ii. while Q" does not reach an overflow state
and i+j < the number of symbols in Q
do

Tet [v7,w",x",y"] be the state reachable by Q7;
if v7 is a receiving node and x” = E
then i := i +1;
add a copy of the ith N symbol in Q to Q
else j := j+1 ;
add a copy of the jth M symbol in Q to Q”
endwhile
1t is straightforward to show that the sequence Q” constructed by Algorithm A
is a maximal progress sequence for M. There are two ways for this algorithm to
terminate, either Q° reaches an overflow state (in which case, Theorem 1 1s
correct), or i+j= the number of symbols in Q. In this latter case, the symbols
in Q7 are the same as those in Q, but they are in a different order. Thus, the
projections of Q” onto M and N are identical to those of Q; i.e., Q7 y=Qy and
Q = Therefore, Q'y is from the initial node to receiving node v in M; and
Q"y is from the initial node to receiving node w in N. Also, each sent message

in Q’M {or Q’N) must be received in Q7y (ot Q7> respectively). Hence, Q" must

reach the deadlock state [v,w,E,E], and Theorem 1 is correct. (]

30

Proof of Theorem 2:

Let s=[v,w,x,y] be a reachable unspecified reception state for M; i.e.,
X=g1e eee o By, and v is a receiving node without an output edge labelled
receive(gl) in M. Let Q be a legal sequence which reaches s; and let Qy and Qy
be the projection paths of Q onto HM and N respectively. Qy is from the
initial node to receiving node v in M; and Qy is from the initial node to node
w in N.

Apply a two-step algorithm, called Algorithm B, to construct a sequence
Q” from Q. Algorithm B is similar to Algorithm A in the proof of Theorem i,
except that the condition of the while statement in the second step 1s

modified to become:

Q~ does not reach an unspecified reception state
and Q° does not reach an overflow state
and i+] < the number of symbols in Q

It is straightforward to show that the constructed Q° 1is a maximal
progress sequence for M.

There are three ways for this algorithm to terminate, either Q7 reaches
an unspecified reception or overflow state (in either case, Theorem 2 is
correct), or i+j= the number of symbols in Q. In this latter case, the symbols
in @~ are the same as those in Q, but they are in a different order.
Therefore Q°, like Q, must reach a state [V,w,87¢ <o gr,y} where v is a
receiving node without any output labelled receive(gy). This state is an

unspecified reception state for M and Theorem 2 is correct. g

31

Proof of Theorem 3:

Let s=[v,w,X,y] be a reachable unspecified reception state for N; i.e.,
Y=8182+++ 8> and w is a receiving node without an output edge labelled
receive(gl) in N. Let Q be a legal sequence which reaches s; and let Qy and Qy
be the projection paths of Q onto M and N respectively. Qu is from the
initial node to node v in M, and Qy is from the initial node to receiving node
w in N.

1f node v is a sending node or xXE, then extend Qy until omne of the
following three conditions is met.

i. The extended Qu» and Qy reach a state [vl,wl,xl,yl] where vy is a
receiving node, and x1=E (the empty string).

ii. The extended Qy, and Qy reach an unspecified reception state for
M.

jii. The extended QM’ and QN reach an overflow state for M.

Let the edges in the extension be labelled bl,bz,..,b where any b; 1is

s*
either send(g) or receive(g) for some message g Extend sequence Q to become Q
as follows.
§ = Q.Mby.Mby....Mbg
The projections of § onto M and N are the extended Qy, and Qy respectively.
Apply Algorithm B in the proof of Theorem 2, to comstruct a sequence Q”
from Q. It is straightforward to show that the constructed @~ is a maximal
progress segquence for M. (Extending the sequence Q to Q before applying the
algorithm is intended to ensure that Q" is a maximal progress sequence for M.)
There are three ways for Algorithm B to terminate, either Q° reaches an
unspecified reception or overflow state (in either case, Theorem 3 is

correct), or i+j=the number of symbols in 3. In this latter case, the symbols

in Q° are the same as those in Q, but in a different order. Therefore Q7,

32

iike §, must reach a state [v7,w,x”,y.z] where y=gj..-8., and w is a receiving
node without an output labelled receive(gl). This state is an unspecified

reception state for N; and Therorm 3 is correct. [

e

Proof of Theorem 4:

Let s=[v,w,x,y] be an overflow state for M, i.e., v is a sending node in
M, and lyl=K. Let Q be a legal sequence which reaches s; and let Qy and Qy be
the projection paths of Q onto M and N respectively. Qy is from the initial
node to sending node v in M; and Qy is from the initil node to node w in N.

Apply Algorithm A in the proof of Theorem 1 to construct a sequence {7
from Q. It is straightforward to show that the constructed Q7 is a maximal
progress sequence for M. There are two ways £for the above algorithm to
terminate and produce Q7, either Q° reaches an overflow state, {(in which case,
Theorem 4 is correct), or i+j=the number of symbols in Q. In this latter case,
the symbols in Q7 are the same as those in @, but in a different order.
Therefore Q°, like Q, must reach the state [v,w,x,y], where v is a sending

node and |yl=K. This state is an overflow state; and Theorem 4 is correct. []
Proof of Theorem 6:

Let e be an executable edge with a £2il node v in M. We consider the case
where e is a sending edge; the proof where e is a receiving edge is similar.
Since e is an executable sending edge, then there is a reachable state s of
the form [v,w,X,y]. Let Q be a legal sequence which reaches s; and let Qy and
QN be the projection paths of Q onto M and and N, respectively. Qy is from
the initial node to sending node v in Mj and Qy ig from the initial node to
node w in N.

Apply a two-step algorithm, called Algorithm C, to comstruct & sequence

Q~ from Q. Algorithm C is similar to Algorithm A in the proof of Theorem 1,

33

except that the condition of the while statement in the second step is

modified to become:

Q” does not reach a state of the form [v,w ,x7,y7]
and i+j < the number of symbols in Q

It is straightforward to show that the constructed Q° 1is a maximal
progress sequence for m, and that it reaches a state of the form [v,w™,x",¥].

Therefore e is reachable by Q7. i1

