A STORAGE-EFFICIENT METHOD FOR CONSTRUCTION
OF A THIESSEN TRIANGULATION

A, K. Cline
Department of Computer Sciences

University of Texas at Austin

R. J. Renka
Computer Sciences Division
Union Carbide Corporation — Nuclear Division

Oak Ridge National Laboratory

ACKNOWLEDGEMENTS

This report was extracted, with minor revisions, from the

second author”s PhD dissertation presented to The University of
Texas at Austin in May, 1981. The first author’s research was par-

tially supported by NASA Grant NAG1-79.

ABSTRACT

This paper describes a storage-efficient method and assocliated
algorithms for constructing and representing a triangulation of ar—
bitrarily distributed points in the plane.

1. INTRODUCTION

This paper addresses the problem: Given a set of nodes (X3,Y4),
i = 1,.0.,N, arbitrarily distributed in the X-Y plane, construct a tri-
angulation with the nodes as vertices and which is as nearly equiangular as
possible. The primary application of such a triangulation is as a preiimi~
nary step in a triangle-based method for bivariate interpolation of data
values associated with the nodes.1 The triangulation also serves as an ef-
ficient mechanism for solving closest-point problems such as finding the
two closest nodes and finding a largest circle containing none of the
nodes. These problems arise 1in a variety of applications; e.g., wire
layout, clustering, facilities Ilocation, and constructing the feasible
polygon for linear programming in two variables with N constraints.?
Another application of the triangulation method is as an automatic mesh
generator for a triangle-based finite element code. Lists of element node
numbers and boundary node numbers can be generated from a set of nodal
coordinates which are concentrated in regions where the solution varies
most rapidly. In addition to generating the mesh, the method guarantees its
validity. Simpson provides and discusses the importance of an algorithm

which verifies the consistency of a set of finite element input data.3

This paper describes the algorithms implemented in an extensive and
well-documented software package for triangulation and interpolation writ-
ten in a subset of ANSI standard FORTRAN accepted by the PFORT verifier.4
The software listing is found in Renka® and machine-readable code may be
obtained from the second author. The primary goal of this research was a
triangulation package requiring less than those previcusly available. This
was achieved at the cost of a relatively small loss in time efficiency over

alternative packages.

Section 2 presents definitions and theory necessary to describe the
algorithms. A more detailed analysis is found in Renka.1? Section 3
describes the algorithms for constructing a Thiessen triangulation. This
presentation is independent of a data structure for representing the tri-
angulation. In Section &4 several data structures are analyzed including one
which requires only 7 words of storage for each node. Execution timings

were also performed and are discussed in Section 3.

2. FUNDAMENTAL DEFINITIONS AND TRIANGULATION THEORY

Definition l. For three points ?0=(X0,YG), Plz(Xl,Yl), and P2=(X2,Y2)
in the plane with P, # Py,

Thus we say Py is left of P; =» Py if and only if Py is to the left of or

on the line through P; and P, as seen by an observer at Py facing Pj. Also

we say Pg STRICTLY LEFT Py - Py if the inequality is strict.

Definition 2. A region of the plane is convex if and only if for any
two points contained in the region the line segment connecting the two
points also lies in the region. The convex hull of a finite set of points
in the plane is the smallest convex region which contains the points. Note
that such a convex hull is closed and thus contains the points which define
it, and the convex hull of a finite set of noncollinear points has at least

three of the points on its boundary.

Let S be an ordered set of distinct points in the plane {(X,,Y.), 1 =
i*7i
1,2,¢+.,N where N > 3. It is assumed that the points are not all collipear.

Let H be the convex hull of S and let B be the boundary of H.

Definition é, A node is an element of S. Each node is identified with

its index in S (node i = (X;,Y4y)) and will be denoted by this index or by
Ngs Ny, Npyeoo indicating arbitrary indices. The distinction between a node

and its index will be clear from the context.

Definition 4. A triangle is the convex hull of three noncollinear
nodes, referred to as vertices. The triangle with vertices N;, Ny, and Ng
is denoted (Ni’Nj’Nj) with N STRICTLY LEFT Ny -> N, for i,j,k€{1,2,3} and

J
pairwise disjoint.

Definition 5. A triangulation of S is a set of triangles T with the

following properties:

a) Each triangle contains no node other than its vertices,
b) The interiors of the triangles are pairwise disjoint, and

¢) T covers H; i.e., every point in H is contained in a triangle of
T.

Definition 6. Let T be a triangulation of S: for each triangle
(Nl,Nz,N3) of T, the vectors Ny —=> Ny, Ny ~> N3, and Ng -> Ny are referred
to as edges of T. The undirected line segment corresponding to an edge N;
-2 N is referred to as an arc and is denoted Ny - N, or Ny = Ny. Note that
edges and arcs are associated with a triangulation, and edges are directed

while arcs are not.

A boundary edge of T is an edge Ny - Ny such that P LEFT Ny - Ny for

all P€H. Thus each point of a boundary edge lies on B. An interior edge 1is

an edge which is not a boundary edge. The arc associated with a boundary

(interior) edge is a boundary (interior) arc.

A boundary node is a node which 1is an endpoint of a boundary edge and

thus lies on B. An interior node is a node which is not an endpoint of a

boundary edge.

The node opposite an edge N, - N,y is the node N3 such that (Nl,Nz,NB)

is a triangle of T. N3 is unique by Definition 5b.

Definition 7. Two nodes are adjacent to each other if and only 1f they

are the endpoints of a common arc. A neighbor of a node Nj is a node which

is adjacent to Ng. The degree of a node Ny is the number of neighbors of

Nge.

The adjacency set for a node Ny is an ordered set containing the

neighbors of Ny in counterclockwise order. The first neighbor is arbitrary

if Ny is interior. If Ny is a boundary node, the first and last neighbors

of Ny are the unique boundary nodes Ny and Np such that Nj - Np and Np -2

N, are boundary edges.
The following observations were made by Lawson.6

Theorem l. Let T be any triangulation of S and

N = number of nodes,
Ny = number of boundary nodes = number of boundary arcs,

N,. = number of arcs,

N, = number of triangles,
then

N, = 2N - Ny — 2

Ny = Np + N~ 1=230~-N, -3

N-2<N <2N-5 and 2N -3 <N, <3N -6

Note that the formula N, = N, + N - 1 is a special case of Euler’s

formula which helds for N, representing the number of finite regions in any

connected planar graph.

Definition 8. Given a triangulation T of S and a point P in the plane,
a node Nj is visible from P if and only if P can be connected to Ny by a
line segment which neither intersects nor overlaps an arc of T. (Line seg-
ments which meet in a "T" are said to intersect while segments which meet
in a "V" do not.) P is said to be exterior to T if and only if P is not

contained in the convex hull of S.

Definition 9. A pair of triangles of T, (Nl,Nz,N3) and (stNl’NA)s
which share a common arc form a quadrilateral of T denoted (Nl,Nz,N3,N4).

The quadrilateral is said to be strictly convex if the diagonals Ny- N2

and N3 - N4 intersect at an interior point of Nl - NZ' A swap in this case

is the replacement in T of (NI’NZ’NS) and (NZ’NI’N&) by (N3,N4,N2) and

(Né’NB’Nl)' Thus, a swap in effect swaps diagonals.

A swap leaves the parameters N, Ny, N and N unchanged, and all pos-

a)
sible triangulations of S can be generated by applying swaps to a given
triangulation. These results are proved in Renka.lz

Definition 10. Given an interior arc Ny - Ny with corresponding quad-
rilateral (Nl,Nz,N3,N4), the swap test is a decision on whether to perform
a swap based on either of the following criteria {(which can be shown to be

equivalent).

a) The max-min angle criterion is the choice of the pair of tri-
angles which maximizes the minimum of the six interior angles
when (Nl’Nz’NB’NA) is strictly convex. The decision will be

positive if and only if a larger minimum angle would result from
the swap in this case. The decision is defined to be negative
if (Ny,N,,N5,N;) is not strictly convex.

b) The circle criterion is the choice of the pair of triangles
whose circumcircles do not contain the remaining vertices in
their interiors. Equivalently, the decision will be made to
swap if and only if N, is interior to the circumcircle of Nys
No, and Ng.

An arc is locally optimal if and only if it is a boundary arc or, if

it is interior, application of the swap test to it would not result in a

decision to swap.

Definition 11l. A Thiessen triangulation is one in which all arcs are

locally optimal.

Consider the following method for constructing a triangulation of

S. For each node N define the Thiessen region associated with Ny to be the

closure of the set of points in the plane which are closer to Ny than to

any other node. A pair of nodes Nl and Nz are said to be Thiessen neighbors

if and only if their corresponding Thiessen regions share one or more
points. If the regions share more than one point, N, and N, are strong
Thiessen neighbors. If the regions share exactly one point, Ny and N, are
referred to as weak Thiessen neighbors. This is the neutral case cor-
responding to four or more nodes lying on a common circle. A triangulation
may be obtained by conmecting all pairs of strong Thiessen neighbors and
arbitrarily choosing k - 3 nonintersecting arcs connecting weak Thiessen
neighbors when k nodes lie on a common circle for k > 4. Both Lawson5 and

Sibson7 have proved that this triangulation satisfies Definition 11 above.

Figure 1 depicts a Thiessen region diagram with carrespanding‘Thiessen
triangulation T. Note that Thiessen region vertices are circumcenters of
the triangles of T, and Thiessen region boundaries are composed of perpen-
dicular bisectors of the arcs of T. Either Ny - N, or N5 - N, may be chosen

as an arc in the neutral case depicted.

Fig. 1. Thiessen Region Diagram and Corresponding
(Dual) Triangulation

Thiessen regions are also referred to in the literatures as tiles and
polygons, and have been associated with the names Dirichlet and Voronoi.
The corresponding triangulation is also referred to as a Delaunay tri-

angulation. Rhynsbu}rger8 presents a brief history of the development of

these concepis.

The triangulation algorithm which will be described in the following

section applies the swap test in an lterative fashion to produce a Thiessen

triangulation.

3. ALGORITHHMS

This section discusses algorithms for constructing and obtaining in-
formation from a Thiessen triangulation. Some of the algorithms are
described in more detail than others, but none of the descriptions make
reference to a data structure. However, Algorithms 3, 5, and 7 are designed
specifically for a data structure in which the adjacency information is ex-—

plicit; i.e., the adjacency sets are easily obtained.

An overall description of the method will be followed by detailed al-

gorithms. Our basic approach to constructing the triangulation is as fol-

lows:

a) Optionally, reorder the nodes (Algorithm .

b) Construct an initial Thiessen triangulation Tj of the first j

nodes where j is the smallest integer such that nodes 1,...,]
are not all collinear (Algorithm 2).

¢) For k = j + 1,...,N construct a Thiessen triangulation Ty of
nodes 1,...,k as follows:

i) Find a triangle or a boundary arc of Ty.j which contains

node k, or a pair of boundary nodes which are visible from
k if k is exterior to Ty.q (Algorithm 3).

ii) If k lies on a boundary arc, comnect it to the endpoints.
If k¥ is contained Iin a triangle and does not lie on a
boundary arc, connect it to the three vertices. Otherwise
connect k to all boundary nodes which are visible from k
(Algorithm 4).

iii) Optimize the mesh by applying a sequence of swap tests
(Algorithm 6) and the appropriate swaps to the interior
arcs which are opposite k (Algorithm 5).

One of the features of this method is that it provides for efficient
updating of the data. To add a new node to the triangulation, it is only

necessary to execute Step c¢) an additional time, rather than recreating the

entire triangulation.

16

Algorithm 1. Reorder the N nodes by applying an O(N*log(N)) quick sort

to either their X or Y components.

Algorithm 1 may be employed at the user”s option to increase the ef-
ficiency of the triangulation algorithms. It 1s not necessary but may be
computationally advantageous even for small values of N. Timing comparisons
for randomly ordered nodes versus presorted nodes are presented in Section

5

The following algorithm initializes the triangulation. Except in the
case of collinearity, it results in a single triangle, formed by the first

three nodes as vertices.

Algorithm 2. Construct a Thiessen triangulation of nodes 1,...,] where
j is the smallest integer such that the first j nodes are not all
collinear. Such an integer exists by assumption and 3 < j < N. Note that
nodes l,...,j~1 define a line segment L with two of the nodes as endpoints.

Step 1: Order the fist j = 1 nodes by their distances from one of the
endpoints of L.

Step 2: Connect the first j = 1 nodes by making nodes Nl and NZ ad jacent

if and only if N; immediately precedes or immediately follows Np
in the ordering defined in Step 1.

Step 3: Connect j to each of the first j - 1 nodes.

Clearly, the triangulation constructed by Algorithm 2 contains no

strictly convex quadrilaterals and is thus a Thiessen triangulation. See

Fig. 2.

The following algorithm may be used both to construct the triangula-
tion and to locate a point at which an interpolated value is to be com—

puted.

11

Fig. 2. Thiessen Triangulation Constructed by Algorithm 2.

Algorithm 3. Let T be a triangulation of S, let H be its convex hull,

let B be its boundary and let P be any point in the plane.

a) If P is in H and does not lie on B, find a triangle (Nl,NZ,N3)

containing P (set Ny, Ny, and N3 to the vertex indices of the
triangle).

b) If P is exterior to T, set Ng to 0 and find the indices of a
pair of boundary nodes Nj and Nj; such that Ny, Np, and all

boundary nodes encountered as the boundary is traversed from Nl

to Ny in counterclockwise order are visible from P, no other
nodes being visible from P.

¢) If P lies on B, find the indices of the endpoints of a boundary
edge Ny —> N, containing P, and set N5 to O.

Let Ny be an arbitrary node (index).

Loog_l.

Step 1l:

Step 2:

Step 3:

Step 4:

(Initialization.)

Set NF and NL to the (indices of the) first and last neighbors of
Ng» respectively.

1f Ny is a boundary node and P NOT LEFT Ny =» Np, then set N and
N, to Ny and Ng, respectively, and go to Step 13. If Ny is a
boundary node and P NOT LEFT Nj - Ny then set Ny and Ny to N
and Ny, respectively, and go to Step 15.

If there exists an arc Ny - Ny such that P NOT LEFT Nj - Ny,
then determine N, and go to Step 5.

If P coincides with Nj, then set Ng to Npj otherwise set Ny to

12

the node opposite Np —> Ny (the neighbor of Ng which immediately
precedes Ny in the adjacency set). Go to Step l.

Loop 2. (Find a cone with vertex Nj and containing P.)

Step 5: Set N; to the node opposite N, -» Nge

Step 6: 1f P Left Ny => Ny, then set N3 to Ng and g; toc step 5.
Loop 3. (Edge~hopping loop.)

step 7: If P LEFT N; —> N,, then go to Step ll.

Step 8: If Ny > N, is & boundary edge, then go to Step 13.

Step 9: Set N, to the node opposite Nyp —> Nj.

Step 10: If P LEFT Nj - Ny » then set Nj to Ny and Ny to Ngs otherwise set
N5 to N and Ny to Ny. See Fig. 3. Go to Step 7.

Step 11: If N3 —> N; is a boundary edge and P LEFT N; => N3, then set Ny
to Ny, Ny to N3, and N3 to 0 and stop.

Step 12: If Nj —> N, is a boundary edge and P LEFT N, =» Ny, then set Ni
to 0. Stop.

Eégg‘a. (Counterclockwise boundary traversal).
Step 13. Set Ny to the first neighbor of Nj.
Step 14: If P NOT LEFT Np —> Ng, then set Ny to Ng and go to Step 13.
Loop 5. (Clockwise boundary traversal.)
Step 15: Set Np to the last neighbor of Nj.
Step 16: If P NOT LEFT Ny —> Ny, then set Ny to Ny and go to Step 15.
Step 17: Set N3 to 0. Stop.
Several theoretical properties regarding this algorithm are proven in

Renka12 including that it correctly terminates after a finite number of

operations. It is also shown that the number of iterations of Loop 1 is at

13

Fig. 3. Example of Loop 3.

most two, of Loop 2 is at most the degree of Ny, of Loop 3 is at most Ny
(the number of arcs of T), and of loops 4 and 5 is at most Ny (the number
of boundary nodes). Since N, = 3N = Ny - 3, the operation count for the en-
tire algorithm is bounded by an expression of the form K1 + K2 N + K3 Nb.
The actual operation count depends on the proximity of P to the starting
node Nj. 1f a sequence of interpolation points are to be located, N, may be
taken to be one of the nodes determined by the previous call. This gives
good results when the peints are ordered in some typical fashion, such as

the natural ordering on a rectangular grid.

in comstructing the trianmgulation, Ny is chosen £o be the node which
was most recently added. If the nodes are ordered by Algorithm 1, the new
node to be added, P, is always exterior to T and Ny 1s always a boundary
node which is visible from P. Thus the algorithm consists essentially of
Loops 4 and 5 and has an operation count of the form O(Np). Our test
results, however, indicate that the operation count does not increase with

Ny

Algorithm 4. Given a triangulation T, _,, a new node to be added k, and

nodes Nj, N, and Ng determined by Algorithm 3:

a) 1f Ng # 0, make k adjacent to N;, Ny, and Ni.

b) If Np = 0, make k adjacent to Ny, Ny, and all boundary nodes en-—

14

countered as the boundary is traversed from N; to N, in coun-

terclockwise order.

The details of the algorithm depends on the data structure and are

omitted. See Fig. 4.

a)

Fig. 4. Examples of Algorithms 4a and 4b.

Algorithm 4 clearly produces a triangulation of nodes 1,...,k when k

does not lie on an arc. The case of k lying on an arc is discussed in

Renka.12

Algorithm 5. Given a triangulation Ty constructed by adding node k
(Algorithm 4) to a Thiessen triangulation Ty_;, optimize the triangulation:
Step 1: Set Ny and Np to the first neighbor of k.

Step Z: Set Ny to the node opposite k —> Ny.
Step 3: 1f Nl - N2 is a boundary edge, then go to Step 6.
Step 4: Set N3 to the node opposite Nj -> Nj.

Step 5: Test N;{ - Np for a swap. If the test is positive, then swap Ny
- Np for k - N3, set Ny to N3, and go to Step 3.

Step 6: Set N; to Nj.

15

Step 7: If Ny = Np or Ny -» k is a boundary edge, then stop; otherwise go
to Step 2.

See Fige. 5.

Fig. 5. Swap Applied by Algorithm 5.

The proof that Algorithm 5 produces a Thiessen triangulation 1is

provided by Lawson.”

Algorithm 6a. Given the coordinates of the vertices of a quadrilateral

of T, (Nl’N2’N3’N4)’ set the logical variable SWPTST to TRUE if
+ ((Xl—X3)(YZ*Y3)—(X2—X3)(Y1—Y3))((XZ—XA)(X1»X4)+(Y2~Y4)(Yl—Y&))<Gs
Otherwise set SWPTST to FALSE. A swap is to be applied if and only 1if

SWPTST is TRUE.

Theorem 2. Algorithm 6a produces the correct decision on the swap test

(assuming computation is exact).

Proof: Let &®; = / Ny N3 Ny and &, = /[N, N, N, (ref. Fig. 6). From
geometry, the measure of the circular arc subtended by 3 is smaller than
twice the measure of &, if and only if N, is interior to the circle cir-

cumscribing Nl’ N,, and N3. Furthermore the arc subtended by &; has twice

16

the measure of @®;. Since the sum of the measures of the arcs is 2%, we may
conclude that N, is interior to the circumcircle (i.e., a swap should be
performed) if and only if &, + x, > €. Equivalent to @; + &, > & is
sin(&1 + Gz) < 0 siunce “l + Gz < 2%. Finally

sin(@ + @2) = cos(ﬂl) sin(®,y) + sin(®q) cos(®,)

((X]~X3) (Xp=Xg)H(Y1-¥3) (Yp~Y3)) ((Xg=Xg) (T1=¥4)=(X1=E4) (Yo~Y4))

((%;~X3) 24119) L ((Ky=X) H+(TpY)P (X=X (=Y, DX %) (1= D)}

((X1~X3) (Yp=Y3)=(Xp=X3) (¥1-Y3)) ((K9=Xy) (X=X) H(Yp=Yy) (¥1-Y4))
+

(5 ~X5) 24 (Y=Y D ((Xy=2) (Y-)) (=%, 24 (Y= D LRy %) B+ (1) -1 D)

and the identical denominator of these terms is positive. O

Fig. 6. Quadrilateral Referred to in Algorithm 6a.

Note that the swap test of Algorithm 6a requires only 10 multiplica-
tions and 13 additions. This is a considerable improvement over algorithms
which compute quantities monotonically related to the angles and do com—

parisons.

Algorithm 6a way produce an incorrect decision due to floating-point

17

arithmetic error when SIN(Gl%ﬁz) is near O. This can only occur in the
neutral case (®;+&, =) and when the four vertices are nearly collinear
(61 and @2 both near 0 or). The numerical instability in the neutral
case has no ill effects except that the choice of diagonal arcs in a
uniform rectangular grid is neither predictable nor consistent, resulting
in a displeasing appearance. No attempt is made to remedy this situation in

our code.

On the other hand, it is critical that the correct decision be made
when the quadrilateral vertices are nearly collinear as the following ex-

amples show.

Example 1. Consider the four-node triangulation depicted in Fig. 7a.
A perturbation of this triangulation is depicted in Fig. 7b. Node 4 was
found to be exterior to T3 = {[1,2,3)}; but due to roundoff error, Algo-
rithm 6a might produce the decision to apply a swap to (1,2,3,4), destroy-
ing the triangulation. Thus the swap test should be negative (SWPTST =

FALSE) when &, and &, are approximately zero.

a) b)

" e

Fig. 7. TriangulatiéﬁwgigﬁyNeérly Colliheér Nodes.

Example 2. In the triangulation depicted in Fig. 8a, Node 4 was found
to be interior to Ty = {(1,2,3)} while Node 5 was determined to be exterior
to T,. However, due to roundoff error, Algorithm 6a applied to (2,1,5,4)
resulted in the decision not to swap, leaving the triangulation nonoptimal.
If a swap had been applied, it would have been followed by a swap applied
to (4,1,5,3) resulting in the Thiessen triangulation shown in Fig. 8b. Note

that the null or nearly null triangle (5,2,4) will be eliminated if a new

18

node is added to the right of 5 =» 2, Thus the test should be positive when

both @, and &, are approximately equal to ®.

a) 3 b) 3

Fié:mérwffiangulation for Example 2.

The following alternative algorithm eliminates this numerical in-

stability and is the method implemented in our software package.
Algorithm 6b. Given the X and Y coordinates of N;, Ny, Nj, and Ny,
where (Nl,Nz,N3,N4) is a quadrilateral of T:

Step 1: Set (COS1 and CO0S2 to (X1~X3)(X2—X3) + (Yl—YB)(YZ-Y?’) and
(XZ"X&>(X1"X4) + (YZ-YA)(Yl“Yé)’ respectively.

Step 2: If COS1 > O and COS2 > 0, go to Step 7.
Step 3: If Cc0S1 < 0 and C0S2 < 0, go to Step 6.

Step b Set SINL and SIN2 to (Xl“X3) (YZ-Y3) - (XZ“XB) (Yl“YB) and
(X9=X4) (Y1-Y4) = (X=X (Yy-Y4), respectively. Set SIN12 to
SINL*C0S2 + COS1*SIN2.

Step 5: If SIN12 > 0, go to Step 7.
Step 6: Set SWPTST to TRUE and stop.
Step 7: Set SWPTST to FALSE and stop.

This algorithm is algebraically equivalent to Algorithm 6a except when

&, = cz = M. Note that if Step 5 is reached, &; + ﬂz is in the range

(®/2,3®/2]. Thus, assuming the nodes are distinct, numerical instability

19

occurs only in the neutral case. A further discussion of floating~point er—
13

vrors is found in Renka.

The operation count for Algorithm 6b is:

a) 4 multiplies, 10 adds, and 2 compares, OT
b) 4 multiplies, 10 adds, and 4 compares, or

¢) 10 multiplies, 13 adds, and 5 compares.

depending upon the values of @&, and @,. 1f &, and &, are uniformly dis-
tributed over the range [0,®], the expected operation count is 7 mul-
tiplies, 11.5 adds, and 4 compares. In any case there are less arithmetic
operations but more compares than in Algorithm 6a. Thus, compares being
generally more expensive, we pay a price in efficiency for the numerical

stability.

The following algorithm for determining the closest k nodes to a given
node is used in our interpolation software to select a set of nodes whose
data values are to enter into derivative estimates. It also has application

in closest~point problems.

Algorithm 7. Given a Thiessen triangulation T and a node Ny, determine
a sequence of nodes Nl’NZ"“’Nk ordered by distance from Nj for some k 2>

1.

Briefly stated, the algorithm is as follows:

Set SO to {NG}'

For 1 = 1,2,0¢0,k:

Step 1: Mark Ny_, (e.g., with a negative pointer to its adjacency set).

20

Step 2: Set S; to the union of S;1 with the set of neighbors of Ny_;.

Step 3: Set N;y to the unmarked node in Sy which is closest to Npe.

Note that at Step 3 the unmarked nodes in Si (along with any marked
boundary nodes) are the vertices of a simple circuit. See Fig. 9. The fol-
lowing is a detailed description of a method for traversing this circuit
(looping through the nodes) based on adjacency information. No extra
storage 1s required for the elements of 5,. The variables are as follows:
ND is N. for some j < i, NB is a neighbor of ND, NC is a candidate for Ny,

J
and NST is the starting point of the search.

Fig. 9. Portion of T whose Boundary Nodes are the Unmarked
Elements of 53

For i = 1,2,¢.. ke

Step 1: Mark Ny_p, set ND to Ny_q and set NB to an unmarked neighbor of
ND. (If Ny, is a boundary node, it may not have an unmarked

neighbor. In this case try Nj.j, Nj_3, etce)

Step 2: Set NST and NC to NB and set DNC to INg - NC|2 (where |.| denotes

Euclidean distance).
Step 3: Set NBSAV to NB.

Step 4: 1f ND is a boundary node and NB is its last neighbor, set NBSAV

to ND. Set NB to the next neighbor of ND (following NB in cycli-
cal counterclockwise order).

21

Step 5: If NB = NST, go to Step 8.
Step 6: 1f NB is marked, set ND to NB, set NB to NBSAV, and go to Step 4.

Step 7: Set DNB to |Ny - NB|2. If DNB < DNC, set NC to NB and DNC to DNB.
Go to Step 3.

Step 8: Set N; to NC. [End of loop on i.]

Unmarked nodes Ng, Nl""’Nk-l‘

Algorithm 7 is proved correct in Renka.12

While designed for points in the plane, the above algorithms require
only minor modifications to treat alternative geometries. Essentially, by
altering only the swap test and definition of LEFT, Renkalg has extended
the triangulation procedure to the surface of the sphere. Similar
modifications could be made for the case of nodes on the surface of a
cylinder. However, since the algorithms rely on an ordering of the ad-

jacency information, substantial alterations are required to treat data in

higher dimensional spaces.

22

4, DATA STRUCTURES

This section describes various data structures for representing the
triangular grid. The choice of data structure involves a trade—off between
computational efficiency and storage efficiency. Thus the best method of
representing the triangulation depends on the available computing resources
and the application. The first two subsections below describe data struc—
tures which contain the adjacency information explicitly and are thus well
suited for the algorithms described in the previous section. The third sub-
section discusses Lawson”s data structure; and the final subsection con-

tains a table of storage requirements.

4.1 Adjacency Array

The primary goal of this research was a triangulation method requiring
less storage than those currently available. This led us to the following
data structure which is designed to limit the storage requirement while

remaining computaticnally feasible.

IADJ -~ Array containing the sequentially ordered set of adjacency lists
(indices of the neighbors in the adjacency sets) where the ad-
jacency list of each boundary node is modified by the addition of
index O following the index of the last neighbor and representing a
"pseudo node” infinitely distinct from the boundary. The adjacency
jist for node k is followed by the list for node k + 1, k =
1,006 =1s

IEND -~ Array of length N containing pointers to the ends of each
(modified) adjacency list in IADJ.

Thus the indices of the neighbors of Node 1 are stored 1in
IADJ(1),ees,IADJ(IEND(1)). For k > 1, the indices of the neighbors of node
k are stored in IADJ(IEND(k=1)+1),...,LADJ(IEND(k)), and k has IEND(k)
-~ IEND(k-1) neighbors including (possibly) the pseudo node represented by
index 0. Node k is a boundary node if and only if IADJ(IEND(k)) = 0. See
Fig. 10

OF 1
NEIGHBORS
OF 2
NEIGHBORS
OF 3
NEIGHBORS
OF 4
NEIGHBORS

)
=]
Q
0
o
O
=t
£
=

23

Fig. 10. Sample Triangulation and Adjacency Array.

24

Let L be the length of IADJ. For each arc of T there is a pair of ad-
jacent nodes, say N; and N, and exactly two entries in TADJ —- Ny as a
neighbor of N, and Ny as a neighbor of N;. The adjacency array also con-
tains a zero entry for each node on the boundary. Thus, since there are no

other elements in TADJ,
L= 2N, + Ny = 6N - 6 < 6N - 9

where the second equation follows from Theorem 1 and the inequality is ob-
tained from the lower bound on Ny. The upper bound on L determines the
amount of storage which must be reserved since the value of Ny is generally

not known before the triangulation is constructed.

Clearly there is some redundancy in the adjacency array in that for
each arc Ny = Np, both N; as a neighbor of N, and N, as a neighbor of Ny
are represented explicitly. Thus we have not attempted to minimize the
storage requirement. However, the total requirement of less than 7N loca-
tions represents a substantial savings over other available triangulation

methods as shown in Table 1, Secticn 4.4,

This storage efficiency was gained at a cost in computational ef-
ficiency caused by the necessity of shifting portioms of the adjacency ar-
ray up or down for deletions and insertions of neighbors as the triangula-
tion is constructed. Timing comparisons are presented in Section 5. We feel
this trade—off of computational efficiency for storage efficiency is
generally advantageous since it allows larger problems to be solved on
small machines (even micro-computers), and the time required to construct
the triangulation is usually insignificant relative to the time spent on
interpolation which is the primary application. Thus we have chosen to

employ the adjacency array in our software package.

25

An obvious modification to the above data structure is the replacement
of IEND with an array ISTART of pointers to the beginnings of each ad-
jacency list in IADJ. However, in order that the index of the last neighbor
of each node be easily accessible, ISTART must have length N + 1 with
ISTART(N+1) pointing to the first empty location in IADJ. Then the index of
the last neighbor of Node k (or O representing the boundary) 1s stored in

IADJ(ISTART(k+1)=1) for k = 1,.0.,N.

4.2 Linked List

The following alternative data structure is not used in our software
package but was implemented for comparison with the adjacency array. The
linked list eliminates the necessity of shifting portions of an array for
insertions and deletions. Rather than storing adjacency lists and their
elements in contiguous locations, the index of each neighbor has an ar-
bitrary location in the list with a list pointer to the index of the neigh-
bor which follows it in cyclical counterclockwise order. The method for
representing the boundary has also been modified. The linked list counsists

of three arrays and a pointer:

LIST - Array containing the indices of the neighbors of node k for k =
1,04+,N. LIST contains the negative index of the last neighbor of a
boundary node.

LPTR - Array of LIST pointers in a one—to-one correspondénce with the ele-

ments of LIST. The LIST pointer associated with node j as a neigh—
bor of k points to the index of the neighbor of k which follows j
in cyclical counterclockwise order.

LEND - Array of length N containing a LIST pointer to the index of the
last neighbor of each mnode.

LNEW -~ Pointer to the first empty location in LIST and LPTR.

Note that k is a boundary node if and only if (LIST(LEND(k)) < 0. See

Fig. 11,

26

|LIST|LPTR|

| e | e |

1l 2] 3]

i | l

20 3] 11

| ! l

3] 44 2|

| ! |

4G 1 -1] 14 |

| | l

51 1] 71|

! | i

6 11 10}

1 | |

71 4 12]

| I I

81 4] 4|

i | |

91 31 6|

|LEND] | | !

| ——==] 101 21 131

1] 11| | i |

l l 11| -5] 1]

21 4| I | |

| | 121 51 51

31 71 l | |

l l 131 51 9|

4 | 10 | l | I

| | 4] 51 81

5] 18 | | l |

| l 151 11 16|

i | |

LNEW = 19 161 31 17 a
| I

17 i! 4 li 18 {

18 | -2 1 15 |

i | !

Fig. 11. Sample Triangulation and Linked List.

We have chosen to store pointers to last neighbors (LEND) rather than
first neighbors because it is convenient to have easy access to both first
and last neighbors of a boundary node. To determine the index of the last
neighbor of node k starting from the LIST pointer to its first neighbor, it
is necessary to follow pointers through the entire adjacency list for k;
whereas the index of the first neighbor is readily obtained from a pointer

to the last neighbor. The elimination of index 0 representing the boundary

27

allows more efficient access to first neighbors at the cost of occasionally

having to change signs of indices.

By Theorem 1, the length of LIST and LPTR is 2N; = 6N - 2N, - 6 < 6n
- 12, implying a total storage requirement of less than 13N locations. Thus
with the adjacency array replaced by the linked list, our triangulation
method still requires significantly less storage than most other available
methods while being comparable to other methods with regard to computa-

tional efficiency. See Table 1, Section 4.4 and Table 2, Section 5.

Unlike the adjacency array, the linked list is well suited for pack-
ing: storing more than one integer per computer word with storage and
retrieval achieved by shifts or arithmetic operations. In an implemen-—
ration on a machine with sufficiently large word length, an element of LIST
and its assoclated LIST pointer may be conveniently stored in a single

word, resulting in a savings of 6N storage locations.

4.3 Lawson”s Data Structure

We present a description of the data structure used by Lawson5 for
comparison with those previously discussed. It consists of a list contain—-
ing six integers for each triangle. The first three integers are the in-
dices of adjacent triangles in counterclockwise order with O representing
the region exterior to the convex hull H. The last three integers are the
triangle”s vertex indices in counterclockwise order, the first vertex being

the node shared by the first and third adjacent triangles. See Fig. 1Z.

This data structure has an advantage over the adjacency array in that
no shifting or garbage collection 1s necessary; i.e., triangles need never
be deleted == only replaced. Thus updating the data structure for a swap or
the addition of a new node can be implemented very efficiently. On the

other hand, the ordered sequence of boundary nodes is not readily obtained

28

INDICES OF ADJACENT
TRIANGLES IN COUNTER~

VERTEX INDICES IN COUNTER-
CLOCKWISE ORDER - THE FIRST

| I |
g s z
|
TRIANGLE | CLOCKWISE ORDER - A | VERTEX IS SHARED BY THE |
INDEX ! ZERO INDICATES THE ! FIRST AND THIRD ADJACENT l
| REGION EXTERIOR TO H l! TRIANGLES |
| i
| ! l ! l ! |
1 | 2 | o | 4 | 4 | 1 | 2 |
| | l | | | |
2 s 1 3 | 1 | 4 | 3 l 1 |
l ! | | i | |
3 [s | o | 2 | 3 i 5 i 1 |
i i | 1 | | |
4 I 1 | o | 5 | 4 | 2 | 5 |
| | | i i % |
5 | 4 | 3 | 2z | 4 ! 5 | 3 |
i | é | | | |

Fig. 12. Semple Triangulation and Lawson”s Data Structure.

from the triangle list; and, in order to determine the set of nodes which
are visible from an exterior point, Lawson uses an additional array of

length 4N;.

Lawson”s algorithm also requires two arrays of length N used to sort
the nodes by their distances from an initially determined boundary node so
that a new node to be added to the triangulation is always exterior to the
convex hull of the previously added nodes.

From Theorem 1, N, < 2N - 5 and hence the rotal storage requirement

for Lawson”s method is 6Nt + 2N + 4Nb < 14N + ANb - 30,

29

An advantage of the triangle list is the fact that it lends itself to
convenient packing of either two or three integers per computer word.
Lawson”s method has been implemented with three integers packed into a 36-
bit word. However, the number of nodes is limited to 2050 in this case. See

Table 1.

4.4 Storage Requirements

The following table compares the storage requirements of our tri-
angulation method (using both the adjacency array and the linked list) with

the methods of Lawson,5 Akima,g Shamos,lo 11

and Green and Sibson. The
specified requirements are in addition to the ZN locations containing nodal
coordinates. Note that the number of boundary nodes Ny cannot generally be

predicted, and thus the upper bound of N must be used in reserving storage.

Table 1. Triangulation Storage Requirements

Adjacency Linked Lawson Akima Shamos Green and
Array List Gibson
7N 13N 14N + 4Nb 20N 30N > 11N

< 18N

The storage required for the linked list and Lawson”s method may be
reduced to 7N and 12N, respectively, by packing two integers per computer
word. Lawson”s method also allows thres integers to be packed In a word
reducing the requirement to 1ON. Note, however, that packing is machine~-
dependent. Green and Sibson use a heap along with garbage collection, thus
allowing extra storage to be employed for increased efficiency. The
specified storage requirement is the minimum amount which allows reasonable

time efficiency.

30

5. TIMING COMPARISONS

We have determined timing requirements for various triangulation
methods, domains, and values of N. Lawson”s triangulation software was the
only code available to us other than our own, but it is the most efficient
method that we are aware of. The times specified in Table 2 are central-
processor seconds cbtained on the CDC Cyber 170-75 at the University of
Texas at Austin using the MNF (Minnesota FORTRAN) compiler. The timings
were averaged over a sufficient number of rums to eliminate random errors
in the timer. In the following table p denotes the log (base 2) of R where
R is the ratio of the time associated with N = 2000 to that assoclated with

N = 1000; i.e., the times associated with the two values of N were fit with

the model CNP,

We conclude that Lawson”s method is faster than any of the others, but
only slightly faster than the linked list with reordering of the nodes.
Also, the growth rates for Lawson s method are smaller than those of the
other methods. For both the adjacency array and the linked list, reordering
of the nodes is advantageous. Critical values of N at which recordering be-
comes advantageous have been found to be less than 100 in all cases, as the

growth rates would indicate.

31

Table 2. Timing Requirements for Triangulation (and

Reordering) of N Randomly Generated Points

Disc of Unit Radius

N
Method P
1000 2000
Lawson 1.86 4,05 1.12
Adjacency Array With Reordering 2.91 7.09 1.29
Adjacency Array (No Reordering) 15.24 57.24 1.91
Linked List With Reordering 1.89 4,26 1.17
Linked List (No Reordering) 2.78 6.77 1.29
Unit Square
N
Method P
1000 2000
Lawson 1.83 3.97 1.12
Adjacency Array With Reordering 3.08 747 1.28
Adjacency Array (No Reordering) 15.56 57.33 1.88
Linked List With Reordering 1.95 4.37 1.16
Linked List (No Reordering) 1.81 6.90 1.29

32

REFERENCES

1.

2.

3.

5.

10.

11.

120

13.

14,

R. J. Renka, A Triangle-Based C* Interpolation Method, ORLN/CSD-103,
Oak Ridge National Laboratory, 1982.

M. I. Shamos and D. Hoey, "Closest—Point Problems,” Proceedings 16th
Annual Symposium on Foundations of Computer Science, pp. 151-62,
1975.

R. B. Simpson, "A Two-Dimensional Mesh Verification Algorithm,” SIAM
J. Sci. Stat. Comput, Vol. 2, No. &, Dec., 1981.

B. G. Ryder, "The PFORT Verifier,” Software Practice and Experience,
Vol. 4, pp. 359-77, 1974,

C. L. Lawson, "Software for C1 Surface Interpolation,” Mathematical
Software II1T, J. R. Rice, ed., Academic Press, New York, 1977, pp.
161~-94.

C. L. Lawson, Generation of a Triangular Grid with Applications to
Contour Plotting, Technical Memorandum 299, California Institute of
Technology Jet Propulsion Laboratory, 1972,

R. Sibson, "Locally Equiangular Triangulations,” Computer Journal,
Vol- 21, NOa 3, ppo 243"‘45, 19780

D. Rhynsburger, "Analytic Delineation of Thiessen Polygons,”
Geographical Analysis, Vol. 5, No. 2, pp. 133-44, 1973.

H. Akima, "A Method of Bivariate Interpolation and Smooth Surface
Fitting for Irregularly Distributed Data Points,” ACM TOMS, Vol. 4,
NO- 2; Pp. 148"'64, 19780

M. I. Shamos, Computational Geometry, PhD dissertation, Yale Univer-
sity, 1978.

P. J. Green and R. Sibson, "Computing Dirichlet Tessellations in the
Plane,” Computer Journal, Vel. 21, No. 2, pp. 168-73, 1978.

R. J. Renka, A Storage-Efficient Method for Construction of a Thies-
sen Triangulation, ORNL/CSD—101, Oak Ridge National Laboratory, 1982,

R. J. Renka, Triangulation and Bivariate Interpolation for Ir-

regularly Distributed Data Points, PhD dissertation, University Tof
Texas at Austin, 1981,

R. J. Renka, Interpolation of Data on the Surface of a Sphere,
ORNL/CSD-108, Oak Ridge National Laboratory, 1982.

11

ot
o]

14

16

16

16

19

to

Changes

Renka8

ADDENDUM TO TR-213

=> Renk313

requiring less than => requiring less storage than

(Ng,Nj,N;) with N STRICTLY LEFT Ny => Ny for 1,5,k€{1,2,3} =

J

(Ni ,Nl ,Nk) with Nk STRICTLY LEFT Ni -2 N:}

for (1,3,k)€{(1,2,3), (2,3,1), (3,1,2)}

b) The interiors => b) the interiors

form a quadrilateral of T => form a gquadrilateral of T

Either Ny - N, or N3 may be => Either diagonal may be

referred to in the literatures as => referred to in the literature as

Algorithms 3, 4, and 7 are => Algorithms 3 and 5 are

One of the features of thils method is that =>
One of the advantages of this method over alternatives is that

let H be the comvex hull, let B be its boundary and let P =>
let H be the comvex hull of S with boundary B, and let P

and go to step 5. => and go to step 7; otherwise set Ny to Nj
and go to step 3.

then swap Nj

NZ N3 Ni and

=> then swap Ny - Ny

:> (Nz N3 N1> and

Ny N4 Ny (ref. Fig. 6). => (Nj Ng Np) (ref. Fig. 6)e

<<all four ‘1°s should read "1/27s>>

¢<all four ‘1’s should read "1/27s>>

<<bottom right ‘N3’ should read N,

{11,2,3)};

compares.

=

=>

{(1,2,3)};

compares,

Page Line Changes
20 3 to end ¢<delete from "Note that at ... counterclockwise order).'>>

21 1 to 7 <<{delete from "Step 5: ... correct In Renka. 21>

22 -11 distinct => distant

22 last Fig. 10. => Fig. 9.

23 last Fig. 10. => Fig. 9.

24 6 6N - 6 => 6N - Ny

25 last Fig., 11. => Fig. 10.

26 -8 Fig. 11. => Fig. 10.

27 3 LPTR is 2Ny = 6N - 2Nb -6 < 6n => LPTR is 2Na = 6N - ZN% - 6 £ 6N
27 =6 See Fig. 12. => See Fig. ll.

28 ~10 Fig. 12. => Fig. 1l.

32 4 ORLN => ORNL

32 -10 1978. => 1975,

