APPLICATIONS OF PROJECTIONS TO A STRUCTURED
MODEL OF COMMUNICATION PROTOCOLS'

A. Udaya Shankar and Simon S. Lam

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712
TR-214 October 1982

1This work was supported by National Science Foundation Grant No. ECS78-01803.

Table of Contents

1. INTRODUCTION
1.1 The Projection Idea
1.2 A Structured Protocol Model
1.3 Summary of the Rest of the paper
2. THE PROTOCOL SYSTEM MODEL
2.1 Messages of the Protocol Model
2.2 Variables of the Entities and Channels
2.3 Entity Events
2.4 Channel Events
2.5 The System

3. CONSTRUCTING A FAITHFUL IMAGE PROTOCOL SYSTEM

3.1 Constructing an Image Protocol System
3.1.1 Projection of entity states
3.1.2 Projection of message types

3.1.3 Images of channel states, global states, and sequence of global states
3.1.4 Projection of events
3.2 Faithful Image Protocols

. IMAGE PROTOCOLS EASILY CONSTRUCTED
. TIME-DEPENDENT COMMUNICATION PROTOCOLS
5.1 Time Variables and Time Events

5.2 A Time-Dependent Protocol System Model
5.3 Faithful Image Protocols

6. CONCLUSION
APPENDIX
REFERENCES

[~ LI

[vl e
p&r&“l\')l-‘OOOO\l@Cbr{kwN

ok okt
00 OO M

NN
| I]

[SR NV
~3 o1 W

W NN
W ©

Abstract

The method of projection is an approach to reduce the complexity of analyzing nontrivial communication
protocols with several distinguishable functions. In this method, a faithful image protocol is constructed
for each function of interest in the original protocol. The method has been described earlier using an
abstract model in which protocol entities are specified by states and state transitions, and the construc-
tion of faithful image protocols involves operations on sets of states and transitions. These set operations
are inconvenient when the protocol being projected is large. In this paper we describe a model in which
the entities are specified by programs, and the construction of faithful image protocols can be done easily
without the use of set operations (in most cases). Thus, the model is useful for complex multi-function
protocols and has been applied to specify and verify a version of the high-level data link control (HDLC)
protocol. The model includes several realistic protocol features such as multi-field messages and timers.

1. INTRODUCTION

The method of projections, described in [LAM 82a, LAM 82b], is an approach to reduce the com-
plexity of analyzing non-trivial communication protocols with several distinguishable functions. The ap-
plication of the method to the protocol model used in [LAM 82b] involves set operations that can become
difficult when large protocols are considered. In this paper, we describe a protocol model in which the

method of projections can be applied without the need for set operations (in most cases).

A protocol system consists of a network of protocol entities and channels. The network configura-
tion is static but may be arbitrary. At any time, the global state of the system is described by a joint
description of the states of the entities and channels. Thus, the set G of global states of the protocol
system is the cartesian product of the entity and channel state spaces. The states of entities and channels
(and hence the global state) can change due to the occurrence of the following events: entities sending
messages into channels, entities receiving messages from channels, errors occurring to messages in transit

within channels, and entities receiving signals from their timers and their external users.

An event can occur in a particular global state only if it is enabled in that state. We make the usual
assumption that the occurrence of each event causes an indivisible transition from one global state to
another. Furthermore, if there is any possibility of events occurring simultaneously, such a simultaneous
occurrence can be represented as a sequence of the same event occurrences in some arbitrary order. This

last assumption is reasonable because events in communication protocols can usually be defined in such a

way that their occurrences are instantaneous.

The set 7 of global transitions is determined by the set of entity and channel events (their enabling

conditions and actions). 7 is a binary relation on G and the pair (G,7) defines a directed graph whose
nodes are elements of G and whose arcs are elements of 7. Given any initial global state gy the portion of

the graph that is reachable from g, is referred to as the reachability graph and is denoted by R. R con-

tains all available information on the logical correctness properties of the protocol system. Let RS denote
the set of reachable states in G. RS, which may be obtained from R, determines the safety (partial

correctness) properties of the protocol system. Liveness properties, however, require knowledge of the set

of paths in R.

1.1 The Projection Idea

We observe that most real-life communication protocols are very complex because they typically
have to perform several distinct functions. For example, the high-level data link control (HDLC) protocol

has at least three functions: connection management and one-way data transfer in two directions [ISO 79].

To analyze such a multi-function protocol, an approach that appears attractive is to decompose

each protocol entity into modules for handling the different functions of the protocol. For example, each
protocol entity in HDLC may be decomposed into three functional modules such as shown in Figure 1.
Each module communicates with a corresponding module in the other protocol entity to accomplish one
of the three functions. Bochmann and Chung [BOCH 77] used such a decomposition approach to specify
a version of the HDLC protocol. However, the decomposition approach does not seem to facilitate an
analysis of the protocol. The main difficulty is that significant interaction exists among the modules. We

identify two types of dependencies. First, modules interact through shared variables within an entity.

Second, they also interact because data and control messages sent by different modules in one entity to
their respective modules in the other entity are typically encoded in the same protocol message (shared

packets).

Most communication protocols that have been rigorously analyzed and presented in the literature
are protocols with a single function: either a connection management function or a one-way data transfer
function [STEN 76, HAIL 80, BRAN 82]. The following question arises: Are the safety and liveness
properties that are proved for a single function protocol still valid when it is implemented as part of a
multi-function protocol with the two types of dependencies mentioned above? The projection idea can be
illustrated by the picture in Figure 2. Consider a protocol system with the state description (x,v,2) and
the set RS of reachable states. Suppose that we are interested in a safety assertion that involves only the
variables x and y. To determine whether the assertion is true, it is sufficient to know the image of RS on
the (x,y) plane. Obviously, if R_ is known, its image on the (x,y) plane is readily available. However, the
complexity of R (and thus RS) is the basic source of difficulty in protocol analysis. The projection ap-
proach avoids the characterization of R. Instead, from the given protocol a faithful image protocol is
constructed for each of the functions that are of interest to us (to be referred to as the projected

functions).

An image protocol is specified just like any real protocol. The states, messages and events of entities
in an image protocol are obtained by treating groups of states, messages and events in the original
protocol as equivalent and aggregating them [LAM 82b]. As a result, image protocols are smaller than the
original protocol. For example, an image protocol of HDLC for the function of one-way data transfer
would be of the same order of complexity as other one-way data transfer protocols that have been success-
fully analyzed [STEN 76, DIVI 82]. Informally, an image protocol is faithful if the following is true: Any
logical property, safety or liveness, concerning the projected function holds in the image protocol system
if and only if it also holds in the original protocol system. The precise meaning of faithfulness is defined
in [LAM 82b] and is repeated in Section 3.2. It has been shown in [LAM 82b] that if an image protocol is

constructed with sufficient resolution so that its entities satisfy a well-formed property then the image

protocol is faithful (the well-formed property involves an examination of the protocol entities individually

and is the weakest condition that one can have without any knowledge of R).

1.2 A Structured Protocol Model

The protocol entities of the model used in [LAM 82b] have very little structure. Each entity is
specified by a set of states, a set of messages, and a set of entity events. Each entity event is specified as a
state transition that either sends a message, receives a message, or involves no message at all. This lack of
structure in the model makes the results obtained in [LAM 82b] applicable to a very general class of
protocols. However, this same lack of structure necessitates the use of set operations when constructing

faithful image protocols. When large protocols are considered, these set operations can become difficult.

To overcome this difficulty, we must add more structure to the above protocol model, and use this
structure to restrict the types of aggregations allowed, thereby facilitating the construction of well-formed

image protocols. At the same time, the resulting structured model should be general enough to model a

wide class of realistic protocols.

In this paper, we describe such a structured model for a protocol system. Each component (entity or
channel) of the protocol system is modeled with a set of variables local to the component, and a list of
events that manipulate these variables and pass messages to adjacent components. The events of the en-
tities are specified in a programming language notation. Of the variables used in modeling an entity, some
may correspond to variables that are implemented in the protocol system being modeled, while others

may be auxiliary variables used in the specification and verification of the protocol system.

The messages in our new protocol model can have multiple fields. We include this feature since
many communication protocols use multi-field messages where each field carries information relevant to
particular functions of the protocol. The messages are specified in terms of message types. Each message
type is similar to a record definition in programming languages. It specifies a list of fields and the values

that each field can have, thereby specifying a set of multi-field messages.

Finally, our model can be applied to time-dependent protocols. A time-dependent protocol is a
protocol where measures of time (obtained by timers and clocks in entities, and age fields in packets) play
a crucial role in the correct logical behavior of the protocol [SHAN 82a, FLET 78, SLOA 79]. Such
protocols can be modeled using time variables to measure elapsed times, and time events to age time
variables [SHAN 82a]. We allow time variables and time events in the components of our protocol model.
Some of these time variables may correspond to timers and clocks that are implemented in the protocol
system, while others are auxiliary variables used in stating assertions about the time-dependent behavior

of the protocol system.

for this protocol model, we will consider image protocols that are formed by retaining a subset of

the variables at each entity, and a subset of the fields in each message type; i.e., all entity states

(messages) that have equal values for retained variables (fields) are treated as equivalent and have the

same image in the image protocol. There are three reasons for choosing these restrictions.

First, assertions about the image protocol can be immediately related to the original protocol, since

each variable (message field) in the image protocol corresponds exactly to a variable (message field) in the

original protocol.

Second, it greatly simplifies the construction of faithful image protocols in most cases. Consider
Figure 3. In the old model, the construction of faithful image protocols involved set operations (right side
in Figure 3). In the new model, if the program description of the entity events display certain nice struc-
tures (described in Section 4), then well-formed image protocols can be found almost by inspection
(corresponding to the path involving simple operations in Figure 3). For those entity events whose
program descriptions do not display any nice structure, it is necessary to use the set operations of the
previous model (corresponding to the path involving transformations and set operations in Figure 3). We
have found, however, that in many practical situations, the program descriptions display the nice struc-
tures required for easily obtaining well-formed image protocols. For example, well-formed image protocols
for a version of HDLC have been constructed without much difficulty [SHAN 82b, SHAN 82¢|. In general,

the more well-structured the program description, the easier it will be to obtain image protocols by in-

spection.

Third, the restriction provides an iterative procedure that identifies the variables needed to be
retained in order for the image protocol to be well-formed. The procedure is as follows. First, identify the
entity variables needed to state the desired logical behavior of the function being projected; typically,
these are the variables found in assertions that need to be verified. Obtain the image protocol for this
choice of retained variables, and check if it is well-formed. The check for well-formedness, if it fails, will
identify variables from the original protocol that caused the image protocol not to be well-formed. Retain
these variables and obtain a new image protocol. Keep repeating until a well-formed image protocol is
found. The process will terminate in the worst case with the image protocol being the original protocol
itself. It has been our experience that for protocols with several distinguishable functions, well-formed

image protocols can be constructed for individual functions, that are substantially smaller than the

original protocol.

The objective of the method of projections is illustrated in Figure 4. Suppose that we are given a
protocol system and one or more assertions that specify the correct behavior of some protocol function.
Suppose also that a verifier is available for checking the validity of assertions for a given protocol system.
Instead of feeding the assertions and the original protocol system into the verifier, our objective is to first

construct a faithful image protocol (which should be much simpler than the original protocol). The image

protocol system and assertions are then fed into the verifier for evaluation. If we are interested in several
functions of the protocol, a different image protocol is generated for each function. Since the construction

of faithful image protocols involves an examination of protocol entities individually, the complexity of

characterizing the reachability graph R for the entire system is avoided.

The idea of projection is similar to various notions of abstraction in the design and analysis of
software systems and programming languages. Within the communication protocols literature, the term
"protocol projection" has been used by Bochmann and Merlin to describe an operation in their method
for protocol synthesis [BOCH 80]. Their basic idea of "projection onto the relevant action" is similar to
ours herein, but the development and application of the idea in their work and ours are different. The

idea of projection as applied to various special cases of our protocol system model has been described

in [LAM 81, LAM 82a, LAM 82b].

1.3 Summary of the Rest of the paper

In Section 2, we describe our protocol system model without time variables and time events. Con-
sider Figure 3. The right side of Figure 3, involving set operations, describes the steps in the construction
of faithful image protocols using the old model. In the new model, we would like to construct faithful
image protocols using only simple operations, as shown in the left side of Figure 3. In Section 3, we
describe the general procedure for constructing faithful image protocol systems from a given protocol sys-
tem. The new model is described as a more structured version of the old model. The construction proce-
dure and results obtained for the old model in [LAM 82b] and stated in terms of the new model. This

construction procedure corresponds to the path involving transformations and set operation in Figure 3.

In Section 4, we describe entity events whose program descriptions display certain nice structures so
that faithful image protocols can be obtained without the need for set operations. The steps in this con-

struction procedure correspond to the left side of Figure 3.

In Section 5, we add time variables and time events to our protocol model, and explain the con-

struction of image protocols for time-dependent protocol systems.

2. THE PROTOCOL SYSTEM MODEL

Throughout the rest of this paper, we shall consider the protocol system shown in Figure 1. P1 and
P2 are protocol entities that communicate with each other. P1 sends messages to P, through channel 01’
and P2 sends messages to Pl through channel 02‘ (This configuration, rather than an arbitrary network
of entities and channels, is used strictly for notational simplicity. The results on paper can be immediately

generalized to networks of arbitrary interconnection with point-to-point and broadcast channels [LAM

82b].) The entities and channels will be modeled as event-driven processes that interact by passing mes-

sages to adjacent components.

An event-driven process consists of events. An event can occur only if variables of the protocol sys-

tem satisfy certain conditions, denoted as the enabling condition of the event. When an enabled event

occurs, variables of the protocol system are affected. Whenever an event-driven process has enabled

events, any one of them can occur (we assume fairness in the choice of the event).

A channel can be real or logical. In any case, all buffers and communication media between two
entities connected by a channel are considered to be part of the channel. Hence, channels may have large
storage capacities for messages in transit. At any time, a channel contains a (possibly empty) sequence of

messages. We distinguish channels into the following categories:

(1) Infinite-buffer channels -- most communication protocols have some measure of flow control. As a
result, their buffer requirements for messages in transit between two entities are bounded. Hence the as-

sumption of an infinite buffering capacity is equivalent to being able to satisfy these buffer requirements.

(2) Finite-buffer blocking channels - with a blocking channel, protocol entities are not permitted to send

into the channel whenever the channel is full.

(3) Finite-buffer loss channels -- with a loss channel, the sending of a message into a full channel results in
the instantaneous bumping (deletion) of a message. The message bumped may be the new message or a
message already in the channel. The rule used to select the message to be bumped is referred to as the

bumping rule. It must satisfy certain restrictions which are described in Section 2.1.

2.1 Messages of the Protocol Model

The messages of the protocol system have multiple fields, and are specified in terms of message
types. A message type is a tuple of the form (q;flel,f2:F2,...,fn:Fn) where n>>0. The first component, q, 18
the name of the message type and is a constant. The other components (if any) specify a list of
parameters and their ranges in a Pascal-type notation. For i<{i<n, Fi is a set of values and fi is a
parameter that can range over the values in Fi’ f, is referred to as a field and Fi as a field space. The set
of messages specified by message type q is {(q,al,...,an) a € F for 1<i<n}. A message (q,al,...,an) is
referred to as a message of type gq. For notational simplicity, we Tresort to vector notation:
(q;flel,...,fn:Fn) as (q;I:F), where { = (fl,...,fn) and F =F x.xF; (q,al,‘.‘,an) as (q,a). Also, message
type (q;f:F) is often referred to by message type q.

Let Q, denote the (finite) set of message types sent by P, for i=1 and 2. Let M, denote the union of

message sets specified by the message types in Qi' Mi is the set of messages sent by Pi'

Bumping rule restriction: Recall that when a message is sent into a finite-buffer loss channel that is

already full, a message is deleted according to a bumping rule. The bumping rule can depend upon the

state of the channel, but only to the extent of knowing the type of each message.

2.2 Variables of the Entities and Channels

Each component of the protocol model has a set of variables that define its state space.

For i==1 and 2, let Pi have the variables v, |,v, 5.V, 1 and let Sij denote the domain (set of values)
el 3 il i

2

2 3

of Vi for each iy The state vector of P, is defined to be Xi:(vi 1"“’Vik)‘ The domain of y, is
i By -

S, =8,

i i,

XX Si,ki' At any time, the value of v, represents the state of Pi' Si is the state space of entity
Pi' (Some of the variables in v, can be auxiliary variables useful in specification/verification of the

protocol system. The v, j’s can be structured variables themselves.)

»

For channel Oi’ define Cha»nneli as the variable that represents, at any time, the sequence of mes-

sages in Oi' Recall that Mi is the set of messages sent by Pi‘ The domain of Channeli, which is also
referred to as the state space of channel Oi’ is
J]
M, = (U M) U {>}
4 j=1
where < > denotes the null sequence, Mi is the Cartesian product of Mi with itself j times, and J is the
maximum number (possibly infinite) of messages that C, can accommodate. (If we think of C, as having J

buffers, then any message sequence of length] in Ci occupies the first j buffers.)

The state of the protocol system at any time is given by the value of (y_l, Vo Channell, Channel2).
The global state space is

g=5 xS, xM xM.

2.3 Entity Events

We first develop notation that will be used in describing entity events. Let x denote a vector of
variables. A predicate F(x) denotes a boolean function involving variables in x. The truth set of F(x),
denoted by F, is the set of values of x for which F(x) has the value True. Let x and y be two vectors of
variables. An algorithm U(x;y) denotes an algorithm (written in a programming language such as Pascal)
that accesses the values of variables in x and assigns values to variables in y. x and y are referred to

respectively as the input and output variables of U(x;y)- The input space of U(x;y) refers to the set of

values of x for which the behavior of U(x;y) will be considered. For each value of x in the input space, the
execution of U(x;y) is well-defined (i.e. terminates after assigning a legal value to y). U(x;y) can be non-
deterministic. A transition of U is a pair of values (a;b) such that the execution of U(x;y) with x having

the value a can result in y having the value b. (a;b) is said to be a transition from a.

There are three types of entity events: send events, receive events, and internal events. The enabling
condition of each event is specified by a predicate in variables of the protocol system. When the predicate
is true the event is enabled. Its occurrence results in the execution of an algorithm, denoted as the action

of the event. The events of entity Pi are specified as follows.

(1) Send __q, for message type (g;{:F) € Q;, denotes the event of P, sending a message of type q into chan-

nel Ci‘ This send event can be specified by the following program description:

Enabling Condition : F(y,)

Action SRVIG PR P

put(channel,, (q,f))
F(v,) denotes a predicate involving variables of v; its truth set F is a subset of S, (If C, is a finite-buffer
blocking channel, then it is also required that Ci is not full for the event to be enabled.) U(Xi;_ri;f) is an
algorithm with input variables in v,, output variables in v, and f, and input space F. The variable f in
Action has domain F and can be thought of as a temporary send buffer that exists only during the event
occurrence. put(Channeli,(q,i)) appends to the tail of Channeli a message of type q with field values equal

to the current value of f. (If Oi is a finite-buffer loss channel and is already full, then a message is bumped

instantaneously according to the bumping rule.)

For later use, we express Send _q in the notation of [LAM 82b]. Define
[Send q] = {(s,r,-(q,a)) : s ¢ F and (s;r,a) is a transition of U}

Each element (s,r,(q,a)) in [Send _q] is referred to as a send state event and is to be interpreted as fol-

lows: the event is enabled if P, is in state s; its occurrence causes P, to enter state r and send message
(q,a) into channel C,. [Send _q] is the set of send state events due to Send _q, and is referred to as the

set description of Send _q.

(2) Rec__q, for message type (q;f:F) € Qj (j#4), denotes the event of P, receiving a message of type q from

channel Cj. This receive event can be specified by the following program description:

Enabling Condition : E(v,) and first(Channelj) =q
Action : get(Channelj, (q.£));

Uy, £:v,)
E(Y-i) denotes a predicate involving variables of v,; its truth set F is a subset of S,. first(Channelj) is a
function that indicates the type of the first message (at the head of) Channelj, provided that Channelj is
not empty. When the first message in Channelj is a message of type q, get(Channelj,(q,_i:)) removes that
message from Chamnelj and assigns its field values to the corresponding variables in f. The variable f is

Action has domain F and can be thought of as a temporary receive buffer that exists only during the

10

event occurrence. U(Xi,f_;zi) is an algorithm with input variables in v and {, output variables in Yo and

input space F x F.

For later use, we express Rec_q in the notation of [LAM 82b]. Define

[Rec_q] = {(s,r,+(q,2)) : s ¢ F, a ¢ F and
(s,a;r) is a transition of U}

Each element (s,r,4+(q,a)) in [Rec__q] is referred to as a receive state event and is to be interpreted as

follows: the event is enabled if Pi is in state s and (q,a) is the first message in channel Cj; 1ts occurrence
removes the message from the channel and causes P, to enter state r. [Rec__q] is the set of all receive state

events due to Rec__q, and is referred to as the set description of Rec_ q.

(3) An internal event a of Pi can be specified by the following program description:

Enabling Condition : F(v,)
Action RGN
F_‘_Y_i denotes a predicate involving variables of v its truth set F is a subset of Si' U(y_i;y_i) is an algorithm

with both input and output variables in v and input space F. Internal events model such events as

timeouts and interactions between the entity and its local user.

For later use, we express internal event a in the notation of [LAM 82b]. Define
[a] = {(s,r,0) : a € F and (s;r) is a transition of U}

where « is a special symbol denoting the absence of a message. Each element (s,r,o) in [a] is referred to

as an internal state event and is to be interpreted as follows: the event is enabled if Pi is in state s; its
occurrence causes P, to enter state r. [a] is the set of all internal state events due to a, and is referred to

as the set description of a.

(In the description of each event above, in order to avoid cumbersome notation we have omitted
qualifiers for the predicate F and the algorithm U that would identify the event to which they belong.
We will use qualifiers for F and U only when the need arises. Similarly, we will omit the subscript 1 in v

if there is no ambiguity.)

The set of send events of P, is {send_q:qe Qi}‘ The set of receive events of P, is {Rec_q:qe Qj
(i #i)}. Let A, denote the set of internal events of P;. We shall use T, to denote the set of all events
specified for Pi‘

Note that each send or receive event may alter the states of the entity and channel involved in the

event. Internal entity events do not affect the state of any channel.

11

For the sake of clarity, we have made the simplifying assumption that a send event appends a mes-
sage to the end of the message sequence in a channel, and only the first message in a channel is eligible for
reception. Except for a special case involving infinite-buffer channels, which we will point out later, our
results in this paper are also valid for the case where a send event can insert anywhere into the message

sequence in Oi’ and any message in Ci is eligible for reception.

2.4 Channel Events

Let Ei denote the set of channel events specified for channel Ci for i=1 and 2. The occurrence of a
channel event in Ei depends on and changes only the state of Ci; no other channel or protocol entity is

involved. We use such channel events to model channel errors as well as message deletions by a channel

“controller.”

The following three types of error events are considered: loss events, duplication events, and reor-
dering events. Each event is defined for a specified position of Ci' A loss event for the j-th position of Ci
is enabled if Channeli has a message in that position; its occurrence deletes that message from Channeli. A
duplication event for the j-th position of Ci is enabled if Channel, has a message in that position; its
occurrence inserts a duplicate of that message immediately behind it in Channeli. A reordering event from
the j-th to the k-th position of Ci is enabled if Channeli has messages in both these positions; its occur-

rence moves the message in the j-th position to immediately behind the message in the k-th position.

Ei can be specified to contain any collection of events of each type. The following special case is

sometimes considered.

Uniform error model. If E; contains a loss (duplication) event, then E. contains loss (duplication) events

for every position in Ci‘ If Ei contains a reordering event, then Ei contains reordering events for every

pair of positions in C,.

If Ei does not satisfy the above condition, then Oi is said to be specified by a nonuniform error model.

We also allow the set of message types Qi to be specified such that some message types in the set are
invulnerable to one or more types of error events. In this case, we include in the enabling condition of
each channel event the additional requirement that the message affected (i.e., lost, duplicated, or

reordered) must be vulnerable to that type of error.

For consistency, we require that all duplicated events are inhibited if Ci is a finite-buffer blocking
channel and it is full. If Ci is a finite-buffer loss channel, the bumping rule applies when a duplication

event results in a message sequence whose length exceeds the buffering capacity of the channel.

12

Finally, for each channel Ci’ we include in Ei a message deletion event that is specified by the fol-

lowing assumption:

Finite life-time assumption. We assume that the message flow in a channel cannot be blocked due to
an entity refusing to accept messages indefinitely. The first message in a channel will be deleted by a

channel controller, if after a finite time duration, it has not been removed by the receiving entity.

2.5 The System

The protocol system is completely specified by the following for i=1 and 2:

v, Si, the state vector and state space of Pi;

Q;, the set of message types sent by P ;

T,, the set of entity events of P,

(T, = {Send_q : q ¢ Q} U {Rec_q : q ¢ Qj (3 #1} U AD;
Ei, the set of channel events of Ci;

g,, the initial global state of the protocol system.
The set of events affecting the protocol system is

'I'1 U TZ U E1 U E2
We make the assumption that if multiple events in the entities and channels occur simultaneously then
such an occurrence can be represented as a sequence of occurrences of the same events in some arbitrary
order [KELL 76]. In the present model, this assumption is acceptable if the events of each protocol entity

are implemented as indivisible operations. Note that channel events can be considered to occur instan-

taneously.

Each event in E is enabled over a set of global states and gives rise to a set of global transitions.
Recall that r denotes the set of transitions in the global state space G. Given event e ¢ E and global states
g and h (not necessarily distinct) we say that e takes the protocol system from g to h, if e is enabled when

the protocol system is at state g and 1ts occurrence can result in the protocol system entering state h.

Recall that the transition system (G, 7) can be represented as a directed graph. We now formally
define a path in (G, 7) to be a sequence of global states fO,fl,...,fn in G, such that there exist events
LI in E and e, can take the protocol system from fi—l to fi for i=1,2,...,n. Since R denotes that
portion of the graph (G, 7) that is reachable from the initial global state g, a path in R is a path in (G,

7) that starts from the initial state g.

Given two sequences Xzfo,fl,...,fn and y = g,,8,,-8,, We denote by x,y the sequence

fo,fl,...,fn,go,gl,...,gm. A path x is extendible by sequence y to z = X,y if z is also a path.

13

3. CONSTRUCTING A FAITHFUL IMAGE PROTOCOL SYSTEM

An image protocol system is constructed by first partitioning each of the sets
Si, Mi, Ti, Ei, for 1 = 1 and 2

in the original protocol system specification. Protocol quantities (entity states, messages or events) in each

partition subset are treated as equivalent and are projected onto (aggregated) to form) a single quantity,
called their image, in the image protocol system. The resulting image entity states, image messages, and

image events specify an image protocol. (We refer the reader to [LAM 82b] for a more detailed

exposition.)

For a protocol quantity x, we shall use the notation x’ to denote its image. (The same notation x’
will sometimes also be used to refer to the set of protocol quantities in the original protocol system that
have the x’ image .) For a set x of protocol quantities in the original system specification, we use x’ to

denote the set of image quantities derived from x, i.e.,

x* = {x’ : X ¢ X}.

In Section 3.1, we present the procedure for constructing an image protocol, given a projection of Si

specified by a subvector Xi’ of v, (We will explain in Section 3.2 how these subvectors are obtained.)

All states in S, that have the same values for variables in y are treated as equivalent and have the
same image. Si7 is the set of images of Si‘ Following this, the projection of M, is done by partitioning Qi’
All message types in each partition subset are projected onto an image message type. Qi’ is the set of
image message types obtained from Q. In the projection of T,, all Send__q (Rec__q) events involving
message types that have the same image q’ are projected only a Send _q’ (Rec_q’) event in T.. The

internal events in Ai are projected onto image internal events in Ai’.

The resulting image protocol system is just like any real protocol system, and is specified by:

For i = 1 and 2

v,

v, : 8], the state vector and state space of P,

Q;, the set of message types sent by P,

T;, the set of image entity events of P,

(T; = {Send_q” : q’ € Q;} U {Rec_q" : q7 ¢ Qj’ (G #D}YUAD;
E1 the set of image channel events of Ci;

g,, ‘the image initial state of the protocol system.

In general, this image protocol need not be faithful. In Section 3.2, we state our definition of faith-

14

fulness, and a well-formed property which, if satisfied by the image protocol entities, is a sufficient con-
dition for faithfulness [LAM 82b]. Using the well-formed property, we describe an iterative procedure to

obtain the image vectors v and v} needed for the construction procedure of Section 3.1.

Briefly, an initial choice of Xi’ is made by considering the desired logical behavior {assertion) that has

to be verified. Then, more variables are added to y_i’ so that the image entity events satisfy the well-

formed property.

The construction procedure described in this section is obtained from [LAM 82b] and involves set
operations (right side of Figure 3). That is, we have to transform the protocol system description from
program notation to set notation, use set operations to obtain faithful image protocols, and then

retransform the set notation into program notation (see Figure 3).

In Section 4 we will show that if the program descriptions of entity events display certain nice struc-
tures, then faithful image protocol systems can be obtained directly (by inspection) from the original

protocol system (this corresponds to path involving simple operations in Figure 3).

In practice, we have found that the results of Section 4 can be used to construct most of the image
protocol. Those portions of the image protocol that cannot be constructed in this way, can be constructed

by the general construction procedure in this Section 3.

3.1 Constructing an Image Protocol System

We start by considering the state vector v, in each entity Pi‘ Its image Xi’ is the subvector of v
consisting of the variables that we choose to retain in the image protocol (we will explain in Section 3.2

how this subvector is chosen). v/ is referred to as the image state vector of P,.

3.1.1 Projection of entity states

For each entity state s ¢ Si’ its image s’ is obtained by deleting all components in s that are not in
y_i’. Si’ is the set of images of states in Si' Note that all entity states in Si that do not differ in the values
of y_i’ are projected onto a single image in Si’. Si’ is the domain of Xi’, and is referred to as the image state

space of Pi‘ Elements of Si’ are referred to as image entity states.

3.1.2 Projection of message types

The projection of the message types in Qi depends upon the projections of the entity state spaces.

A message type (q,f:F) € Qi can be projected onto a null image, denoted by {3), if no message of
type q causes state changes in the image entity state space SJ? (j #A); i.e., every tuple (s,r,(g,a)) € [Rec__q]

has s’==r’. () is treated as a message type with no fields; hence, (B) is also a message (of type 8).

15

Message types (qllflzf_l); (q2;£2:122),...,(qn;in:En) with non-null images in Q, can be projected onto the
image (¢’;f:F’) if
a) F’ is the product of field spaces common to El,Ez,...,En, and
b) for any q and q;, a message of type q and a message of type q; cause identical state transitions in SJ?

provided they have the same values in the fields corresponding to F’.

(Note that the names of the fields in {’ can differ from the names of the corresponding fields in £;

they are only parameters.)

Let Ql’ be the set of images of message types of Qi' We refer to the image of message type (q;f:F) e
Qi by the notation (q’;f:F’). For any tuple a € F, its image a’ is defined to be the subvector of a cor-

responding to field spaces in F’. The image of message (q;a) is then defined to be (q’,2’).

The image message set M = {m’ : m € M,} sent by P, can be obtained as the union of message sets

specified by the image message types in Q:

Sometimes it is desirable to have a finer partitioning of a message set. A higher resolution may be
needed to make certain logical statements about the behavior of the protocol system, or to satisfy the
well-formed property for some receive events (see below). A stronger criterion for treating message types

as equivalent is to require also that their send events cause identical state changes in the image state

space of their sender.

Also if we permit some message types in Qi to be invulnerable to the occurrence of one or more
types of channel events, or the bumping rule to depend upon the message types, then two message types
may be treated as equivalent only if they have the same characterization of invulnerability and are
treated as identical by the bumping rule. One consequence of this generality is that multiple null image

message types are needed in Qi’, i.e., we have to define different f’s, one for each combination of priority

class and invulnerability.

We shall deal with a null image message type () in two different ways depending upon whether C,
is a finite-buffer channel or an infinite-buffer channel. With a finite-buffer channel, (8) is included in QI’
as described above. With an infinite-buffer channel, (8) may be excluded from Q/. Note that the reception
of a null image message does not affect the image state of the receiving entity. The fact that a null image
message does occupy a buffer in Ci can be ignored for an infinite-buffer channel. Thus, () can be
eliminated from Qi’ if the following assumptions are made. First, the insertion and deletion of messages
associated with send and receive events respectively must take place at the two end points of the message
sequence in Oi‘ Second, Ci must be characterized by the uniform error model. From now on, an infinite-
buffer channel Ci will be considered with the implicit assumption that (8) has been deleted from Q and

the uniform error model applies.

16

3.1.3 Images of channel states, global states, and sequence of global states

The preceding equivalence relation defined for messages is now extended to channel states, global

states, and sequences of global states.

The image ln_; of channel state m, is obtained by taking the image of each message in m. In ad-
dition, for infinite-buffer channels, messages with a null image are deleted from _rg_i’. M., the state space of

channel Ci in the protocol is the set of images of channel states in Mi'

We will continue to use the name Channel, to denote the variable representing the message sequence

at any time in C, in the image protocol.

The image of global state g = (s, s,; I_n_l,__nlz) is defined to be g’ == (s},s}; I_n_’l,_n_l’2). G’, the global
state space of the image protocol is the set of images of global states in G. Thus, we have
y 3 3)
G —(S’IXSQXMIXMZ)_

Given w, a sequence of global states in G, its image w’ is obtained as follows: first, take the image
of each global state in w; second, any consecutive occurrences of the same image in the sequence are
replaced by a single occurrence of the image. Recall that paths in (G, 7) are sequences of global states in

G. Thus, the image of a path in (G, 7) is defined as above for sequences.

3.1.4 Projection of events

The image of an event denotes the effect of the event that can be observed in the image global state
space. The image of an event itself becomes an event in the image protocol [LAM 82b]. It has been shown
in [LAM 82b] that the set of images of channel events in Ei is Ei itself. Hence, the set El’ of channel events

of Ci in the image protocol is Ei itself.

We now describe the images of the entity events. The images of the three types of entity state
events (s,r,+m), (s,r,-m) and (s,r,@) are (s’,r’,+m’), (s’,r’-m’) and (s’,r’,a) respectively. The image of an

entity state event is also referred to as an image entity state event. The image of an entity state event

describes the effect of the event that can be observed in the image global state space. A state event whose

occurrence does not affect the image global state is said to be a null image state event. An image internal

state event (s',r’,r) is a null image state event if s’ = r’.

For each image message type (q’,f":F’) € Qi’, the image event Send __q’ is defined in set notation by

[send _q’]1 = {(s’,r’,-(q",a")) : for some (q,f:F) whose image
is (q',f":E")}
(s,r,-(q,2)) e [Send_q]

Send _q’ is the image of all Send _q events where the image of q is q’. Recall that the set notation is

17

transformable to a program notation. To be precise, we must find (a) a predicate E(v]) with truth set {s’
: (s”,r'-(q,2")) € [Send _q']}, and (b) an algorithm U(Xi’;y_i’,_f:’) with input variables v/, output variables v
and f’, and input space F such that [Send _q’] = {(s’,r",-(q’,2")) : 8’ ¢ F and (s’,1",2’) is a transition of U}.
Then, the event Send __q’ can be specified in program notation by

Enabling Condition : F(¥;

Action DUy vy, £7));

put(Channel,, (q’,£"))

For each image message type (q’;{:F’) € Qi’, the image event Rec__q’ is specified in state notation as

[Rec_q’] = {(s’,r’,+(q",2’)) : (s,r,+(q,2)) ¢ [Rec_ql, q is any

one message type with image q’}

To specify Rec__q’ in program notation, it is necessary to find (a) a predicate E(y_j) with truth set E
= {s’ : (s",r",(q’,2")) € [Rec_q’]}, and 8b) an algorithm U(le;f_’;zjf) with input variables XJ? and ’, output
variables XJ?, and input space F x F’ such that [Rec __q’] = {(s’,r’,+(q’2")) : 8’ ¢ E, a’ ¢ I, and (s%2",1") is
a transition of U}. Then, Rec__q’ can be specified in program notation as:

Enabling Condition : E(Ej) and first(Channel,) = q’
Action : get(Channel,, (q’,£°));

U(v? D
(__J, i, }LJ)

For each internal event a € A, the image of [a] is defined to be [a]’ = {(s'x",a) : (s,r,a) € [a],
(s’,r’,@) is not a null image event}. In particular, if for internal event a € Ai’ [a]’ has only null image state

events, then the image of a is said to be the null image event.

Internal events a,,a,,....a ¢ Ai can be projected onto the same image internal event a’ if for all a,,
a, [a.l]’ differs from [aj]’ only in null image state events. The image internal event a’ is specified in state

notation as

[a’] = {(s’,7’,a) : (s,r,a) € [a] for some a whose image
is a’, and (s’,r’,a) is not a null image event}

Let Ai’ be the set of images of events in Ai’ where null image events are not included.

To specify image internal event a’ in program notation it is necessary to find (a) a predicate E(X:)
with truth set F = {8’ : (s,;r",a) € [2]}, and (b) an algorithm U(y;v;) with both input and output vari-
ables in ¥/, and input space F such that [2’] = {(s’;1",2) : 8" ¢ E and (s',r’) is a transition of U}. Then
internal event a’ can be specified in program notation as:

Enabling Condition : F(¥))

18

Action : U(Xi’;y_i’)

(Null image events can be added [a’] if that would make it more convenient to specify F(v)) and U(v}; ¥)).)

If channel Ci is an infinite-buffer channel then send and receive events involving null image message
(8) can be treated as internal events. The image send state event (s’,r’,-b) is represented as (s”,r(,@), and is
a null image if s’=r’. Then the event Send_f in T; is instead placed in Ai’ (in the program description of
Send _b, {” and put(Channel,,(8) are removed). The image receive state event (s’,r",+0) can be treated as

a null image event since s’=r’ by definition. Hence Rec __ § in T; can be entirely removed.

3.2 Faithful Image Protocols

Given a protocol system and a choice of image state vectors ’_f’l and y_’z, we have shown how to

construct an image protocol specified by:
v, : S{: Q4 T;; E;; g; for i =1 and 2.
In general, this image protocol system need not be faithful. Let R’ denote the reachability graph from g(’J

of the image protocol system. For image protocols constructed as described in Section 3.1, if g is a reach-

able state in the original protocol system, then its image g’ is reachable in the image protocol
system [LAM 82b].

Informally, an image protocol is said to be faithful if the following is true: any logical property,
safety or liveness, that can be stated using the resolution of the image protocol, holds for the original

protocol if and only if it holds for the image protocol.

Definition (Faithful Image Protocol). For every reachable global state g’ of the image protocol sys-
tem, the following two conditions hold for every reachable global state f of the original protocol system,
whose image is g:

(F1) If { can be extended to a path w in R then g’ can be extended to a path u’ in R’ such that v’ = w’.
(F2) If g’ can be extended to a path u’ in R’ then { can be extended to a path w such that w’ = u’.

The image protocols constructed as described in Section 3.1 always satisfy condition (F1) [LAM

82b]. The well-formed conditions are next described.

Definition. For a and b in Si’ b is internally reachable from a if a’ = b’ (they have the same

image), and there is a sequence of internal events in Ti causing state changes inside a’ that will take Pi

from a to b.

Note that a Send g event involving Pi and Oi’ can be regarded as an internal event for the above
definition if Ci is an infinite-buffer channel and the message being sent has a null image. Under these

conditions, a send state event (a,b,-m) € [Send __q] can be regarded as the internal state event (a,b,a).

19

Definition. An image internal event a’ ¢ A’ is well-formed if for each (s’,r’,a) e [a’] where s’ #==’ the

following holds: for every b whose image is s’, there is some c ¢ Si that is internally reachable from b, and

(c,d,a) € T, for some d whose image 1s r’.

Definition. An image send event Send _q’ of P, is well-formed if for each (s',1’,+(q’,a’)) e
[Send __q’] the following holds: for every b whose image is s’, there is some ¢ ¢ Si that is internally reach-

able from b and (c,d,(p,e)) € [Send _p] for some d whose image is r’ and for some (p,e) whose image is
(q,2)-

Definition. An image receive event Rec __q’ of P, is well-formed if for each (8’,r’-(q’,a")) € [Rec_q’|
the following holds: for every b whose image is a’ and for every (p,e) whose image is (q’,a’), there is some

¢ € S; that is internally reachable from b, and (c,d,-(p,e)) € [Rec_p] for some d whose image is r’.

If in any of the above definitions of well-formed events, the length of the internal path is 0 (i.e.,

¢ = b), then we say that the image event is strongly well-formed.

Note from the construction of Ti’ that for every state event e’ ¢ Ti” there is a state event e € Ti

whose image is €.

The image protocol is said to be well-formed (strongly well-formed), if every image entity event in

Ti’ for i = 1 and 2 is well-formed (strongly well-formed). An image protocol with well-formed protocol
entities is faithful [LAM 82b].

The well-formed property is used to determine the state vectors y_’l and y_; in the image protocol as

follows.

First, obtain the variables vy and Vo needed to state the desired logical behavior of the function
being projected. Let X’l and Xé consist of these variables. Obtain the image protocol for this choice of X’l
and y_’z, and check if it is well-formed. If it is not well-formed, then it means that more variables from v,
are needed in v/ (i.e., a higher resolution is called for). These variables can be detected in the course of
checking for well-formedness. Add these variables to _ri’ and construct an image protocol again. Keep
repeating until a well-formed image protocol is obtained. The procedure will terminate at the worst case
with the image protocol being the original protocol itself. It has been our experience that for protocols
with several distinguishable functions, well-formed image protocols can be constructed for individual func-

tions, that are substantially smaller than the original protocol [SHAN 82b).

20

4. IMAGE PROTOCOLS EASILY CONSTRUCTED

In Section 3, we described a general procedure to construct faithful image protocols. The construc-
tion procedure involved set operations, which we would like to avoid. In this section we consider protocol
entities that have events whose program descriptions have certain simple structures. Given these simple
structures, we show that image message types and the program descriptions of well-formed image events
may be constructed by inspection. The cases considered here have been used to substantially simplify the

construction of well-formed image protocols for a version of HDLC [SHAN 82b)].

The structures of the entity events considered here are not intended to cover all situations where the
program description of entity events displays structure that facilitates the obtaining of well-formed image
protocols. In general, we note that the more well-structured the program description, the easier it will be

to find the program description of the image events.

We first introduce some notation. Let x and y be two vectors of variables. Let x’ and y’ be subvec-

tors of x and y respectively. Given two predicates F,(x) and F(x), F,(x) = F,(x) means that their truth

sets are equal. If predicate F(x) involves only variables in x’, we say F(x) = F(x).

Given two algorithms U(x;y) and U2(_>£;X), with the same input space E, Ul()_c_;}_f_) = UQ()_g;y_) means
that both U1 and U2 have the same set of transitions originating from E. For a given input space, if
U(x;y) accesses variables only in x” and assigns values to variables only in y’, then we say U(x;y) (using
the set of transitions of U, we can formally define when a variable in x is accessed and when a variable in

y is assigned a value by U).

In what follows, v* denotes the vector of variables in v, that are not in the image vector y_i’, fori =

1 and 2. (We will as usual omit the subscript i for v, unless confusion arises. Proofs of these observations

are in the appendix.)

Observation 1. The image a’ of internal event a ¢ A, is a null image event if and only if Ulv;y) =
U (X’X")

Observation 2. If internal event a € A, has its enabling condition E(v) = E’(v’) " E"(v"), and its
action U(y;v) = U*(v;x"); U(1'5y)), then
a) the image of a’ ¢ A, can be specified Dby:
Enabling Condition : E’(¥’)
Action DUy

b) if E(x = E*(¥’) above, then a’ is strongly well-formed.

21

Observation 3. A message type (q;f:F) ¢ Qi has a null image (8) if and only if Rec__q has its
action algorithm U(v,f;v) = U"(v,f;v").

Recall that if channel Ci is an infinite-buffer channel, then for any message type (q,f:F) € Qi with

null image (8), the image of Rec__q is not included in the image protocol.

Observation 4. Let channel C, be a finite-buffer channel and let (ql;ilzgl),...,(qn:fn:En) be the mes-
sage types in Q, with null image (8). If Rec__qy, for i<k<n has its enabling condition predicate Ek(y_) .
E(v) " Ef;(X")’ and its action algorithm U, (v.f,;v) = UM(v.f;x"), then

a) Rec_(/3) in the image protocol can be specified by
Enabling Condition : (E;(v’) v Ej(¥v*) v ... v EX(¥"))
and first(Channeli) =8
Action : get(Channel, , (8))
b) If E(¥) = E (v’) above, then Rec_f is strongly well-formed.

Observation 5. For message types (qlzglzgl), (q2:£2:E2),...,(qnzin:P_“n) in Q, if Rec_q, for i<k<n
has

a) its enabling condition predicate E (¥) = E'(¥x’) ~ Eg(¥"), and
b) its action algorithm U, (v.f,;v) = Up(v,£;v"); U (v ;£57"),

where (q;f :F) = (q f F", f:F), then
¢) (q:f,:F,) can be projected onto the image message type (q’;£7:F"),
d) Rec_q’ can be specified by:

Enabling Condition : E’(y’) and first(Chanmnel,) = q’

Action . get(Channel,, (q’.£7));

Ut (v, ETY)

e) If in (a) above, E (v) = E’(y’) for 1<k<m, then

Rec_q’ is strongly well-formed.

Observation 6. If message types (ql;ilzgl),...,(qn;gn:En) in Qi are projected onto image message

(q5:F’), and Send _q, for 1<k <n has

a) its enabling condition predicate E (v) = E(v’) ~ E¢(yv"), and

b) its action algorithm U (¥;f,.¥v) = Up(v;f2,¥"); U (v f..v7)

22

where (q, ;£ :F, = (q;f::F!), then
c) Send q° is specified by
Enabling Condition : E}) v Ej(v’) v...v EX(¥’)
Action : {Choose any k such that E,(v’) = True}
U (v fr,v7);
put(Channel,, (q’,£°))

d) Send_q’ is strongly well-formed if the set {q,.9,,---,9,} can be
partitioned so that each partition subset {q,,q,.--- .Gy, has

Ex, (x*) = Ey, @ = E];m(_\g’),

E“ (v v EY ") v...v EY (v") = True, and
2 m
Uy (V £.v0) = - =0 (v';£2.¥7)
m
In Observatlon 6, part (c), we note that if ¢’ = 8 and channel Ci is an infinite-buffer channel, then

"put(Channel,,(q’,{’))" is not included. Further, if U, (v;f,v) = Up(v;f,v") for 1<k<n, then Send_fisa

null event and is not included in the image protocol.

In applying these observations to obtain well-formed image protocols, the following guidelines can

be used.

First, obtain the image vectors _\1’1 and 1’2 by retaining all variables in v, and v, needed to state the
desired logical behavior of the protocol system. (These would be the variables present in the assertion that
has to be verified.) Next, include more variables in _r_i’ so that the program descriptions of a substantial
number of entity events display the structure shown in the observations. (This amounts to expanding y_i’
so that only variables in Xi’ are used in assigning values to variables in y_:) Construct the image protocol
system, using the set operations in Section 3 for those entity events that display no suitable structure.
Check if it is well-formed. If not, include the required variables (indicated when the well-formed check
fails) in y_i’ and repeat the procedure. In practice this turns out to be quite easy to do for many com-

munication protocols. It has been applied successfully to a version of HDLC [SHAN 82c¢|.

5. TIME-DEPENDENT COMMUNICATION PROTOCOLS

In many cominunication protocol systems, a component is obliged to satisfy some constraints on the
time intervals between occurrences of system events involving that component. (e.g., an entity must send
an acknowledgement to a message within a specified response time of receiving that message; the time
duration that a message resides in a channel is less than a specified maximum channel delay.) Timers,

clocks, and age fields in packets are used to implement these time constraints in the protocol system.

23

Because (physical) time elapses at the same rate everywhere, these time constraints satisfied locally by
components give rise to precedence relations between remote events in different components. Note that
such precedence relations are not established through a chain of system events. If these precedence rela-
tions are vital to the proper functioning of the protocol system, then many logical correctness properties
of importance cannot be verified without including measures of time in the modeling. We refer to such

systems as time-dependent systems [SHAN 82a, FLET 78, SLOA 79].

In our current model of a protocol system (as defined in Section 2) there are entity send events,
entity receive events, entity internal events and channel events. Note that a send or a receive event in-
volves only two components (an entity and a channel) of the system, and an entity internal event or a
channel event involves only one component of the system. We shall refer to these events of our model as
system events, inasmuch as they correspond to events that occur in the protocol system being modeled.
This current protocol model with only system events is inadequate to model time-dependent
systems [SHAN 82a]. It is necessary to relate the elapsed times measured at different components. To do
this we use time variables and time events, to be explained in Section 5.1. In Section 5.2 we incorporate

these time variables and time events into our protocol model. In Section 5.3, we extend the method of

projections to this time-dependence protocol model.

5.1 Time Variables and Time Events

Time variables are variables that indicate elapsed time in integer ticks. Time events are events that

increase the elapsed time indicated by time variables.

Each time variable takes its values from Nt = {Off,0,1,2,...}. A time variable is termed inactive if
its value is Off, else it is termed active. In modeling a protocol system, whenever it becomes necessary to
measure an elapsed time in a component, we include a time variable in the component. The value of a
time variable can be changed in only two ways. First, it can be aged by a time event. When an active
time variable is aged, its value is incremented by 1; when an inactive time variable is aged, its value is
not affected. Second, a time variable in a component can be reset to any value in Nt by a system event
involving that component. Thus, for an active time variable, the difference between its current value and

the value it was last reset to, indicates the time elapsed since the last reset.

We will use two types of time variables in our model: global time variables and local time variables.

All global time variables in a system model are aged by the same time event, referred to as the global
time event. Thus, all active global time variables are coupled. The global time event models the elapse of

physical time in the protocol system model.

In general, a global time variable does not correspond to an actual timer implemented in the

24

protocol system. Global time variables are typically used as auxiliary variables that are needed for stating

assertions about the system’s behavior, or to model time constraints satisfied by components.

Local time variables are used to model the timers and clocks that are implemented in system com-
ponents. Every local time variable t is associated with a unique time event, referred to as the local time
event of t. t can be aged only by its local time event, and the local time event of t can age only t. This

decouple the aging of t from the aging of any other time variable.

With each local time variable t, we associate a global time variable t* and a reset value t,. When-
ever t is reset, both t* and t, are reset to the same valie. t* is affected by the global time event just like
any other global time variable. Therefore, at any time, t* indicates the value that t should have if t were
aged by the global time event (note that t is active if and only if t* is active). The accuracy of local time
variable t is specified by its accuracy axiom which bounds t-t* at any time (Off-Off is treated as 0). For
example, the condition [t-t*| < 1 can specify a timer with no accumulating error; the condition

[t-t*] < 1 + a(t*-t;) can specify a timer with maximum relative error a in the clock frequency.

In this model, neither the local time event of t nor the global time event can occur, if such an

occurrence would violate the accuracy axiom. (The meaning of this will be made clear in the discussion on

time constraints below.)

The accuracy axiom for each local time variable t cannot be chosen arbitrarily. For example, the
accuracy axiom [t-t*| < 0 would deadlock the local time event of t and the global time event. In this
paper, we insist that the accuracy axiom for any local time variable t is an upper bound on |t-t*| which is
monotonically non-decreasing both in t and in t*, and whose minimum value is 1. This ensures that the

time events do not get deadlocked due to unreasonable accuracy axioms. (There are weaker sufficient

conditions.)

Time constraints

Time variables and time events can be used to model time constraints in components. Let e and e,
denote two system events of a component. Let t be a time variable (local or global) that is reset to 0 by

e,, reset to Off by €9 and not reset by any other system event. Let D denote a specified time period.

The time constraint that €y will not occur until D time units have elapsed since the occurrence of €y

can be modeled by including (t > D) as part of the enabling condition of €y

Another example of a time constraint is that €y will occur not later than D time units after the

occurrence of e,. This cannot be modeled by including (t < D) in the enabling condition of e,. (This is

25

because in our model an enabled event does not have to occur.) However, it can be modeled by including
(t < D) in the enabling condition of the time event for t. This particular interpretation does not mean
that in the distributed system, time comes to a halt whenever t equals D. Rather, it models the guarantee
that the component will execute the event e, before (or as soon as) t reaches D. Such guarantees by a

component are modeled by enabling conditions for time events, and will be referred to as the components

local time axioms.

Note that in the above situation, the component cannot guarantee the local time axiom if €y is not
enabled some time before t reaches D, or if e, s a receive event, or if €, is a send event which may be
blocked. In short, a local time axiom, like the accuracy axioms, cannot be any arbitrary time constraint.
It must be a constraint that the component can guarantee without any cooperation from its environment.

If that is the case, then in the protocol system model, the time events will never be deadlocked.

Note that the accuracy axiom for a local time variable t, considered earlier, is a special case of a
local time axiom; the module guarantees that the variable t is incremented at (more or less) the same rate

as the global time event occurs. We shall only consider systems whose modules satisfy their local time

axioms.

5.2 A Time-Dependent Protocol System Model

We now augment the original protocol system model with time variables and time events. In each
entity Pi’ some of the variables in v, can be global or local time variables. For each local time variable in
v, the associated global time variable and associated reset value are also considered to be in y.. The ac-
curacy axiom for each local time variable v in v, is specified by upper and lower bounds or the difference

between v and its associated global time variable. The bound itself may be a function of the reset value

associated with v.

(Henceforth, when we refer to time variables of Pi’ we do not mean the global time variables as-
sociated with the local time variables of Pi') We assume that the local time axioms of P, can be
represented by stating the set of values allowed for each time variable of Pi‘ Hence, the domain Si' of

time variable Vi is either a proper subset of Nt (if there is a local time axiom restricting v j)’ or is equal

to N @f Vi is not involved in a local time axiom). Each of the variables associated with local time vari-

ables has a domain Nt' The state space Si of entity Pi is the product of all the Sij’s (as defined earlier in
Section 2.2).

In channel Ci’ we associate with every message in transit a time value that indicates the time spent
by that message in the channel. This time value is referred to as the age of the message. For notational

convenience we will assume that this age is a global time value. The state of channel Oi is given by the

26

sequence of (message, age) pairs in Oi' We will continue to denote the state space of channel Ci by Mi‘ (A
definition of this Mi can be obtained from the former definition of M, (Section 2.2) by treating M'I as the
cartesian product of (M, x N,) with itself times.) In Section 2.2, Channel, represented the message se-
quence in channel Ci' We now redefine Channeli to represent the sequence of (message, age) pairs in chan-

nel Ci’ at any time. When a message is sent into a channel, its age is set to 0.

We now allow channel Ci to be a channel with a specified maximum delay denoted by MaxDelayi. A
message that stays in Ci for longer than MaxDelayi is lost. We model this with the following local time

axiom for channel Ci: every age value in Channeli is less than or equal to MaxDeIayi.

Entity Events

The events of protocol entity P, are as defined before (in Section 2.3). The values of time variables
can be used in the events to model time constraints. The time variables can be reset in the events. We use
the notation Reset(v,a) to represent a program statement that resets time variable v to the value a ¢ Nt'

If v is a local time variable, then its associated global time variable and reset value are also set to a by

Reset(v,a).

To maintain the meaning of time variables, we insist that any change done to a time variable v in
v is through the Reset(v,a) program statement. We also insist that associated global time variables and
reset values cannot be accessed by the entity events. This is because the sole purpose of the associated
variables is to model the accuracy of local time variables. (Indeed, if Pi can access the global time variable

associated with a local time variable v, then we could just as well have modeled v as a global time vari-

able in the first place.)
Channel Events

The channel events are as described in Section 2.4 except that now the events act on (message, age)
pairs. Also, if channel Ci satisfies the local time axiom Channeli(Age) < MaxDelay, then for the axiom to
be valid we must include in E.1 a message deletion event that deletes any message whose age is Ma,xDelayi.
Note that this message deletion event need not be included (again) if either Ei already has the message

loss event (Section 2.4), or C, is non-reordering (recall that the message deletion event of Section 2.4 is

still specified in E,).

Time Events

We now define the local time events and the global time event for the protocol model.

27

For each local time variable Vi n vy, i=1 and 2, there is a local time event whose occurrence ages v
by 1 tick if v is active. This local time event is enabled if its occurrence does not cause v, . to violate its

3

time axiom Si j mor cause Vv, . (and its associated variables) to violate its accuracy axiom AGCi
;)

»d

For all the global time variables of the protocol model, there is one global time event whose occur-
rence ages all active global time variables by 1 tick. This includes the age values in Oha,nneli and the
associated global time variables in v, for i==1 and 2. This global time event is enabled if its occurrence

does not cause

(1) a global time variable Vi to violate its time axiom Sij; and

2

(i) the global time variable associated with a local time variable Vi to violate its accuracy axiom
ACCiJ.; and

(iii) if channel Ci has bounded delay MaxDelayi, then no packet age exceeds MaxDeIay.l‘

5.3 Faithful Image Protocols

In Sections 3 and 4 we have described how to obtain faithful image protocols from a given non

time-dependent protocol system. We now augment those construction procedures to handle the time-

dependent protocol system described in Section 5.2.

Image Protocol Entity

When specifying the image state vectors Xi, a local time variable is included in y_i’ if and only if its
associated variables are also included in v/. For each time variable included in v}, its local time axiom and

accuracy axiom (if any) are identical to those in the original protocol system.

The projection of messages, entity events, and the definition of well-formed is as defined in Section
3. Both the general construction procedure of Section 3 and the special construction procedures of Section
4 are applicable. Because of the restrictions on the usage of time variables in entity events, the associated
variables in vy and vy need not be examined while constructing image protocols. Note that Reset state-

ments in the entity events of the original protocol are either excluded or included in the image protocol.

Image Channels

In projecting a channel state onto its image, a (message, age) pair (m,a) is replaced by (m’,a). If m’

is B and the channel is an infinite-buffer channel, then the (message, age) pair deleted.
The set of channel events in the image protocol remain the same as in the original protocol.

Image Time Events

28

The image local time events and the image global time event in the image protocol are defined as in

Section 5.2, except that the time variables are now from v’ (instead of from V).

We will next state the conditions for the image time events to be well-formed. Let & denote those
time variables in y, that are not included in y;. (Associated global time variables are not included in t)
Let Si" denote the domain of & Si“ is the product of the domains S5 of the time variables in t" For any

value b" € s} let (b") denote the result of aging each value in b".

Definition The image global time vents are well-formed if for every value a" ¢ Si': there is a se-

quence of null-image internal events of P, that will take t'from a" to a value b" such that next(b") e S

Note that the above definition does not distinguish between local time variables and global time
variables, nor between local time events and the global time event. Furthermore, the accuracy axioms for
local time variables do not enter the definition; only the local time axioms Sij are used. {In fact, the

above definition implicitly treats all time variables as global time variables.)

Theorem. If all image system events and image time events are well-formed, then the image protocol

is faithful. (The proof is in the appendix.)

6. CONCLUSION

The method of projections, described in [LAM 82b], is an approach to reduce the complexity of
analyzing nontrivial communication protocols with several distinguishable functions. The protocol model
used in [LAM 82b| was a very general one, in which the construction of faithful image protocols involved

set operations that are difficult when large protocols are considered.

In this paper, we have described a protocol system model in which the method of projections can be
applied without the need for set operations in most cases. Each protocol entity is modeled as an event-
driven process that sends and receives messages into channels, and manipulates a set of variables local to
itself. The events of the entity are specified in a programming language notation. The messages in the
protocol model can have multiple fields (a feature found in many communication protocols) and are
specified in terms of message types. The model also has time variables and time events so that it can be
applied to (time-dependent) protocol systems where measures of time (obtained by timers and clocks in

entities, and age fields in packets) play a crucial role in the correct logical operation of the protocol.

We have considered image protocols that are formed by retaining a subset of the variables at each
entity, and a subset of the fields in each message type. This restriction allows assertions about the image

protocols to be easily related to the original protocols. Further, it supplies an iterative procedure to

construct faithful image protocols.

29

We have shown that if the entity events satisfy certain nice structures, then faithful image protocols
can be obtained directly and easily from the original protocol. In general, the more well-structured the
program description of entity events, the easier it is to obtain faithful image protocols. We have applied

these results to obtain faithful image protocols for a small example. For a larger example see [SHAN 82b].

APPENDIX

In the proofs below, for any element s € Si’ s" denotes the subvector of s that corresponds to v.". s

can be written as (s’,s"). S"denotes {s" : s € S]}. S, can be treated as 5 x 3"

Proof of Observation 1

If a has U(y; v) = U"(v;v"), then for every state event (s,r,a) € [a], s’=r’ since variables in v’ are
not affected. Hence a has a null image. If a has a null image, then in each state event (s,r,a) € [a], s’=1’

and no variables in ¥; need be assigned values. Hence U(v;v) = U"(v;v").

End of Proof of Observation 1.

Proof of Observation 2

(i) Proof of (a).
The set of image state events of a are [a]’ = {(s’,;r",a) : s € E and (s;r) is a transition of U}. The set
of state events of a’ as specified in Observation 2 is [a’] = {(s’,r,a) : 8’ ¢ E’ and (s’;1") is a transition of

U’}. We need to show that [a’] = [a]. From the structure of E, if s ¢ E then s’ ¢ E’. From the structure
of U, if (s;r) is a transition of U, then (s’,r’) is a transition of U’. Hence [a]’ [a’]. for the reverse contain-
ment, choose any t ¢ E (recall that by assumption E is not empty), and any (s";r’,a) € [2’]. t can be
treated as (t’,t"). (s’,t") is an element of S,. Further, (s°t") € E since s” ¢ E’ and t* ¢ E* (since t ¢ E).
From the structure of U, ((s’,t"); (r’,u")) is a transition of U for some u" ¢ S Hence ((s’,t");(r",u"),a) €

[a]. Hence [2’] [a]’ and we have [a’] = [a]’.
(ii) Proof of (b).

IfFE(y) = E’(Xi’), for any s whose images s’ ¢ E’, we know that s ¢ E. This,, with the argument in (i),

shows that any (s’,r’,@) € [a’] is strongly well-formed.

End of Proof of Observation 2.

Proof of Observation 3

30

If (q;f:F) has a null image, then each (s,r,+(q,a)) E [Rec__q] has s’=r’. Hence the algorithm U(v,f;v)
need not assign values to y;. Hence Uly,fy) = U'(vfy"). If Uyfy) = U*(yf;v"), then in each
(s,r,+(q,a)) € [Rec_q], s’=r’ since y is not affected. Hence (g;f:F) has a null image.

End of Proof of Observation 3.

Proof of Observation 4

(i) Proof of (a)

The set of image state events due to Rec__q, is

[Rec_q 1" = {(s’,8”,+b) : s ¢ E}

{(s’,8’,+8) : 8 ¢ Eg}

(because of structure of E and assumption that E,_ is not empty)

The set of state events specified by Rec_f is
[Rec_ A1 = {(s’,s’,+f) : s’ ¢ E_for any 1 < k < n}

Clearly, [Rec_f] is the union of [Rec_q]’ over 1 < k < n.

(ii) Proof of (b)

IFF (V)= F;(v)), for any s whose image s ¢ E;, we know that s ¢ E . This and the argument in (1)
shows that any (s’,5’,+0) in [Rec_] is strongly well-formed.

End of Proof of Observation 4.

Proof of Observation 5

(i) Proof of (c) and (d)

For any message (qk;a) of message type (qk;_i_'k:f‘_k), the set of state transitions in Sg caused by its

reception is
[(qk,a)]’ = {(s”,r’) : 8 ¢ E, and (s,a;T) is a transition of Uk}

For any a’ ¢ E’, defime

[(q>,a"] = {(s’ ,r’) : 8’ ¢ E* and (8’,a’;r’) is a transition of U}
We will show that [(q,,a)]” = [(q’,a’)]. Choose any (s’,r") € [(q,,a)]- Let (s",r") be obtained from transition
(s,a;r) of U. From the structure of E, s ¢ B, means that s’ ¢ E’. From the structure of Uy, (sa’r) is a

transition of U’. Hence [(q,,a)]’ [(a,2’)]. Consider any (s’,r’) € [(q’,a’)]. Choose any t € E, (E, is not

31

empty by assumption). Then (s’,t") € E, because s’ ¢ E’ and t" ¢ Ep. From the structure of U, ((s"t"), a;

(r’,u")) is a transition of U, for any a € a’ and some u" € Sj“‘ Hence [(q’,a’)] [(qk,a)]. Thus, all messages

(qk,a) for any 1<k<n, and any a € a’ cause the same state transitions in SJ?. Hence they can be projected

onto the same image (q’,a’). Further, [Rec_q,]" = [Rec__q’] since

[Rec_q, 1’ = {(s”,17;+(q",2")) : aeF, (s7,r7) ¢ [(q.2a)]"}

it

{(s’,r7;+(q",a")) : aeF, (s7,1r7) € [(q",2")]}

{(s’,r*;+(q",a%)) : 2¢€¢F’, (s’,7r7) ¢ [(q",2")]}
= [Rec_q’]
(ii) Proof of (e)

If Ek(l) == Ek(xi’), then for any s whose image s’ ¢ E’, we know that s € Ek for any k. This and the
argument in (i) show that each (s’,r’,+(q’,a’)) € [Rec _q’] is strongly well-formed.

End of Proof of Observation 5.

Proof of Observation 6

(i) Proof of (c)

The set of image send state events specified by Send__qk 18
[Send_gq,]1°

{(s’,r’,~-(q",a”)) : s ¢ E, and (s;a,r) is a transition of Uk}

{(s’,r’,-(q’,a%)) : 8" ¢ E; and (s’;a’,r’) is a transition of U];}

(The last step is due to the structure of E_ and U..)

The set of send state events specified by Send_q’ in (c¢) is
[Send q’] = {(s’,r",-(q",2")) : for 1<k<m, s’ ¢ Eg

and (s’;a’,r’) is a transition of Ué}

Clearly, [Send q’] = [Send q,]" U ... U [Send_q 1°
(ii) Proof of (d)
Consider k, k,,....k where Ef (v) and U} (V Py = .= U, (v5f’y). Clearly, [Send _q, |’ =
m
== [Send __ qk |’. Further, since E" (v“) v EY () = True, then for any s whose image s’ ¢ E| ,
1

we know that s ¢ E_ for some j. From (1) we know that (s,ri-(ay ,2)) € [Send __q,] for some r € r’ and

5 i
some a € a’. Thus, each (s’,r",-(q",2’)) € [Send _q’] is strongly well-formed.

Proof of Theorem

32

To prove this theorem, it is sufficient to show the following (refer to [LAM 82b]):

(1) For any two global states g and h of the original protocol system, if a time event can take the

protocol system from g to h, then in the image protocol system either g’==h’ or the same time event can

take the image protocol from g’ to h’.

(2) Given global states g’ and h’ of the image protocol system with well-formed time events, if an image

time event can take g’ to h’, then in the original protocol system, then for any global state f in g such

that f’==g’, f is extendible to a path w such that w’==g’ h’.
Proof of (1)

Suppose the time event in the original protocol is the local time event for time variable v, . in v,. If

3

Vi is not retained in y_i’ then g’=h’. Suppose Vi is retained in Xi" Then its associated global time variable

i

and reset value are also in y. Further, the time axiom Sij for v, . is also the same in the image protocol.

3 »

Hence the local time event for Vi in the image protocol is enabled, and its action takes the image protocol

from g’ to h’.

Suppose the time event in the original protocol is the global time event. Assume that g’ #=h’. The
enabling condition of the global time event is a conjunction of 8a) conditions involving variables in v; and
ages of messages in Channeli’, and (b) conditions involving variables not in Xi’ and ages of messages not in
Channeli’ (if any). Thus, if the global time event is enabled in the original protocol, then the image time

event is enabled in the image protocol. Its occurrence will take the image protocol from g’ to h’.

Proof of (2)

Suppose the time event in the image protocol system is the local time event for v, iny. Since the
local time event for Vi in the original protocol system is identically defined {in the same variables, ac-
curacy axiom and time axiom), it is enabled at all states f ¢ g’. Its occurrence will take the original

protocol system from f to a state h such that h’=g’.

Suppose the time event in the image protocol system is the global time event. If the global time
event in the original protocol is enabled at a state f € g’, then its occurrence will take the original protocol
system from f to a state h such that g’==g’. Now, suppose that the global time event in the original
protocol is not enabled at a state f ¢ g’. This can happen only because some time variables in v that are
not in _V_i’ would violate their time axioms and/or their accuracy axioms. If accuracy axioms are being
violated, then the local time events of the concerned local time variables can occur, thereby releasing the

global time event from these restrictions. If time axioms are being violated, then from the definition of

33

well-formedness, there is a sequence of null image internal events that will take the protocol system from f

to a state where these time axioms are no longer violated. In either case, f can be extended to a path p

such that p’==g’ and the global time event can now occur. Its occurrence takes the protocol system from

the last state in p to q such that q’=h’. Hence f can be extended to a path w such that w’=g’ h’.

REFERENCES

[BOCH 77]

[BOCH 0]

[BRAN 82]

[DIVI 82]

[FLET 78]

[HAIL 80|

IS0 79]

[KELL 76]

[LAM 81

[LAM 82a]

Bochmann, G. V. and R. J. Chung.

A Formalized Specification of HDLC Classes of Procedures.
Conf. Rec. Nat. Telecommun. Conf. , December, 1977.
Los Angeles.

Bochmann, G. V. and P. Merlin.

On the Construction of Communication Protocols.
Proc. 5th ICCC , October, 1980.

Atlanta.

Brand, D. and W. H. Joyner.
Verification of HDLC.
IEEFE Trans. on Commun. , May, 1982.

DiVito, B. L.
Veri fication of Communication Protocols and Abstract Process Models.

PhD thesis, Department of Computer Sciences, University of Texas at Austin, August,
1982.

Fletcher, J. G. and R. W. Watson.
Mechanisms for a Reliable Timer-based Protocol.
Computer Networks, Vol. 2 :271-290, 1978.

Hailpern, B. T. and S. S. Owicki.
Veri fying Network Protocols using Temporal Logic.
Technical Report 192, Computer Systems Laboratories, Stanford Univ., June, 1980.

International Standards Organization.
Data Communications—-HDLC Procedures--Elements of Procedures.

1979.
Ref. No. ISO 4335.
Keller, R. M.

Formal Verification of Parallel Programs.
Comm. ACM , July, 1976.

Lam, S. S. and A. U. Shankar.
Protocol Projections: A Method for Analyzing Communication Protocols.

Conf. Rec. National Telecommunications Con ference , November, 1981.
New Orleans.

Lam, S. 8. and A. U. Shankar.

Verification of Communication Protocols via Protocol Projections.
Proe INFOCOM’82 , April, 1982.

Las Vegas.

[LAM 82b]

[SHAN 82a

[SHAN 82b)

[SHAN 82¢|

[SLOA 79]

[STEN 76]

34

Lam, S. S. and A. U. Shankar.
Protocol Veri fication via Projections.

Technical Report 207, Dept. of Computer Sciences, University of Texas at Austin,
August, 1982.

Shankar, A. U. and S. S. Lam.
On Time-Dependent Communication Protocols and their Projections.

Proc. 2nd Int. Workshop on Protocol Speci fication, Testing and Veri fication , May,
1982.

Idyllwild, CA.

Shankar, A. U. and S. S. Lam.
An HDLC Protocol and its Veri fication using Image Protocols.

Technical Report 212, Dept. of Computer Sciences, University of Texas at Austin, Sep-
tember, 1982,

Shankar, A. U.
Analysis of Communication Protocols via Protocol Projections.

PhD thesis, Dept. of Electrical Engineering, Univ. of Texas at Austin, December, 1982,
(In preparation).

Sloan, L. J.

Limiting the Lifetime of Packets in Computer Networks.
Computer Networks, Vol. 8 :453-445, 1979.

Stenning, N. V.
A Data Transfer Protocol.
Computer Networks , September, 1976.

