High-Level Optimization in a Silicon Compiler

Krishna Palem! Donald.S Fussell?
and Ashley.J Welch!

TR-215 November 1982

IDepartment of Electrical Engineering
The University of Texas at Austin
Austin, Tx 78712

2Department of Computer Sciences
The University of Texas at Austin
Austin, Tx 78712

' Abstract

Increasing system design costs are impeding the rapid and widespread applica-
tion of VLSI technology. As a result, significant efforts have been directed in recent
years towards the development of automatic design tools. A paradigm of silicon com-
pilation is described in this paper. This paradigm differs from earlier methods in that
the optimization principles are applied initially on a high-level abstraction of the final
layout. The optimization problem is shown to be initially equivalent to that of deter-
mining a precedence-constrained schedule which is unfortunately known to be NP-
complete in the general case. Linear time algorithms for determining optimal
schedules for problem classes of interest are described and are shown to be correct.
The final goal of this work is the production of the high-level optimization phase of a
silicon compiler which translates a functional description of a system into an inter-
mediate architecture for a chip in a faithful and efficient manner. The mask for final
layout of the chip can then be generated from this intermediate architecture using
known design automation techniques.

Key words: Graphs, Highly Parallel Architectures, Scheduling, Silicon Compilers,
Time Complexity, VLSI Technology.

i Introduction

Recent advances in the area of computer architecture and process technology
have altered the system design paradigm significantly. As a result, the concept of a
system centered around a single processing unit is being superseded by reconfigurable
multiprocessors|1] and highly parallel VLSI architectures[2]. In particular, the tech-
nological developments will allow the cost effective realization of systems consisting
of tens of thousands of computing elements[3,4]. However, rapidly escalating design
costs are becoming a primary limitation on the applications of VLSI technology. As a
result, much effort has been devoted in recent years to the development of automated
design tools. Various paradigms for silicon compilation have been proposed, and sys-
tems for automatic synthesis of layouts for limited domains of functional specifica-
tions have been created|5,6].

The design of a complex VLSI ecircuit can be viewed as a hierarchical refine-
ment process. An abstract and succint algorithm specification represents the highest
level of this hierarchy. This description is gradually transformed into a physical
layout to be embedded in silicon (Figure 1). The initial phase of this process trans-
forms this algorthmic specification into some sort of a functional level description of
the design. Correctness of the resulting description can be verified at this level
through simulation. This design is subsequently refined to yield an intermediate gate
and switch level description of the architecture. Both these phases are currently per-
formed manually with the aid of interactive graphics tools. Existing systems have the
ability to automatically generate layout descriptions given the intermediate architec-
ture. Design rule violations in the final layout can also be checked automatically.

The efficiency of a VLSI circuit from performance (speed} and cost viewpoints
is dependent on the layout geometry to a great extent. As a consequence, minimizing
the area of the final layout is central to the process of designing optimal VLSI ar-
. .¢hitectures. - If -this goal is to be achieved, the- designer must strive to generate-inter-
mediate architectures amenable to further geometric optimization. Due to the fine
granularity of the specification of the circuit at the gate level, and the resultant large
number of elements involved,the task of manually generating intermediate architec-
tures is very time consuimning.

This problem can be ameliorated by attacking the optimization problem earlier,
when the circuit descriptions are at a more abstract level and hence fewer elements
are involved. In such a case, layout optimization should only be required within high
level elements , the inter-element optimization having already been done. We thus
break a large and difficult problem into a number of smaller, easier problems, with a
consequent performance gain for the overall system (Figure 2).

SPECIFICATION OF

INFUT ALGORITHM Silicon
Compiler

Fig. 1

/S MASK FOR

LAYOUT

s IN SILICON

The process of silicon compilation

INPUT
ALGORITHM

P -,

High
level

Optimization

Fig. 2.

Mask

A Generation

\V MASK FOR

The high level optimization stage

LAYOUT
'g IN SILICON
&

Based on this approach, a new paradigm of silicon compilation is proposed
below. This proposal differs from previous efforts in that the optimization process of
the implementation is not confined to the final layout stage, but is also performed
early in the compilation process on a more abstract representation of the problem.
The high level optimization phase is composed of data flow analysis and data path
extraction and optimization. The data flow analysis problem involves determining an
optimal schedule for completing the algorithm specified as an input to the compiler.
The schedule proceeds by assigning resources with the goal of completing the various
steps of the computation as specified by the input algorithm in a faithful manner.The
objective of the optimization step is to determine the minimum number of resources
required by the schedule. The schedule and resource estimates of the data flow
analysis phase serve as an input to the data path extraction and optimization phase.
The primary goal of this phase involves binding the data paths in an optimum fash-
jon. It has to be noted that optimality requires that data paths be bound in such a
fashion that cfficient(in an area sense) layout techniques are known for the resulting
topologies.

The input, as specified to the silicon compiler, is initially transformed into an
equivalent program graph representation. This model is described in the next section.
In addition, algorithms are described for determining tight upper- and lower-bounds
on the resource requirements and corresponding schedules for classes of program
graphs of interest. Also, these algorithms are shown to be correct and efficient. The
high-level optimization phase is formularized next. These results will be instrumental
in bridging the gap between the high-level input specifications and the conventional
design automation phase of silicon compilation by providing automatic tools whose
complexity and correctness issues are well understood.

2 The High Level Optimization Phase

2.1 Input Specification and Representation

While the input specification of the algorithm to be compiled into silicon should
ideally be procedural, a more appropriate internal representation is required for
translation into hardware. This representation should effectively model the data flow
paths as well as the transformations which are performed on the data during the ex-
ecution of the algorithm. These aspects are captured effectively by a graph represen-
tation of the input algorithm since the data flow and transformation semantics are
explicitly represented by the edges and vertices of the corresponding graph represen-
tation.

A program graph (P-graph)model of the input algorithm is described below.

Also, the data flow analysis and data path extraction and optimization (schedule
determination) phases are defined in the context of this model. Algorithms for deter-
mining optimal schedules and upper- and lower-bounds on the corresponding resource
requirements for the class of program graphs of interest are described subsequently.
Finally, these algorithms are proved to be correct and their time complexity is shown
to be proportional to n, the number of tasks to be scheduled in the worst case.

Formally, a program graph G = <V E> is a partial order where V and E
represent the vertex and edge sets respectively. The vertex set V is partitioned into n
equivalence classes v;....7,. The vie 7y are termed value fransporters and hence 7
represents the value transporter set TP. The remaining vertices v;e (V-v,) constitute
the value transformer set TF. Note that the e;e E specify the data flow requirements.
The example illustrated in Figure 3 aids in understanding these definitions. The al-
gorithm indicated in Figure 3a computes the gradient of a 4x4 grey level image. A
3x3 (Figure 3b) window is used for this purpose and the correspending program graph
is illustrated in Figure 3c. It can easily be seen that G is a forest of in-trees with
TP==",. Also, the equivalence relations defining 7,5, 73 and v, correspond to addition,
subtraction and absolute value determination respectively and collectively define the
TF set.

The vie TP represent the I/O requirements of G. Thus, these vertices
represent value sources and sinks responsible for transporting data values into and
out of the program graph. The execution environment consists of these value trans-
porters (members of TP} pumping values into the value transformers (members of
TF). Subsequent to completion of the computation represented by G, the results are
in turn pumped out of the graph. Note that memory external to the module encap-
sulating the architecture is implicit to this characterization. For all vie TP, d*(v)

=0, iff, d"(v;) #0 and vice-versa where d*{v;) and d(v;) represent the in- and out-
degrees of vertex v, respectively. Also, d*(v;} and d*(v;) &0 for all v;e TF.

i

2.2 Intermediate Architecture Generation

The two major phases constituting high-level optimization, namely:

1. data flow analysis and

2. data path extraction

are described in this section.

The computation represented by G is initially viewed in a logical framework in
which execution of the algorithm is equivalent to completion of the tasks represented
by the corresponding vertices and edges. We may consider each of these tasks to be
a primitive action. Task completion is accomplished by assigning resources which

For each window position do
begin

Add elements of the
the window;

Add elements of the
the window:

Obtain the absolute
two sums (A1)

Add the elements of
Add the elements of
Obtain the absolute

two sums (A2):

leftmost column in

rightmost column in

difference of the above

the top row in the window:

the bottom row in the window;

difference of these

Compute the sum of A1 and A2 as the gradient

value at that point:

end;

Fig. 3{a). Procedural description
operation.

of the gradient

cvdeuf-¢ Fripucdeaddcs *(0)

J

c{(eurl
psusep) §£°C pue (8uTll pTTes) g2'e= [T 30t
Ue paJsauso MOPUIM Cy¢ eul uaIr eFEWT Lyt OUJ T (4)E "FI.
89, S84 ABFA 1A} = Y 2en _s9a) s €L
ﬂ A -SEA O >s>w-h:\- A - L..A:c:oc:gsmv

(2)

WJ»Dm\.(Dm»T&F_ T.w> - a>w : (@N|DA 3INjOSQY) L .ﬁ P8 TBA Y0 - mq>w = (uoipippo) CA

are capable of completing these tasks. These resources are drawn from a resource set
defined below. For example, a vertex representing addition would require that a
resource of type ’adder’ be assigned to it when its input data is available. More
precisely, the execution of the algorithm specified by G can be viewed as a schedule S
which consists of a sequence of assignment functions. Each function in this sequence
assigns resources and therefore is responsible for the completion of some subset of all
the tasks specified by G. It is important to note that data paths and I/O require-
ments are being treated as resources in a uniform fashion.

The Resource Set R is partitioned into n+1 equivalence classes 7} ..IT, ;.
Each ; C R is in a one-to-one correspondence with the equivalence class
.7; € Vfor 1<i<n. The equivalence relation defininglT; , is of particular interest
since its members are resources of type 'data path’ and therefore correspond to the
edge set E of G. Thus, a task specified by a member of v, 1<i<n is completed by

some r;e R if and only if re 1T,

Note that the schedule determination process requires that an appropriate
resource estimate be made. This estimate must clearly be sufficient to complete all
the tasks as specified by the schedule. However, these steps do not completely specify
the topology of the intermediate architecture since the data paths connecting the
various resources are not bound as yet. This task is accomplished by the data path
extraction and optimization phase as shown in Figure 2. The schedule S and the cor-
responding resource estimates serve as inputs to this stage. The schedule manifests it-
self as the control function or controller in the intermediate architecture or IA
(Figure 4). In order to ensure optimality, the data paths must be bound in a fashion
amenable to subsequent area efficient layout.

It should be noted that the following points of practical significance are im-
plicitly accounted for by this approach. First, it is necessary to be able to specify time
or cost bounds on the system being designed. Note that both these alternatives are
conveniently handled by the schedule determination phase. While time bounds are
directly reflected in the length of the schedule S, cost bounds can easily be incor-
porated into the corresponding resource estimation procedures by associating ap-
propriate cost labels with the r;e R. Also, the partition defined on R reflects the
real-world standard cell based design environment. The various components of the ar-
chitecture are drawn from a predefined library of standard cells in such an environ-
ment. Note that different types of cells are allowed in the library where each cell type
is capable realizing a specalized function or task. Thus the essential characteristics of
a realistic design environment are reflected in this approach.

3 Data Flow Anslysis Results

Recall that the process of deriving a schedule involves determining a sequence
of assignment functions subject to the precedence and compatibility constraints im-
posed by G. In formally stating this problem, it is convenient to deal with G’, an in-
stance of a precedence graph (PR-graph) derived by homeomorphically transforming
Q. This transformation is illustrated in Figure 5 where each e, E is replaced by a
pair of edges in series. Note that the vertices of G’ represent tasks and that the trans-
formation is unique. Thus, G'=<T,E'> is the PR-graph corresponding to G where
T is the task set and E’ represents the precedence relationship between these tasks.
Accordingly, the vertex set T of G’ is partitioned into n-+1 equivalence classes
My,00,...1, Where the IT; are essentially the same as v; ¢ V for 1<i<n. The ver-
tices introduced through the transformation belong to 17, , and represent the data
flow paths.

A schedule S can now be defined as a sequence of assignment functions
represented by the m-tuple <oy,05...0,,> such that o;R, ~>T; is a bijection where
R, C Rand T; C T In order to ensure that the precedence constraints are
preserved, it is required that ag{rj}’jf R} = {t,ltye T} iff every te T which has a
path to t, is a member of some T for 1<i. The compatibility constraints can be in-
corporated into the d%?ﬁl}%ﬁon of o; by requiring that cri(rj)ztk iff tye I=>>re m for
all 1. Finally, note that igioi(rj}zl‘ and oi(r,)&= "j(rk) for i#=j and all k.

Goyal [7] has shown that the problem of finding a schedule for the case where
each task requires unit execution time (UET) is NP-complete even when the
precedence constraints are in the form of an arbitrary forest. It is assumed that each
distinct resource class corresponding to the IT; definition has exactly one element in it.
However, several problems of interest exemplified by matrix multiplication and a
large class of operations drawn from the area of image processing including al-
gorithms defined on pyramid architectures [8,9],point transforms, neighborhood
operations[10-12] and others can be represented by a special class of PR-graphs;the
class of well-behaved (WB) trees. These are rooted directed trees such that all the
tasks t; at the same level of the tree belong to the same I for some j. Also, all the t;

at the same level of G’ have the same in{out)-degree d-(t;) (d*(t;)) and G’ is an
in{out)-tree. The level of a vertex is its distance from the root. For example, the PR-
graph G’ corresponding to the gradient operation {Figure 5) belongs to this class. In
the sequel, our analysis will be restricted to PR-graphs which are WB-trees and we
shall show that polynomial time optimization can be done for this class.

IA

, S —Control

Data Optimal Function To

Flow Data Path /DATA PATH UNIT |5 MASK

, . GENERATION
Analysis Extraction V DHASE
s "

Elements of R Elements of R
corresponding fo corresponding fo
value ftronsporis of the value tronsforms

V" bound 1o I/0 parfs

of IA

of ¥V

Fig. 4, IA generation through high level optimization

fFig. 5. Transforming a P-graph into a PR-graph

11

3.1 Upper Bound Determination

The scheduling problem considered in this subsection involves the determina-
tion of an upper bound on the number of resources required and a schedule for a
given PR-graph G’ which is a well behaved tree. A linear-time algorithm is described
which estimates this upper bound given a description of G’ and the value of m, the
length of the schedule. Recall that UET systems are being considered. The algorithm
and the accompanying schedule are shown to be correct.

Given G’, consider the following labeling procedure which is defined recursively:
Base: Label the root °0°

Recursion: Label the children of each t,;¢ T uniquely
using the elements of the set defined by

L=1(t;).d7 () +k 0<k<d™ (ty)
where 1(t;) is the label of task t;. The result of applying this labeling procedure to the
WB-tree of Figure 5 is illustrated in Figure 6. Note that the labels are indicated ad-
jacent to the vertex and are drawn from N, the set of natural numbers. If G’ is a
forest, the labeling procedure is applied to an equivalent tree which can be con-
structed by introducing a virtual root as the parent of all the true roots (Figure 6).

The modification to the assignment function described below is central to the
determination of the ypper bounds and the schedule. This modification associates
resources with levels of G’ in that once a resource is assigned to a task at a certain
level 1, it can never be re-assigned to a task at level j on a later step unless i==j. This
relationship partitions R associated with G’ of height h into an equal number of
equivalence classes 8, 0<i<h-1. So long as G’ belongs to the class of WB-trees, all
the tasks at a given ievel belong to the same I implying that 6, C I for some
§. The assignment function o] is got from o; by adding the additional constraint that
ai(r}:)zig iff level (tﬂ:mz);}e 6,,- Thus, we have a roll-over schedule RS of
length m, defined by the m-tuple <¢},05...07, > such that given some 'R’, the num-
ber of tasks that are assigned resources by o} is maximized for all i and the order of
assignment is monotone increasing on the labels.

The example of Figure 7 illustrates this algorithm. The corresponding assign-
ment sequence is indicated in the window (i,j) where i spans the sequence of assign-
ment functions and j represents the levels of G’. Note that the assignment function o}
defines the tasks (indicated by their task labels t; and distinct from those derived
from the labeling scheme) being assigned resources at each level j. It should be noted
that the choice of the cardinality of each of the 6, is not arbitrary for reasons to be
discussed later. Let the set of all tasks at level j which are enabled on step i be for-
mally denoted by M;;. Thus, each entry in a table such as that in Figure 7 cor-

“A1TABI0 JO 8¥EE BYUT J0J DBIBOIPUT
ST $8847 dnoyg wyg Jo euo ATup ¢ cF1a JO
o udeaB-g syg o049 futpucdseddon,n yded8-y4d suj g "Fr4

[

YoroRc ROk
@9«9” DISICE

Amw; SOl 084 €SI - vEly 8l B2 Sy 96 6Y) v . Sy

“
ks
&
b4
P
=
0
—
N
~
<

ﬁ 2Lty €91 By _L !

©
&=

*” sty _ 9_; §

{ wn;!mm_L . 2a

LTBJ;:&«DN:« *EL. s :L,

paiuIpul auo ayl

0F JAIOWOST $8B4) 88IYL ,.,mmw_ﬁs

|]] [

. A N O
faay) iy (o) ‘ (oo
77 ~r ~r ssas0ud Burgsqo| ayy pio P

L b r;;,,. 0p 100y [DOVsayiodiy e

s!..j!a!..!f oséfa..as.vlé ha -
T e e \ \.\l\\
T e e isz.sd..!;.”;:! . e

\\\N\\H
\\\\\\\\

cm; 6l | 8yt _set)9
3;;%; 961y _Ss1y | w61 \\\\\\\\\
€91, 291, 5;

[9h31 /1902

14

responds to some subset of M. since in general not all the enabled tasks are im-
mediately assigned resources. Also, [M; ;| represents the cardinality of this set.

- Referring back to Figure 7, observe that the shaded areas indicate periods of in-
activity. Let p; denote the minimum value of i when tasks are enabled at level
j. Also, q; denotes the corresponding maximum value of j. Then, the active period
of level j is represented by the value of i such that P; _{_igqj. It then follows from the
above discussion that P; and q; trail (lead) Pj+1 and Q41 by one unit respectively
when G’ is an in{out}-tree. Also, q;-p;+1 represents the maximum length of the active
period at level j for a given G’ and a RS.

It is easy to see that using RS, the minimum cardinality of 8, needs to be deter-
mined independently for each level of G’. If RS is of length m, note that all tasks at
level j have to be completed by q= m-j. Also, the smallest value of 1 given by P;
when a task can be initiated, is h-j where G’ is an in-tree of height h. Therefore, the
maximum length of the active period at level § for an RS of length m given a G’ of
height h is a constant qupj-i—l = m-h+1. for all j. Observe that while the analysis is
indicated only for the in-tree case, the result can easily be generalized to include ocut-
irees as well. Hence, it can be concluded that fej!minznjzﬁg/w] where W=m-h+1
and X; equals the number of tasks at level j of G’. Algorithm 1 can be used to es-
timate Eé}jmiﬁ for all § given the description of G’ in the form of a vector of X;8, its
height and a specification of m:

ALGORITHM 1:
begin
W=m—-h+1
for i=0 to h-1 in 1 do
begin
ny = [x;/Wl
endfor
end

Note that the §e§s§ used in the example of Figure 7 were determined by applying this
algorithm.

It remains to be shown that the cardinality of R as estimated by Algorithm 1 is
..sufficient to ensure correctness when roll-over scheduling is used. Recall that- G- is a
well behaved in-tree and d}-‘ represents the in-degree of vertices at level ’j ’ since all
these vertices have the same in-degree by definition.

Then, it can be stated that

Lemms 1: For any given n; +1=k§ +1 dj'+mj 41 such that kj and m; are integers and

15

k; >0, G<mj<di-},the number of tasks enabled at any level j 0<j<h-1 of a WB-in-
tree G’ using RS, lMi,ji» is such that kj+1S.iMi,j!$kj+1+1 for pj_g_i<qj. Further-
more, the upper bound also holds for i::qj.

Proof: The proof proceeds by induction on j, the number of levels in G'.

Base Case: The result is established at level h-2 preceded only by the leaf level h-1.
Expressing ny_;==ky _;.dj o +my_, and noting that on step i < q,_, using RS, the
n;_; Tesources span at least k, ; subtrees rooted at level h-2, the lower bound on
[M; 5, o] is easily established for 2 <Li<qy o

The situation depicted in Figure 8 aids in establishing the upper bound that is
1M ol <Ky y+1 for i< qy - Observe that my ,+mg ,=my ;. In order to maximize the
number of tasks enabled at level h-2 on some step i <q, o, mf ; needs to be max-
imized. Since my_;<dj_o, it can be inferred that the m§ ; resources cannot enable a

task at level h-2. However, the mj_; resources can enable a task since the dj_,-my 4
resources might be enabled on the previous step i-1. Therefore, |M; polLky ¢ +1 for

1<y o
Indunction Hypothesis: Let the lemma be true for all levels >, 0<r<h-1.

Induction : It needs to be shown that the lemma holds for level r.

Since nr+1=!—>c—l,'+1/W] from Algorithm 1 it can be inferred that n_ ; < k..o +
1.

Case a: (n,,; < k; +o): The proof for this case follows exactly along the lines in-
dicated in the base step with h-1 and h-2 replaced by r+1 and r respectively.

Case b: (n,, =k, 4o+1) Expressing o ; as k., d;+m,,; and invoking the induction
hypothesis, we have k , o+1>|M;, 41} for p 1 <i<q, . Also, IM; . 1=k, yq for
P11 <i<qpyy I IM; . 41l 18 Ko+l for pp g i<q Ly, then the result follows from
the arguments used to establish the result in the base step. However, to prove the
lemma without loss of generality, the case where !Mi,r +1/=K; 4o has to be considered
for some i such that p_ ;<1< q, ;. Clearly, this does not affect the upper bound that
is iMi,r‘-S‘kr +1H1 for p<iLq,. In order to verify that the assertion regarding the

lower bound holds, it is sufficient to note that since m >0, k., o>k . ;.d; complet-
ing the proof.

. A.direct .extension.of this lemma. is the case where m,=0.and 0<r+1<h-1
yielding n, =k, ,.difor some k.4 > O. This extension is formally stated below :

Fig. 8. Illustrating the upper bound on Mi hep b

17

Corollary 1: If m, ;=0 for some level 'r’ 0<Lr<h-1 implying that n, ,=k . ,.d],
Fhen k-1 SQML,! <k, for p,<i<q,. Furthermore, the upper bound also holds for
i=q,.

Proof: Immediate {rom Lemma 1.

Consider the mismatch between the number of resources available n; and |M; ;|
for p,<i<q; and some j represented by |M; }I n, ——5(1,3) It then follows that a perfect
match will yleid a &1,j) of 0. Also, §1,j)>0 sxgmfles task overflow implying that an
insufficient number of resources were available. However, this overflow can be com-
pensated for by a &k,j)<O of equal magnitude for some g;>k>1i since a negative
5(k,j) signifies an excess of resources. Thus, A corresponding to level j can be recur-
sively defined as follows:

Base: SSé(pjej) = 5(Pj’j)

Recursion: If SS 6(i-1,3)>0, then
SS §(1,31)=8S8 s(i-1,3j)+6(1,})
else 6(1,3)

Restriction: QJ?_iZPj and 0<j<h-1.

4y = 88 §(1,1).

pysizay
Based on the above discussion, it can be inferred that

Lemma 2: A necessary and sufficient condition for n; resources to complete the
tasks at level § whose active period is bounded by P; and g is A,-ZO.

. The results-indicated above are sufficient to state that:

Theorem 1: The n, estimates determined by algorithm 1 provide an upper bound on
A {ej[0<j<h-1 for a PR-graph G’ using a roll-over schedule of length m.

Proof: The number of tasks enabled during any step i at level j that is [M; ;] is
bound above by some integer l} and the corresponding lower bound equals 13 -1 for
P; <i<g; from Lemma 1 and Corollary 1 for all levels of G’ provided RS is used.
Also the upper bound equals l for i i=q;.

18

Case a: n; = lj
It follows immediately that 4; < 0.

Case b: n; < i This case is proved by contradiction. Assume 4;>0. Then,
W.n+4;=x; for some 4;>0 implying that n;.W <x;. But since n, -—{_‘/V?} 0, W>x;.
Sm@e this leads to a cozxtradxctxon the theorem is proved

3.2 Lower Bound Determination

It was pointed out earlier that the maximum length of an active period at any
level j of G’ is a constant W. If the constraint imposed by 6, is relaxed,then any
r;e R can be assigned to a task at any level so long as the compatibility constraint is
_.satisfied. This leads to a more general definition of a roll-over schedule. Under. this
new definition, elements of the resource set can be assigned to compatible tasks in-
dependent of the level in G’ to which the task belongs.

If a certain type of task appears at exactly one level of G, say § and is of type
1, then the minimum cardinality of IT} represented by || is given by n}:ﬁfj/m.
Note that a specification of G’ and m is implicit at this point. This estimate can be
extended to include the case where the type 1 resource occurs at two levels of G’ say j
and j-k for some k>0 and G’ is an in-tree. Then, the overall active period associated
with elements of 17 is bounded above by Q-P; +4+1=W+k (Figure 9). Thus, the cor-

responding lower-bound on |I7j] will be max{ﬂ'i /Wﬂ I’(_—+xj_)/ WHK)|} = max(n;,n;)
and can likewise be inductively extended to the case where tasks of type I occur at &
levels 1, 1,...15.

The algorithm outlined below can be used to determine these lower bounds on
all the equivalence class 77} in R given an instance of the PR-graph G’ and m.

Algorithm 2:

1. level I is initially h-1. //Let the tasks at level
I belong to class In//

2. Compute Temp = n°; //Estimate new max.//

3. Replace current lower bound of I7y by
max [current lower bound, Temp]

4. Repeat steps 2 and 3 for levels h-2 to O in that order.

level j“k L

level j

gy grestmmany

:

MAOX = W e

Fiz. 9. Active periods for the resource re-—use

where G' is an in-tree,

case

20

It follows from the arguments stated earlier in this subsection that Algorithm 2
computes the lower bound for each 77y € R. Note that the distinction between
the in- and out-tree cases was not made since algorithm 2 is applicable to the entire
class of WB-trees. Observe that Algorithm 2 iterates (step 4} along the direction of
data flow for in-trees and against it for out-trees. This observation is central to
developing arguments for establishing the correctness of Algorithm 2 for the out-tree
case.

3.3 Comments on the Tightness of the Bounds and Complexity of the
Algorithms

The example illustrated in Figures 10 a and 10 b will be used to establish the
tightness of the lower bound on the resource requirements. As indicated in Figure
10b, the resource estimates as determined by Algorithm 2 are sufficient to determine
a correct schedule. Also, note that the length of the schedule was chosen to be ten
steps that is m==10. The meanings of the entries in the table of Figure 10b and all
the related details have already been explained in the context of Figure 7. Finally, in
order to establish the tightness of the upper bound on R as determined by Algorithm
1, it is sufficient to consider any G’ all of whose levels are distinct, that is,/T=6; for
0<i<h-1 where G’ is of height h.

In order to estimate the time complexity of Algorithms 1 and 2 note that both
of them iterate on the number of levels in G’. This value is a maximum when the
tasks in question define a linear ordering on the set T and is proportional to m, the
number of tasks. Thus, the time complexity of the iterative loop is O(n). In the case
of Algorithm 1, it is immediately obvious that each action included in the body of the
iteration requires constant time. While this is not immediately obvious in the case of
Algorithm 2, it is indeed the case. This is achieved by maintaining the additional in-
formation regarding the level at which tasks ¢, ¢ I7, first appeared and the cor-
responding current lower bound estimates of |IT}|. Thus, the time complexity of Al-
gorithms 1 and 2 is O(n]}.

Note that the complexity of determining a roll-over schedule is determined by
the labeling procedure defined earlier. This procedure starts at the root and visits
each of the tasks exactly once. Thus, it requires exactly (cn) steps for some constant
¢>0 given n tasks and c steps are required to label each task. Equivalently, the time
complexity of determining a roll-over schedule given G’=<T,E’> and |T|=n is
O(n). Thus, the cumulative time-complexity of the procedure for determining bounds
on R and roll-over schedules for PR-graphs which are WB-trees with n vertices
(tasks) is O(n).

i

{"49“ teq }

{t1 - taaU tg~ tog } %o 8
' X, 6
x, | = |16
X3 1S
4
| Xa - 8__

{tes™ teo U tor 1104 }

Fig. 10(a).

Establishing the tightness of the lower bound.

€
| u

\\\\\\\\\ \\\wv-¢ et R EE R
\\\\\\ o, 6 L vs, | e, s, \\\
\\\\\\ L4y S | vy €4, | 2L, _OL,| 69 1 -49y| 99, _69, \\\\\\
\\\ £8,_68,| 88, _ 18, i \\\\\\
No: 00l | 66, 16, 0 \\\\\\\\\\\“\\

23

4 Conclusions and Recommendations

The essential components of a silicon compiler particularly relevant in the
design of custom VLSI have been described. The need for a high-level optimization
phase was emphasized. This problem was shown to be composed of a data flow
analysis phase and a data path extraction and optimization phase. These steps are
together instrumental in generating an intermediate description of the target ar-
chitecture whose correctness is easily verified. Efficient algorithms for determining
schedules and appropriate resource estimates have been described and shown to be
correct.

The scheduling procedures accept time deadlines as an input parameter. Thus,
the time constraints imposed on the architecture are handled naturally by the high-
level optimization phase. Mismatch between the I/O bandwidth and the computing
elements encapsulated in a VLSI chip poses serious restrictions on the designs.
However, this problem is circumvented by the data flow analysis phase since I/O
bandwidth is modeled as a resource thus enabling the estimation algorithms to ensure
an efficient match. Also, cost paramaters can be introduced by associating ap-
propriate cost labels with the various elements of the resource set.

Issues related to the data path extraction and optimization phase are currently
being investigated. An important part of this work involves identifying transfor-
mations for binding data paths in an optimal fashion. It is important to determine
methods for synthesizing layouts which involve replication of a small set of building
blocks in a regular fashion. Related questions regarding optimal distribution of con-
trol are also of relevance.

24

5 References

1

. G. J. Lipovski and A. Tripathi, A Reconfigurable Varistructured Array
Processor, International Conference on Parallel Processing, August 1977,
pp. 165-174.

. Computer, Vol. 15, No. 1, January 1982.

.C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-

Wesley, Reading, Mass., 1980.

. H. T. Kung, Why Systolic Architectures? in [3].

. D.Johannsen, Bristle Blocks: A silicon compiler, Proc. 16th Design

Automation Conference, 1979 pp310-313.

. JM.Siskind, J.R.Southard, and D.W.Crouch, Generating Custom High

" Performance VLSI Designs from Succint Algorthmic Descriptions, Proc.

10.

i1

Conference on Advanced Research in VLSI, 1982, pp28-40.

. D.K.Goyal, Scheduling Processor Bound Systems, TR-CS-76-035, Com-
puter Sciences Department, Washington State Universtiy, Pullman,
Wash., November 1975.

.L.Uhr, Converging Pyramids of Arrays, IEEE Computer Society
Workshop on Computer Architecture for Pattern Analysis and Image
Data Base Management, 1981, pp 31-34.

.CR.Dyer, A VLSI Pyramid Machine for Heirarchical Parallel Image
Processing, Proc. of the Pattern Recognition and Image Processing Con-
ference, 1981, pp381-386.

G. R. Nudd, Image Understanding Architectures, Proc. of the Nationa
Computer Conference, 1980, pp. 377-390.

.H.T. Kung and S. W, Song,' A Systolic 2-D Convolution Chip, Proc.

25

IEEE Computer Society Workshop on Computer Architecture for Pattern
Analysis and Image Database Management, 1981, pp. 159-160.

12. S. L. Tamimoto, Systolic Cellular Logic: Inexpensive Parallel Image
Processors, Proc. Pattern Recognition and Image Processing Conference,

August 1981, pp. 306-309.

