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ABSTRACT

Communications protocols are crucial for the reliable
exchange of information in distributed systems. In this
dissertation, we consider the problem of formally specifying and
verifying properties of protocol systems. Such systems are modeled
by hierarchies of concurrent processes, where interprocess
communication is achieved by message passing rather than through
arbitrary shared variables. Based on this model, a methodology is

developed for mechanically assisted protocol analysis.

The Gypsy methodology for concurrent program verification 1s
the point of departure for much of this work. Specialized methods
applicable to protocols are derived from the Gypsy methods. Behavior
of protocol modules is specified in a fairly abstract manner using a
state transition paradigm, thus avoiding a highly procedural form of
specification. Protocol services are specified by means of
assertions over message histories. Proof techniques are introduced
for verifying safety properties of the process models. In addition,
a specification and assertion language is developed. This language
emphasizes features and operations useful for expressing protocol

oriented concepts and constructing proofs about them.

An important aspect of this work is use of machine assisted
analysis, most notably the use of mechanical theorem proving. A
strategy for applying a particular automatic theorem prover, the
Boyer-Moore prover, to protocol verification problems is put forth.
& consequence of this strategy is the accumulation of a large body of

proved lemmas, constituting a rudimentary deductive theory' for
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protocols. With this theory, the methodology has successfully been
applied to a pair of sample transport protocols. These include the
Stenning protocol and an abstraction of the data transfer function of

TCP.
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Chapter 1

Introduction

As interest in distributed systems continues to grow,
research on data communications technology is becoming increasingly
important. Due to the inherent complexity of communications systems,
reliable construction of such systems is a difficult task. The need
for effective analysis and design techniques is paramount. Without
them our ability to develop systems having predictable behavior would
be seriously 1limited. The analysis problems facing wus are

formidable, but not by any means insurmountable.

At the heart of any communications system is its protocol
architecture. Protocols are the procedures that control the orderly
exchange of information in a network [McQuillan 78]. Recently, the
importance of applying formal methods to the problems of
communications protocol analysis and design has been recognized. A
number of approaches to protoéol specification and verification have
been proposed, using a large variety of models and techniques.
Surveys of this work are readily available [Sunshine 79, Bochmann
80]. Several distinet lines of research have subsequently emerged,

although it is safe to say that we have not yet heard the final word.

In this thesis, we report on a new methodology that has been
developed to address the problem of protocol analysis. It is based
on techniques for verifying systems of concurrent processes that
communicate by message passing. Only verification of safety
properties is considered at this time: we hope to consider liveness

properties in the future. Tneluded is a novel method for stating



abstract behavioral specifications of protocol modules. It avoids
the highly procedural forms of specification that are in common use
today. Also, a significant aspect of the methodology is the use of
mechanical theorem proving tools to actually carry out the proofs.
We view this as important not so much for the obvious advantages of
automation, but rather for the elimination of errors that can result

from doing tedious proofs by hand.

Overall we would characterize the methodology as being an
integration of many tools and techniques from a diversity of sources.
Among them are verification of concurrent and sequential processes,
applicative language design, state transition models, decision table
techniques, deductive theory building and mechanical theorem proving.
Particularly important is the integration of techniques for modeling
concurrent processes and state transition systems into a unified
framework. The manner in which these ideas have been forged together
reflect our belief that an effective methodology is the result of a

delicate balance between theoretical and practical considerations.

Much of this work is based on concepts found in Gypsy [Good
77, Good 78]. The Gypsy methodology, developed at the University of
Texas at Austin, is a highly successful methodology for specifying,
verifying and implementing concurrent programs. An initial attempt
at protocol verification was performed as a straightforward
application of the Gypsy methods and automated t%tools [DiVito 81].
With additional help from the AFFIRM verification system [Musser
80, Gerhart 80], the experiment was successfully completed.
Nevertheless, several aspects of this approach were somewhat less
than satisfying, most notably the procedural form of specifying
protocol behavior. This situation led to the search for a new
methodology that was more suited to the special needs of protocol

work. This thesis is the end result of that search.

Essentially what was done was to start with some of the



better ideas of Gypsy and combine them with a few additional ones to
create a new integrated methodology. Unfortunately, this meant that
we could not make direct use of Gypsy's automated tools. We did,
however, take the opportunity to try other theorem provers and found
that we could make good use of the Boyer-Moore theorem prover {Boyer
791. At the present time we are using fully mechanical theorem
proving tools and a partially automated verification condition
generator. Other work is currently done by hand, but the
construction of additional tools to help with specification and
analysis is certainly a doable task. Because our work has been
mainly exploratory research, development of tools has been done only

to demonstrate feasibility.

While the theory of verification is often quite
straightforward, it is usually very difficult to apply in practice.
For this reason, we follow a basic principle of problem solving: if
the general problem 1is too difficult, try to solve restricted
versions of it. The most obvious step toward applying this principle
has already been taken, namely the narrowing of our focus to a class
of protocol problems. In the rest of our work, we will apply this
principle repeatedly. A major theme of our general approach is to
impose restrictions and then exploit the special properties that
accrue from those restrictions. In exchange for sacrificing
generality we hope to increase our chances of obtaining results.
Verification is sufficiently difficult to justify extensive

specialization.

Although the primary focus of this research has been analysis
of protocols, the methods developed are clearly applicable to more
general problems. The techniques are based on a restricted form of
concurrent process model. There certainly are other distributed
system applications that could make use of such a model and take
advantage of our methods. Almost any process acting as a "server,”

whose behavior can be described as event-driven, could be readily



specified and analyzed by our techniques. A fundamental limitation
in practice would be the complexity of the required processing, which
manifests itself through a need for nontrivial data structures and

operations.

Let us now outline the remaining chapters of this
dissertation. In Chapter 2 we present the basic approach for
modeling and specifying protocol systems using concurrent processes.
The Gypsy model of concurrency underlies this approach. The
corresponding verification techniques are described in Chapter 3.

Modular verification is emphasized as a practical goal.

Chapter 4 deals witﬁ the design of a specification
(assertion) language. Stressed are generic language features and the
use of data structures that facilitate proof by automatic theorem

provers.

A primary objective of the methodology has been to develop
tools and techniques for mechanized analysis. Chapter 5 describes
the use of existing tools and the development of new tools for

analysis.

The methodology has been successfully applied to prove
properties about a pair of transport protocols. One is the protocol
introduced by Stenning [Stenning 76] and the other is based on the
data transfer functions of TCP [Postel 80]. Chapter 6 presents the
details of this work.

Finally, in Chapter 7 we discuss some proposed extensions to
the basic specification and verification methods. The motivation for
these 1is the handling of connection management features and other

state dependent kinds of processing.



Chapter 2

Modeling and Specification

Many models of commqnication protocol systems are currently
in use today [Sunshine 81]. These models vary considerably in their
degree of formalism and level of abstraction. We propose new
modeling and specification techniques with a high degree of formalism
that enable modeling of systems at an intermediate level of
abstraction. We feel that this approach leads to a sound and
effective methodology for verification while still allowing

construction of fairly realistic models of protocols.

2.1 Philosophy of Specification

Specification is a highly loaded word, which is subject to
many preconceived interpretations. For this reason, we begin this

chapter by explicitly stating our notions of specification.

Specification techniques can only Dbe meaningfully discussed
in the context of an expressed purpose. Only when definite reasons
for using formal specifications are stated is it possible to evaluate
the usefulness of specification techniques. We can cite three
principal reasons for formalizing protocol specifications.

1. Definition. An unambiguous definition of a protocol is
important as a means of communication. This includes both
communication between a protocol designer and others as
well as between a designer and himself. Naturally, a

companion informal specification is necessary to aid
understanding, but by itself is too imprecise.



2. Analysis. Having completed the design of a protocol, a
designer would typically like to perform various kinds of
analyses on it. These involve discovering what properties
a protocol has or ensuring that certain intended
properties are actually present. This 1latter type of
analysis is termed verification and is the main subject of
our research. Formal specifications are the objects upon
which these analyses are performed.

3. Implementation. After a protocol has been sufficiently
well analyzed, its various components will be implemented.
There can potentially be many different implementations
for a single component. The formal specification is the
standard against which these implementations are measured.
Each must be in conformance with the standard to ensure
that proper communication takes place.

When specification goals conflict, as is often the case,
compromises must be made to adequately achieve all goals. It 1is
difficult to arrive at a specification method that serves all the
purposes stated above equally well. Simultaneously satisfying (2)
and (3) is particularly troublesome. Formalisms that lend themselves
to analysis tend to be very abstract. On the other hand,
specifications from which implementations can be easily derived must
be more concrete. Achieving a proper balance is therefore crucial to
the overall effectiveness and  usefulness of a specification

methodology.

It is also important that a specification places appropriate
constraints on the range of possible implementations. Many authors
use an "abstract program" approach to model protocols. This involves
exhibiting procedures in a conventional high level programming
language to serve as a "specification." We regard this approach as
unsatisfactory because of the amount of inessential, low level detail

that is introduced. In effect, it overconstrains implementations.

Conversely, a highly abstract model may leave an implementor
with too much leeway. Often such models are used to facilitate

analysis with respect to a certain property or class of properties.



This is fine if our only goal is analysis. If, however, we wish to
state a true specification, then we need to be concerned with the
larger problem. A protocol designer might want events processed in a
certain way to ensure that an acceptable level of performance is
achieved or to ensure that one protocol entity does not unduly
consume the resources of another. In essence, an implementor should
only have the freedom to make decisions that affect a local execution
environment; decisions that can affect remote execution environments
or the overall operation of communication are the province of the
protocol designer. Thus, a specification technique designed to meet
the previously stated goals should not permit implementations to be

underconstrained.

Sunshine has proposed a general model for specifying protocol
systems [Sunshine 79], which we adhere to in the work that follows.

In this model, a protocol layer is viewed as an abstract machine.

This protocol machine provides services to the next higher level
protocol layer. Services can be obtained by issuing commands to the

protocol machine. A service specification is stated that describes

the effects that these commands have on the behavior of the machine.
The general characteristics of the machine model are deliberately
left vague so as to accommodate different specification styles.
Commonly chosen are methods based on state transition models. Qur

preference is for a process oriented model.

In the general framework, a level N protocol machine 1is
decomposed into a set of communicating entities and a level N-1
protocol machine (Fig. 2-1). The entities are the protocol modules
that actually do the work for protocol layer N. These entities
realize the service primitives for level N and communicate among
themselves by calling on the services of the level N-1 protocol

machine. A protocol specification 1is stated that describes the

effects of these events internal to level N. Demonstrating that a set

of modules, which is in compliance with the protocol specification,
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Figure 2-1: General model of protocol systems.

satisfies its service specification 1is the protocol verification

problem.
Our approach to modeling protocols is consistent with that
outlined above. A protocol machine is modeled as an abstract

process. Such a process is an active entity with explicit inputs and
outputs. A process communicates asynchronously with its external
environment by passing messages through its inputs and outputs.
Message passing is the realization of the service primitives in the

protocol machine model.

As the underlying model of computation, the abstract process
model determines our notions of service specification and protocol
specification. The process model uses no concept of global state,
abstract or otherwise, Instead, semantics is specified by relating
the flows of messages through the process inputs and outputs. It is
in this sense that we have a service specification. An important
consequence of this arrangement is that we can usually express any

properties we wish to show about a protocol directly as its service



specification. This is in contrast to many state machine models
where it is often necessary to prove properties about a specification
to be convinced that it captures the intended behavior. In our
approach, the service specification is the set of properties of

interest.

A process representing protocol 1layer N 1is composed of a
number of subprocesses. Some of these represent level N entities or
modules and one or more represent the level N-1 protocol machines(s).
A protocol specification in this model consists of abstract
definitions for the level N protocol modules. Process behavior is
specified using a state transition approach for such definitions. 1In
this way we have integrated state tfansition concepts with parallel

process concepts.,

The precise definition of our modeling and specification
techniques forms the rest of this chapter. Although our emphasis is
on the modeling of protocol systems, it should be clear that these
methods «could also be wuseful for other distributed system

applications.

2.2 Abstract Process Model

Qur process model is similar to that of Gypsy [Good 77, Good
781. It allows specification of hierarchical process structures with
communication by message passing. With these hierarchies viewed as
trees, their leaves correspond to the protocol entities, for example,
transport stations for a ¢transport 1layer protocol. An entire
hierarchy corresponds to a protocol layer, or protocol machine in the
protocol machine model. We proceed with a detailed explanation of

the process model for protocol systems.
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2.2.1 Basic concepts

Active computing entities are known as sequential processes.

Each such process is assumed to be resident on a single processor and

communicates with 1its environment (other processes) via message

1

buffers. A message buffer is a finite size queue that connects two

sequential processes, one sending to it and the other receiving from
it. No other means of data sharing is allowed; all variables within
a process are strictly local. Note that a buffer may be of size
zero, in which case the message passing regime would be similar to
that of Communicating Sequential Process (CSP) models [Hoare 78]. A

sequential process is assumed to be nonterminating.

We can build hierarchical process models using concurrent
processes. A concurrent process consists of several subprocesses
plus a number of local buffers to interconnect them. The
subprocesses may themselves be either sequential or concurrent. Thus
a concurrent process may be viewed as a tree structured object, where
the leaves represent sequential processes (executing entities) and
the nonleaf nodes represent concurrent processes. A concurrent
process should be regarded as a virtual structure because its
components are distributed and it does not embody a single locus of
control; it 1is simply an organized collection of lower level

processes and buffers that are aggregated for specification purposes.

A protocol machine can be represented by a concurrent process
as shown in Fig. 2-2. This example shows a simple data transfer

protocol, such as the Stenning protocol [Stenning 76]. The transport

1We assume buffers are bounded but unbounded buffers would work as
well., Our methods for proving safety properties do not depend on the
use of unbounded buffers sc we prefer to use the more realistic
bounded buffer model.
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Figure 2-=2: Protocol machine as a concurrent process.

service is modeled as a concurrent process with three subprocesses.
The sender and receiver are the protocol modules, which would be
defined as sequential processes; the medium process represents the
next lower level protocol machine, another concurrent process. The
single input and single outpﬁt of the protocol machine are depicted
as message buffers source and sink. Four internal buffers are
provided for the sender and receiver to interact with the
transmission medium, and hence, with each other. Note that a buffer
may be an input or output at several different levels in a process
hierarchy. In this example, for instance, the source buffer is an
input both to the sender and to its parent process, the transport
service. It is said to be an external input of the transport service

process.

Objects that flow through a message buffer are typed data



12

objects, that is, all messages are elements of a single data type. A
language for defining data types, objects and operations on them will
be presented in Chapter 4. For now we just point out that each
buffer will have associated with it the type of ité data objects.
Buffers are the one and only one mechanism for interprocess
communication in our model. They represent shared data structures
and consequently require that the operations of sending to a buffer
and receiving from a buffer be atomic. In other words, it is assumed
that send and receive operations exclude each other so that ne

inconsistent state can result.

2.2.2 Concurrent process definitions

A necessary evil of any formal method is well defined
notation. Pictures of process structures are good for imparting an
intuitive understanding of the model, but if we ever hope to achieve
mechanized analysis we must have some machine readable formalism. To
this end, we posit some simple notation for precisely defining our
process models. No tools for reading or analyzing this language have
yet been implemented, but it is <c¢lear that it would be a

straightforward task to do so.

The general style for our process definition language 1is
borrowed from the Gypsy programming language. Gypsy in turn has a
Pascal-like syntax for most of its features. We continue in this
tradition. This gives our definitions a more operational flavor than
many of the abstract models of protocols. But they are also less
operational than the strict programming language models. This is no
accident =--= we feel we have achieved a good compromise between

abstractness and realism.

The transport service process may be given a concurrent

process definition, as shown in Fig. 2-3. This is a realization of
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process transport service (input source: message;
- output sink: message) =
begin
buffers (sndr_pkt, rcvr_pkt: packet;
sndr_ack, revr_ack: natural):
cobegin
sender (source, sndr_ack, sndr_pkt);
receiver (revr_pkt, sink, revr_ack);
medium (sndr_pkt, recvr_pkt, revr_ack, sndr_ack);
end
end

Figure 2-3: Transport service process definition.

the structure shown in Fig. 2-2. There are three major parts to a

concurrent process definition.

1. The process header identifies the input and output buffers
and the types of objects that flow through them.

2. The internal buffers are declared together with their
element data types. These local buffer names will be
meaningful only within this process definition.

3. The subprocess structure is introduced by means of a
"ecobegin" statement. Each subprocess is "called" by
passing buffers as its parameters. These may be either
internal or external buffers. )

The general form for a concurrent process definition is shown in Fig.
2-4, Note that multiple instances of a subprocess may be called in

the cobegin statement.

process P (inputs IBq: ITq5 ...3 IB s IT. s
outputs OB1: OT1; cesl OBn: OTn) =
begin
buffers (31: BTq5 .- By: BT, )
cobegin
P1 (LB1’], ° e o3 LB1’np(1));

Pq (LBy, 1+ .-+ LB

q q.np(q)??

end
end

Figure 2-4: General form of concurrent process definition.
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The implied semantics of the process definition is that all
subprocesses named in the cobegin statement are started
simultaneously and thereafter run forever. We are not concerned with
modeling processes that terminate, although termination is certainly
a capability that could be added. If any of the subprocesses is
itself a concurrent process, its cobegin statement is similarly
"executed." The result is that an entire process hierarchy begins
operation at one time and no part of it ever terminates. Practically
speaking, the component processes are physically distributed and
cannot actually be started synchronously. This is not a real
problem, though, since we can imagine that the start up instant
coincides with the earliest start time of any of the subprocesses.
Conceptually we regard the others as having started at this point and

being inactive during the interval just before they began execution.

We will shortly describe how sequential process definitions
are constructed. These form the actual protocol specifications. The
other subprocess that appears in the example above 1is the
transmission medium process, the lower level protocol machine. Here
the only necessary step is to declare its input/ocutput interface.

The medium process may be partially defined by

process medium (input 1f _in: T71;
output rt_out: T1;
input rt_in: T2;
output 1f out: T2) = pending

The above declaration contains only a process header and states that
the actual definition is pending. This expresses the fact that we
are unconcerned with the internal structure of the medium. All we
care about is that it have the inputs and outputs cited in the

process header.,

Observe from Figures 2-2 and 2-3 that there 1s nothing

distinguishing the form of the sender and receiver processes from
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that of the medium process. We intend the sender and receiver to be
sequential processes, but at the external process interface this
information is hidden. It is precisely this characteristic of the
model that allows us to easily build hierarchical process structures.
More important is that this aspect of the model leads to a modular
proof organization, which will be of great benefit in dealing with

complex behaviors.

2.2.3 Restrictions and limitations

There are some simple semantic restrictions on the model that
have yet to be stated. These include:
- Buffer’ types must match. The sending process, the
receiving process and the buffer declaration itself all

refer to the type of data object that may be passed. These
must all agree for a process structure to be well formed.

- Within one level of a process hierarchy, only one process
may access each end of a buffer. More precisely, input
access to a buffer may be given to only one port of one
subprocess. The same is %true of output access. Proof
rules for concurrency are simplified by this restriction.

-~ All buffers must be explicitly declared either as inputs,
outputs or internal buffers. There is no analog of the
global variable. Nothing is implicitly inherited from the
levels above.

The concurrent process model is simple and powerful, but also
limited. Perhaps its most significant 1limitation is that all
interprocess communication is via message passing. This means that
all service primitives of protocols are modeled by this one
mechanism. Real implementations of protocol modules will use a
variety of techniques: procedure calls, supervisor calls, traps,
interrupts, ete. If a command requires the use of a procedure call
mechanism, for example to return possible error codes or other status
information, then it will be more difficult to model with message

passing primitives,
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As often happens, though, the greatest weakness of a method
is also its greatest strength. The power we get in return for
accepting this limitation is considerable. The success of the Gypsy
methodology is evidence in support of this claim. Our model is even
simpler and more specialized than Gypsy. Therefore we expect to reap
big rewards. Primarily these have come from two mutually reinforcing
sources: the technique for specifying sequential process behavior, to
be described in the next section, and some very simple and elegant

verification methods.

2.3 Protocol Specifications

A protocol is often defined as the set of rules that govern
interaction among communicating entities. Precise expression of
these rules is the goal of protocol specification. It is often
difficult to capture the essence of this interaction without going
into too much detail and infringing on the territory of the
implementor. Nevertheless, as argued previously, a certain amount of
detail is necessary. In order to avoid the excessive detail
introduced by procedural forms of specification, we make use of a
state transition approach. The resulting method, termed abstract

behavioral specification, can fulfill the needs of precise definition

and analysis, while still serving as a basis for implementation.

Consider a sequential process of the kind described in
Section 2.2.1. It is possible to give specifications for such a

process by regarding its behavior as being event driven. By this we

mean that the life of a process consists of a continuous series of
event processing cycles. Each cycle begins with the occurrence of an
event, followed by its processing, after which the process goes back
to wait for the next event. Two kinds of events are recognized: the
reception of a message from one of the input buffers .,and an

internally generated timeout event. The quiescent state for a



17

process is to be waiting for a message from one or more of its input

buffers.

The event driven view of process behavior leads to the
adoption of a state transition paradigm for the specification of a
protocol module. Local state information is assumed to be maintained

by the process; this is collectively referred to as the state vector.

Processing of an event causes a transition to occur, which updates
the state vector. Similar models of protocol systems are in common
use today. However, there are some important distinguishing features

of our model.

First of all, the state vector is strictly local to a single
process; there is no notion of a global state vector. This preserves
the modular. character of the specification and proof methods. Since
a process communicates with its external environment through explicit
output buffers, we must account for this interface in the behavioral
specification. Accordingly, the actions of event processing are
divided into two categories.

1. Response. Messages may be sent to the output buffers;

this constitutes a modification of the external
environment.

2. Transition. The state vector is updated; this constitutes
a modification of the internal environment.
The exact mechanism used to state a detailed specification, which is
based on the wuse of decision tables, is the other major
distinguishing feature of our method. Before introducing it, we must

elaborate on the overall structure of the sequential process model.
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process sender (inputs source: message;
ack _in: natural;
output pkt out: packet) =
begin
state vector (unack, next: natural;
queue: mapping of packet;
timing: boolean;
to_time: natural)
initially (0, O, null, false, 0);
events
next - unack < send_window =>
on receipt of mess from source
handle by source hdir;
true => .
on receipt of ack from ack in
handle by ack hdlr;
timing =>
after to_time handle by timeout hdlr;
end
end

Figure 2-5: Example of sequential process definition.

2.3.1 Sequential process definitions

Fig. 2-5 contains a sample process definition, the sender
process of the Stenning protocol. This represents a fairly abstract
process definition, having a form that may be regarded as a process
schema. There are three major parts to a sequential process

definition.

1. The process header identifies the input and output buffers
and the types of objects that flow through them. This is
completely analogous to the concurrent process case,

2. The nature of the state vector is revealed by declaring it
as a record-like abstract data object. Its components are
named and typed using the abstract types provided in the
specification language. Its initial wvalue 1is also
declared.

3. A list of event processing statements is provided. Each
statement corresponds to a particular class of event,
either a message reception or a timeout. Each statement
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refers to an event handler, which is a separate language
structure refined at the next lower level.

Thus the process schema contains declarations for both data
and control. The list of event processing statements may be thought
of as a CSP-like guarded command structure with enabling
conditions [Hoare 78], embedded within a nonterminating loop. Each
statement begins with an enabling condition that determines whether
the given event is eligible for selection on a given cycle. In this
way, it 1is possible to select a subset of the input buffers upon
which to wait for the next event. Messages arriving to a buffer with
a corresponding false enabling condition will be queued but not yet
received. Similarly, a timeout event with a false enabling condition
means that the timer is currently turned off for that event. Events
that are enabled will be waited upon in parallel. This construct is
also similar to an Ada "select" statement, where the guards
correspond to when-conditions and the receive and timeout statements

correspond to accept and delay alternatives.

process P (inputs IB1 ITy5 eoes IB, IT,
outputs O0B;: OT45 ...: OB : OT ) =
begin
state vector (SV,: STy; ...; SVp: STy)
initially (IV4, ..., IVk).
events
A1 => on receipt of V1 from IB1 handle by RH4;

A > on receipt of V, from IB, handle by RHp, 5
B1 => after T1 handle by THq;
B. => after T, handle by TH,;

end q q 4

end
Figure 2-6: General form of sequential process definition.
The general form of a sequential process definition is shown

in Fig. 2.6. There is exactly one event processing statement for

each input buffer. On the other hand, there can be any number of
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timeout events. Each timeout event has an expression T; that refers
to the absolute time after which it can fire. For definiteness, we
assume time is in units of milliseconds. The boolean expressions
Ag,...,A and B1,...,Bq

eligible for execution on any given event processing cycle. State

are used to select a subset of events

vector components may be freely referenced in such guard expressions.
Receive event statements contain implicit declarations for the
variables Vi’ assumed to represent objects of type IT;. These
variables are only accessible in the corresponding receive event
handlers, RH;. In addition, all state vector components are
accessible to all event handlers. Observe that if all enabling
conditions should simultaneously become false, the process will have
effectively terminated, in the sense that no further events will ever
be handled.

2.3.2 Event handlers

Next we describe how the details of event handling are
specified. Each handler will in fact be represented by a special form
of decision table. The decision table will indicate the appropriate
response and transition actions to be performed under various
conditions pertinent to the given event. This technique offers a way
to state the specification using a precise and concise notation,
while still allowing it to be done in a functional, nonprocedural
manner. It also provides the advantages of structuring the
specification in such a way that a limited analysis for consistency
and completeness may be performed, as well as yielding a very simple

procedure for generating verification conditions.

The task of an event handler is to specify the two kinds of
actions mentioned earlier: transition and response. These actions
should be functions only of the current state and the value of the

message Jjust received {(for receive events). We would like to specify
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these actions by stating only their final effects, not how they are
achieved. Therefore we reject any solution based on the use of
procedural programming statements such as assignments and loops.
Preferable is a solution that is functional in nature, for example,
something akin to the output and next state functions of classical

finite state automata.

Naturally, for updating the state vector a straightforward
next state function is the obvious choice. To simplify matters, we
actually separate it into k individual functions, one for each state

vector component. Thus, we have for receive events

NSij(SV1,

and for timeout events

eo e SVk, Vj) = expression; .; i=1,...,k; j=1,...,m

ij

NSij(SV1. ceay svk) = expressionij; izl,e00,Ks J=T,.0.,Q0

A designer would simply need to provide an appropriate set of

expressions to specify the state transitions of his protocol.

Specifying response actions, the analog of the output
function for an FSA, is less clear but could be handled in a similar
way. The problem is that there is no single oﬁtput value. There is,
in fact, multiplicity in two dimensions: multiple output buffers and
multiple messages sent over each. One possibility is to have a
single function whose value is the sequence of all messages to be
sent out. Quite 1likely, though, we do not need to specify the
relative order of sends between two output buffers. Moreover, this
might err a bit on the side of overspecification. Consequently, we
content ourselves with independent output functions for the output
buffers. This allows us to specify the sequence of messages that go
out on a given output, knowing that thes