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ABSTRACT

The three major components of dynamic scene analysis, namely
segmentation, occlusion and the computation of three-dimensional
information from images are discussed in depth. Segmentation
refers to the process of determining features of interest, oc-
clusion analysis includes the deriving of changes due to projec-
tion perspective, and computation of three-dimensional informa-
tion entails the constructing of structural models and describ-
ing motions from image information. The purpose of the review is
to give the reader a coherent view of the issues and the manner
in which researchers are currently addressing these issues.
Detailed descriptions of the systems developed at The University

of Texas are presented.



1.0 Introduction

Dynamic Scene Rnalysis, also referred to as the Analysis of
Time-Varying Imagery, is «concerned with the processing of a
sequence or a collection of images. The ultimate goal of the
analysis 1is to assimilate information from the sequence as a whole
that cannot be obtained from any one image by itself. The sequence
of 1images usually represents a scene as sampled by a sensor at
instants close in time and may arise from a variety of scenarios.
Examples include motions of objects in a scene where the sensor is
fixed, motion of the sensor relative to the scene or a combination
of the two motions. A variety of applications have motivated the
present research in Dynamic Scene Analysis. These include indus-
trial automation and inspection, robotics, navigation, automatic
surveillance and biomedical engineering. The research area of
Dynamic Scene Analysis is rather new, however, it is receiving con-
siderable attention as is evident from the Advanced Study Institute
at Braunlage, other conferences and the recent literature [1-8].

The present paper addresses the important issues and
ingredients of Dynamic Scene Analysis. Specifically, the three
issues discussed in this review paper are segmentation, occlusion
and the computation of three~dimensional information from images.
Here segmentation refers to the process of determining features of
interest together with distinguishing interesting changes from
uninteresting changes and relating the features and components in
one image to those of the succeeding images. Occlusion analysis
includes deriving structural changes due to projection perspective
and the appearance or disappearance of objects. Finally, the com-
putation of three-dimensional information entails constructing
structural models and describing three-dimensional motions through
the analysis of two-dimensional image information. The next three
sections discuss Dynamic Scene Segmentation, Occlusion in Image

sequences and Three-Dimensional Information from Images.

2.0 Dynamic Scene Segmentation

in almost every static scene analysis task, the first step is
segmentation, 1i.e., to locate the significant scene components, to
extract features from the‘image, or to separate the image into
meaningful regions. Dynamic scene analysis is no different but
must also consider dividing the images into parts that are changing
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and parts that are constant, or finding the the moving parts in
each element of the sequence of images. In order to account for
change and movement, information must be combined from consecutive
frames or subsequences of images.

There are two distinct approaches to segmentation in dynamic
scenes: Feature Based Segmentation and Pixel Based Segmentation.
Feature based segmentation consists of finding edges, corners,
boundaries, or surfaces in each of two images and then establishing
a correspondence between various features in the two images. The
process of establishing correspondence is at times difficult, espe-
cially if one has noisy images. Thus, the analysis proceeds with
the static scene segmentation of each of the two images, and then
establishes a feature correspondence between consecutive images to
determine the changes in the images. Pixel based segmentation com-
pares the two images at the pixel level by methods such as 4if-
ferencing, correlation or temporal-spatial gradient. 1In each case,
pixel 1level comparisons are made and velocity estimates are
assigned to various pixel positions. The velocity estimates become.
the basis for segmentation.

Neither type of process yields unique answers but generally
the end product 1is a description of the moving parts of a scene.
Each of the approaches makes the assumption that image components
which move together are parts of the same underlying object in the
scene. The above procedures are illustrated in the following dis-

cussion.

2.1 Feature Based Analysis
A variety of features have been used in segmenting each of the

images and in establishing correspondence for the moving parts in a
sequence of images. The 1list of features includes corners,
straight edges, curvilinear edge segments, centroid, area, major
and minor axes for moment of inertia, and others. The choice of
features depends upon the problem domain and the assumptions that
may be made about the moving parts. Two systems are briefly dis-
cussed to illustrate feature based analysis.

Corners and Straight Edges: Aggarwal and Duda [9] consider the
motion of polygonal figures which are arbitrarily complex in shape,
and possibly contain holes. In this case the polygons are software
generated to appear as planar objects moving in planes parallel to
the image plane. The parallel projection essentially creates the
silhouette of the objects.




The overlapping of the actual polygons creates new vertices
while removing occluded vertices and edges. The new vertices are
referred to as ®"false" vertices and the visible wvertices of the
actual polygons are called "real” vertices. One of the main func-
tions of the system is to classify the vertices of the input image
into the appropriate one of these two categories. This classifica-
tion process is facilitated by two characteristics of the input
domain. First, no "false"™ vertex can have an interior angle which
measures less than 180 degrees. Second, any vertex which changes
its angular measure between two frames must be a "false" vertex.
The first characteristic is due to the polygonal nature of the
objects, while the restriction to rigid polygons assures the
second. However, these two characteristics do not provide enough
information to directly classify every vertex. There are vertices
with obtuse interior angles which are not "false" wvertices and
there are "false®™ vertices which do not chaﬁge their angular meas-
ure. One further restriction is necessary, and it is that no more
than one Yreal®™ wvertex can appear or become occluded between any
two consecutive frames. The importance of this restriction is that
it allows the system to determine the type of change that has
cccurred between two consecutive frames. This determination is
based on the difference in the number of vertices having acute
interior angles along with the difference in the number of vertices
having obtuse interior angles.

The correspondence is established based on the nature of the
vertex (i.e., acute or obtuse), the lengths of the polygons® sides,
etc. 1In this fashion, the moving parts are isolated for further
processing. Figure 2.1 shows an example of a sequence of images to
which this process has been applied.

Curvilinear Boundaries: The system of Martin and Aggarwal ([10]

analyzes scenes containing figures with curvilinear boundaries in a
manner similar to the system just described. The input is again
restricted so that the objects move independently in planes paral-
lel to the image plane. However, instead of software-generated
images, homogeneously shaded, opaque, planar figures are moved in
front of a TV camera to produce a sequence of images. The camera
approximates an orthogonal projection into the digital images which
are preprocessed to extract the boundaries of the figures [11].
The figure shading and the camera setup give rise to images in
which overlapping figures are merged into single apparent cbjects.
The task of the system is thus to derive descriptions of the
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Figure 2.1 A sequence of polygonal objects illustrating
feature based segmentation.



constituent actual figures and their motions by analyzing the
apparent objects of the sequence of images. The analysis of the
sequence is performed on pairs of consecutive images from the
sequence and is based upon identifying shapes which are common to
both images of any given pair. The matched shapes are interpreted
as two views of the same object. In this way the moving objects
can be tracked throughout the sequence while motion measurements
are made from the displacements between the matched views.

The tokens used by this system are circular arcs approximated
by portions of the object boundaries. The arcs are derived by
analyzing the subtended angle versus arc length, ¥-s, a function of
the boundary as measured from an arbitrary starting point on that
boundary. This function is useful because intervals of constant
slope in the y-s function correspond to boundary sections of con-
stant curvature, i.e., circular arcs. The appropriate intervals
are determined by forming a piecewise straight line approximation
of the pictorial graph of the Y-s function. The set of straight
lines in the y-s function approximation effectively decomposes the
object boundary into a set of arcs. Figure 2.2 shows an object
before and after being segmented into arcs by this process.

The shape representation, as entered in the data base which
contains all the relevant information derived from the sequence of
images, includes the coordinate list of the object boundary, the
straight-line description of the y=-s function, and pointers relat-
ing specific boundary sections to the appropriate elements of the
straight~line set, This representation separates clearly the
information needed for the shape matching from the informatiocon
required in the movement measurement process. In fact the y-s
function is invariant to translation and rotation (see [10] for
minor gqualifications) and is processed to eliminate the effects of
arbitrarily choosing its starting point. This separation is in
accordance with the system’s use of the constancy in shape of the
actual figures in order to interpret the movement of the apparent
objects.

The initial correspondence is based on matching the tokens
through their shape attributes, but is again aided by the higher
level constraint imposed by the token ordering along object boun-
daries. Contiguous arcs from one image which match, in the same
ocrder, contiguous arcs from the second image are grouped intc edge
segments. This matching is performed by first choosing two arcs,

one from each image of a consecutive pair, whose y-s function lines
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Figure 2.2 (a) A curvilinear object.
(b} Feature based segmentation into circular
arcs and straight lines.
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have similar slopes and lengths. From these "seed" arcs an edge
segment can be "grown"™ by adding continuous arcs to either end of
the already matched segments until a dissimilarity in the curves is
found. The dissimilarity of two curves is measured by the area
between the normalized pictorial graphs of their y-s functions.
Two arcs are declared dissimilar when the measured value exceeds a
preset threshold.

Edge segments grown in this way represent the portions ©of the
object boundaries which have retained their shape through the
sequence. Thus an edge segment relates two views of some part of
an actual figure. The displacement between two such views provides
motion measurements for the given edge segment. These measurements
are then used to group the edge segments into object models under
the assumption that edge segments which exhibit a common motion
belong to the same object, Figure 2.3 shows two input frames and
the derived models.

In contrast to the above research where detailed analysis is
carried out on sections of the object boundaries, Chow and Aggarwal
[12] compute measures over the complete boundaries, e.g., the cen-
troid, major and minor axes, etc. These measures are used in con-
junction with a predictive scheme to perform the dynamic scene seg-

mentation for blob-like figures.

2.2, Pixel Based Analysis
The techniques of differencing and cross-correlation have been

used extensively for comparing a pair of given images in several
applications. 1In addition, in time-varying imagery, techniques
based on temporal-spatial gradients have been developed. These

techniques will be discussed in the following sections,

Differencing: A comparison of two images of a scene will indicate

that the images differ in areas affected by the motions of objects.
One method of comparison 1is to “"subtract®™ or "difference" two
images and record the results in another image referred to as the
difference image. If the absolute value of the difference is above
a preset threshold, the corresponding pixel is set to 1; otherwise
it is set to 0. On analyzing a pair of images of a scene, it is
assumed that all points in the two images and those of the differ-
ence image are referenced to a common grid, i.e. the three images
are assumed to be registered.

Several researchers have used the difference images to charac-
terize objects and their motions. For example, references [13-16]
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Figure 2.3 (a) Input images.
{p) Object models based on feature based

segmentation and velocity measurements.
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describe a varlety of results obtained. The differencing technique
has been applied to synthetic scenes, laboratory scenes, and real
world scenes. 1In general the technique 1is applicable to both
polygonal and curvilinear objects. However, theoretical analysis
is available only for the case of polygonal objects. For Dbest
results, the objects are assumed to be of a homogeneous gray level.
1f an object of interest were to comprise areas having distinct but
uniform gray levels, each homogeneous portion could be treated as
an individual object. It would then remain for some higher level
process, possibly using a common motion constraint to determine
that all the individually identified segments were parts of the
same object.

By examining the difference image, object samples can be
determined and then expanded, e.g. "grown®™ [13,14], to effectively
include all image points that correspond to the object. An example
illustrating the use of differencing is given in Figure 2.4.

Cross—-Correlation Analysis: Given two images and a small window in

the first image, the purpose of cross-correlation is to find the
region in the second image that matches the windowed region of the
first image. This situation is illustrated in the Figure 2.5a,b
with the matching accomplished as in template matching.

Let the second image be denoted by f(x,y). the window of the
first image by w(x,y), and the shifted version of the window by

w(x-m,y-n), then their cross correlation function may be defined as

R{(m,n} = ZZ f{%x,y)W(x=m,y-n)
Xy

where the summation is taken over the region where w(x,y) Iis
defined, and (m,n) vary over the entire image f£(x,y). The range of
the summation and the positions of the window and figure are illus-
trated in Figure 2.5c. As (m,n) vary, R{(m,n) changes and reaches a
maximum at the place where w(x,y) best matches f(x,y). A more com-

plicated correlation function is given by

R'{m,n) = R{m,n)/D(L)

with D(f) = ZZ fz(x,y)
Xy

where both summations are defined over the region where W{X-m,y=n)}
is non-zeroc. The denominator wvaries with the position of
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Figure 2.4

(a), (b)

Two images of a laboratory scene.
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Figure 2.4

(c) The difference picture of the two images.
{(d) The results of the region growing process
using the derived object samples.
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(0,0) (P.Q)
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w(x-M,y-N)
(0,0) Fix.y) (PO)

(c)

Figure 2.5 (a),(b) Two images of curvilinear objects with the
windows indicating the matched regions, and
the arrow denoting the movement of the object.

{(c} The range of summation and the position of
the window.
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w({x-m,y-n) and it tends to sharpen the peaks of R(m,n). Details on
cross-correlation are found in the book [17], whereas the applica-
tion of cross-correlation to cloud motion analysis is found in
[18,19].,

Temporal-spatial Gradient: Let fl(x,y) and fz(x,y) denote the
image intensities at the two instants, t and t . During the

intervening time interval, the image has moved by the amount Ax and
4y in the x- and y- directions, respectively. Now

AE(x,y)

fz(le)"fl (x,y)

1]

also fl(x,y) f2(x+Ach+5Y)

it

therefore Af(x,y) fz(x,y)—fz(x+Ax,y+Ay)

Thus, at each point one can calculate Af, 3f/3x and 3f/9y; and
obtain a linear equation for Ax and Ay . If one has two points,
one can obtain two linear equations, and their solution would 1lead
to the determination of 4x and Ay provided the equations were
independent. In practice, one uses considerable redundancy in the
number of points and obtains a least mean square solution. An
excellent set of examples illustrating segmentation using
temporal-spatial gradient and contrast is given by Thompson [20].

2.3 General Observations on Dynamic Scene Segmentation

Two broad approaches toward dynamic scene segmentation based
on pixel and feature have been briefly presented and illustrated by
example systems. The end product of the two approaches are sinmi-
lar, 1i.e., the 1location and the motion of moving parts in the
sequence of scenes. It may be observed that the feature based
methods must be supplemented by a correspondence procedure, whereas
correspondence is a by-product of the pixel based analysis. This
apparent superiority of pixel based techniques is gquickly defeated
by the simple observation that in the presence of occlusion, pixel
based methods often break down. The same is true in case of struc-
tural changes in the objects. A graphical comparison of two types
of methods is presented in Figure 2.6.
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Figure 2.6 Examples of methods for the extraction of moving parts.



3.0 Occlusion

Occlusion occurs whenever the image to be analyzed is a pro-
jection of some three-dimensional scene onto a two-dimensional
plane. 1In this general case there is always a background obscured
by the objects which are considered to be the foreground. For
objects widely spaced over a homogeneous background, e.g., paint-
ings on a museum wall or a pair of birds flying in a clear sky,
there is no problem in understanding the image. The background is
understood to be homogeneous so that the characteristics of the
obscured portions are indicated by the visible sections. The fore-
ground objects are assumed to have image characteristics which are
distinct from the background making the foreground objects readily
detectable in the image. 1In addition, the spacing of the objects
assures that the presence of the features on one object will not
interfere with the analysis of the remaining foreground objects.
However, if the background has a complex structure, e.g.;, the
museum wall has a highly patterned covering, or if the foreground
objects are closely arranged in some structure, e.g., a flock of
birds £lying in the same direction, then the classic "figure-
ground®™ problem arises, for example see [21]. In the figure-ground
problem, the spatial relationships between disjoint elements of the
viewed scene combine to interfere with the perception of the indi-
vidual elements. 1In its full generality, this is a psychophysical
problem where the preconceptions and expectations of the viewer
play an important part in perception. For a fuller discussion of
this topic, the reader is referred to {221.

3.1 Scene Domain Imposed Constraints

In abstract geometrical patterns, both the quantity and
subtlety of the inter-element relationships are greater than those
occurring in typical natural scenes. similarly, the <constraints
imposed by the three-dimensional structure and distribution of the
objects appearing in typical scenes are greater than those in
abstract patterns. For instance, the boundary edges of noncontigu-
ous objects are rarely collinear in natural scenes. This con-
sideration makes reasonable the assumption that if the image of a
scene contains disjoint edges which are collinear, then those edges
correspond to a single boundary in the scene and the discontinuity
is caused by the boundary being partially obscured in the given
view. Barrow and Tenenbaum [23] argue that certain psychological
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phenomena, such as subjective contour, are the result of the human
visual system attempting to use such evidence of occlusion as a cue
to apparent depth.

An elegant example of how scene domain constraints can be used
in understanding occlusion is the system developed by Waltz [24].
in this case, the domain is that of scenes having a single 1light
source illuminating a set of planar-faced objects whose vertices
are trihedral. The strong constraints imposed by this scene domain
are primarily embedded in a junction classification and line label-
ing scheme generalized from the system first discussed by Huffman
[25] and Clowes [26]. Junctions are the line drawing representa-
tions of the vertices in the scene, thus the trihedral restriction
of the object vertices provides extensive constraints on both the
types of junctions possible and the allowable labelings of the
lines forming those Jjunctions. In particular, certain of the
labeled junction types can only arise through cases of occlusion,
and thus, when found in the drawings, provide a reliable indication
of occlusion.

Many pictures are inherently ambiguous, and no information
derived from the image can resolve the uncertainties. Frequently,
it is not that the image has no consistent interpretation, but
rather that there are several mutually exclusive interpretations
which are each independently consistent. The choice among such
alternatives must be based on the expectations or goals of the
viewer, not simply on features actually exhibited in the image.

Several factors are fundamental to the understanding of scenes
containing occluding objects. First, the concept of occlusion is
used at a very early stage in the human visual system in order to
provide interpretations in terms of apparent depth. Second, effec-
tive cues to occlusion can be derived from scene-domain con-
straints. And third, occlusion necessarily results in the loss of
information available about the obscured object, thus causing
uncertainties 1in the interpretation of the image. Finally, it may
be observed that the use of occlusion cues may involve the complex
integration of information taken from areas which are widely
separated in the image and that the resolution of some occlusion

ambiguities depends on external expectations and goals.

3.2 Occlusion in Image SBeguences
The discussion up to this point has dealt with the implica-

tions of occlusion on the analysis of simple images. For the
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remainder of this section the focus will be on time-varying images.
The question addressed is: How is the complexity of the occlusion
analysis problem affected by the addition of time variation? The
broad answer to this question is that time variation simplifies
some aspects of the problem, complicates other aspects, and intro-
duces several new problems. These points are discussed on a gen-
eral level in the following.

The time variation can simplify the jnitial feature extraction
phase of processing through both the redundancy inherent in the
dynamic scenes and the opportunities provided for acquiring new
information. Typically the sampling rate along the time axis is
such that the majority of the scene does not change through short
sequences of images. This property has been exploited for data
reduction by frame-to-frame encoding of video signals [27], but can
also be used to attenuate noise and produce more reliable feature
values. The new information can be obtained from the changing
views of the objects in the scene. For instance, if one of the
occluding objects in the foreground is moving, then additional por-
tions o¢f the objects that it is obscuring will become visible in
each successive image. similarly, since any three-dimensional
object 1is self-obscuring, the object's motion will usually bring
into view previously unseen portions of the object. This concept
has been used in a system [28] which forms a description of a
planér—faced object from a sequence of views taken while the object
rotates. The description is in terms of the object faces and their
interconnections, which are "jearned” as previously hidden faces
become visible. New views also result from changes in the orienta-
tion of the image plane caused by eye (camera) movement. In these
situations, areas of ambiguity in a given image may be clarified by
the additional information contained in the subsequent images.

The continual change in the information content of the images,
which is an advantage when the change adds information, can be a
disadvantage when the change results in a reduction of available
information. In each of the information-adding cases discussed
above, there can be a complementary aspect in which information is
lost. For instance, the moving foreground object is probably
proceeding to obscure some other objects or even other portions of
the same object that it is elsewhere uncovering. This aspect
raises the guestion as to what can be said about previously visible
features once they are no longer visible. If a recently obscured
feature is part of an object which is still partially visible, then
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the relationship of the feature to the currently visible portion,
as determined in preceding images, can be used to infer the loca-
tion and orientation of the feature in the present scene. This
type of implication is based on the assumption that the object Iis
rigid and thus that the spatial relationships of the various
features of an object will remain constant through time. This is
an extremely important scene-domain constraint.

The information flux in time-varying images alsc creates new
problems at the image segmentation and object identification lev-
els. The problems encountered here invelve the additional “seman-
tic noise™ [29] exhibited in time-varying images. Typical systems
for static image analysis must be capable of interfacing with
preprocessors which occasionally fail to detect, erroneocusly pro-
duce, or incorrectly locate image feature descriptions. Systems
for time-varying images will have similar preprocessing problems
but must furthermore be prepared to interpret' features which,
through time, may take on different values yet signify the same
scene component semantically. For example, the effects of shadows
on a textured outdoor surface, e.g., a gravel road bed, will vary
as the sun angle changes throughout the day.

This problem of identifying ®"apparently different but semanti-
cally identical objects®™ [30] indicates a fundamental concept in
the analysis of time-varying images: in order to understand the
changes that a given aspect of an entity in a scene may be undergo-
ing, there must be some form of constancy in other aspects of that
same entity to serve as the identifying features of the entity.
This is particularly important when there are several objects mov-
ing about the scene, because the simple detection of change cannot
attribute that change to the proper object.

As an illustration, consider the illusion depicted in Fig.
3.1, Here four identical disks are attached pairwise to the ends
of two cross members which are slightly offset in depth and spin in
opposite directions about the center point. They exhibit constancy
in both shape and color. These features make it easy to track the
disks while they are moving through positions such as that of Fig.
3.la. However, when the position shown in Fig. 3.1b 1is reached,
the constancies no longer serve as identifying features and thus
admit an ambiguity to the interpretation of the position displayed
in Fig. 3.1c.

Is the pair of velocities labeled A in Fig. 3.1lc the correct
interpretation or is the pair labeled B correct? An assumption of
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Figure 3.1 Four spinning disks forming a motion illusion.
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minimal velocity change for each object results in a perception
according to the velocities labeled A. 1In such a perception the
disks appear to have circular paths and pass completely through one
another at positions such as those shown in Fig. 3.1b and d. A
rather more complicated proximity criterion, which holds that the
disk last viewed completely in a given guadrant will return immedi-
ately to that quadrant, yields a perception according to the velo-
cities labeled B. 1In this latter case, each disk sweeps both back
and forth through a given quadrant as bounded by the positions
shown in Fig. 3.1b and d. At these positions the disks appear to
"bounce®” off each other thus exactly reversing their velocities.
The two cases discussed above can, however, be wunderstood in
terms of two different types of constancy, one involving velocity,
and the other, occupancy. These constancies can only be used to
resolve the ambiguity in an indirect way because the ambiguity
occurs when one is trying to understand the progression from an
image of a position such as that of Fig. 3.1b to the immediately
succeeding image. In the constant velocity case, for example, the
instantaneous velocity is measured as the displacement in disk
location between two successive images. But the location of the
disk in the image after that of Fig. 3.1b is precisely what is in
question. Thus the analysis of these two images in isolation can-
not resolve the ambiguity. Instead the velocity information must
be derived from the preceding images in which the constancies of
shape and color can be used to locate each disk, thereby allowing
the calculation of its velocity. The velocity information can then
be applied to the given pair of images as part of a predictive
analysis or as the criterion for a hypothesis and test procedure.

4.0 Three-Dimensional Iinformation from Images

Early studies of sequences of images were motivated by the
desire to analyze two-dimensional motion, for example, the satel-
1ite imagery of clouds. Several researchers also considered
abstract models of two-dimensional motion using polygonal as well
as curvilinear figures. The use of planar figures and parallel
projection allowed these systems to ignore considerations of the
third dimension. In contrast to the above purely two-dimensional
works (reviewed in 111, ceftain researchers have considered scenes
containing objects undergoing three-dimensional motion. The ini-
tial research, however, analyzed only the image plane motions
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taking the two-dimensional approximation to be adequate. For exam-
ple, in the work of Jain and Nagel [31] and Yachida et al [32].,
there was no attempt to recover the three-dimensional structure of
the objects or their three-dimensional motion. This emphasis on
two-dimensional motion was a natural outgrowth of the research.
Recovery of three-dimensional structure of objects and the parame-
ters of motion is certainly more complex.

In the present discussion it is assumed that the low-level
processing problems have already been solved, i.e., the feature
peints on the surface of the objects have already been extracted in
each of the 1images and the correspondence between the feature
points in various images have been established. As mentioned - ear-
lier, this is a non-trivial task. Later in this section, we shall
consider another scenario where this establishing of correspondence
is not necessary. The correspondence problem is further compli-
cated by the disappearance of points on an object due to occlusion
from other objects, self occlusion as points rotate out of view,
and shadows. Also, the assumption of rigidity plays an important
role.

Ullman [33] considers the problem of determining the three-
dimensional structure of an object from its two-dimensional projec-
tions. Under the assumptions of object rigidity and parallel pro-
jection, Ullman proved that three distinct wviews of four non-
coplanar points in a rigid configuration, enable one to determine
uniquely the motion and structure compatible with the given three
views. Roach and Aggarwal {34] give an alternate solution for the
case of central projection. They showed that two views of five
points leads to 18 nonlinear equations whose solution vyields the
three-dimensional structure of points under consideration. Bonde
and Nagel [35] consider a restricted case of the above general
three-dimensional motion. Badler [36] uses a spherical projection
model and is able to predict the point positions in succeeding
images of moving objects. More recently Tsal and Huang [Chapter 1
in ref. 7. 371 reformulate the problem in terms of five unknown
motion parameters and show certain existence results. Also Nagel
[38] has derived a compact vector equation to determine three-
dimensional points from two-dimensional image points. in view of
the several formulations and different results, it may be
emphasized that the results obtained depend on the following
assumptions: {i) the nature of projection: parallel, central or
spherical; {(ii) the number of ©points and the existence of any
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relationships among these points, e.g., object rigidity; and (iii)
the number of available views. 1In all of the above works, rigidity
of the object under consideration and pre-establishment of the
correspondence of points are assumed.

Qur group at The University of Texas at Austin has considered
three distinct problems: the recovery of three-dimensional struc-
ture under the assumption of central projection [34]; the motion of
articulated objects under parallel projection [39]; and the deriva-
tion of volumetric descriptions from occluding contours with
viewpoint specifications [40]. These projects will be briefly dis-

cussed.

Feature Points from Rigid Objects: The image of a point under cen-

tral projection is a function of the point's three-dimensional
position, the focal length of the camera, and the 1location and
orientation of the camera's lens relative to the global coordinate
system. Information about the camera's position is needed to
relate the position of points given in two-dimensional focal plane
coordinates to the global three-dimensional coordinate system. The
necessary camera information is the camera focal length F, the
orientation angles 0,¢, and k of the camera to the global coordi-
nate system, and the three-dimensional coordinates of the lens
center (XO,YO,ZO); The three angles orient the camera to the glo-
bal coordinate system as follows: (assume for simplicity that the
camera lens center has been translated to (0,0,0) of the global
coordinate system) O is a rotation about the X-axis that brings the
optical axis into the X-Z plane, ¢ is a rotation about the Y-axis
so that the optical axis is aligned with the Z-axis, and K is a
rotation about the Z-axis so that the x', y' axes of the focal
plane are aligned with the global X,Y axes. The use of primes in
this section in general denotes the focal plane coordinate system.
1t is, of «course, impossible to determine the original (x,Y,2)
position of a point from a single image. The best we can do is to
determine a line in space on which the point falls. Further expla-
nations of the eguations in this section may be found in [34], and
[41].

However, we want to Kknow how much of the original three-
dimensional information can be recovered given only a sequence of
images of a moving object. It is possible to show that any
sequence of images is inherently ambiguous. That is, there are an
infinite number of objects that produce the same sequence of

images. The objects are all similar in structure and movement.
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in the following we discuss how to find the movement and
three-dimensional model of ©points on an object's surface from a
sequence of noise-free images up to a scaling factor; that 1is, by
setting the scaling factor to an arbitrary value we can find a par-
ticular movement and model for the points on the object.

In the description above it was assumed that the camera Iis
stationary and the object is moving. It is convenient to reformu-
late the problem such that the object is stationary and the camera
moves, Under this formulation the three-dimensional structure and
motion of an object can be derived from two views each containing
five feature points from the object surface such that not all five
of the surface points are in the same plane.

The solution can be obtained from a system of non-linear equa-
tions specified in the following manner. The global coordinates of
each point are variable, so five points produce 15 variables. The
global coordinates and the 0,¢,«x orientation angles for each camera
position are also variable producing 12 more wvariables. Thus,
there are a total of 27 variables in the problem. Each point pro-
duces two projection equations per camera position for a total of
20 nonlinear egquations. To make the number of equations and unk-
nowns come out the same, seven variables must be known including
one variable that will determine the scaling factor.

Six of the variables are specified by assuming the first cam-
era position is coincident with the global axis system, that is,
set the XO,YO,Z0 position and O, ¢,k orientation angles of the
first camera to zero. In addition, the z-component of any one of
the five points is set to an arbitrary positive constant. We men-
tioned earlier that the best result possible 1In locating the
three-dimensional position of a point on an object is to find (sx,
sy, sz) where s is an arbitrary scaling factor. By setting the z-
component of the position of a point to an arbitrary constant, we
are fixing the scaling factor. Once the z-component of a point is
known, the x and y components can also be found using the inverse
of the projection equations (see [34] that is, two of the 20 equa-
tions can be solved directly using the given 2z-component). There
are now 18 projection equations in 18 unknowns; the eguations of
projection, however, are nonlinear. The situation is shown in Fig-
ure 4.1.

The system of nonlinear projection equations explained above
can be solved by wusing a modified finite difference Levenberg-

Marquardt algorithm due to Brown [42-44] without strict descent
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Figure 4.1 Camera configuration and point coordinates
showing known and unknown parameters.
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that minimizes the least-squared error of the 18 equations. The
method employed is iterative and requires an initial guess for each
unknown parameter.

This work is somewhat like the camera calibration systems of
Sobel {45] and Yakimovsky and Cunningham [46]. 1In their work mul-
tiple images of points together with a central projection model and
numerical methods are used to determine camera parameters such as
focal length, position, and orientation. These studies, however,
have considerably more information about the three-dimensional
positions of points than we are assuming. Thus, the problems being
solved and the information given for the calibration systems are
different from the work described in this section.

Implicit in this work are two very important assumptions: that
the objects being observed are rigid and that the images of the
object are noise free and thus completely accurate. To test the
effect of the second assumption on the numerical method described
above, from one to four pixels were randomly added to or subtracted
froﬁ the exact photocoordinate data for a moving object. This per-
turbation of the data causes extreme instability in the numerical
solutions. However, one of the main reasons for using a least-
squared error technique to solve a problem is to make adjustments
to observations that <contain error (noise). Adjustment is only
possible, however, when there are more equations than unknowns.
Two views of five points are therefore inadequate for noisy data
since there are the same number of egquations as unknowns. Two
views of six points or three views of four points produce 22 equa-
tions in 21 unknowns using the same problem model discussed above.
Examination of experimental runs using overdetermined systems of
equations shows that minimal overdetermination is not wvery accu-
rate. It is only with considerable overdetermination (two views of
12 or even 15 points; three views of seven or eight points) that

the results become accurate.

A Motion Constraint to Recover Structure: In this section we will

consider a system [39] that wuses a motion constraint to derive
three-dimensional structures from sequences of feature point
images. The constraint is that the motion of each rigid object in
the scene consists of a translation and a rotation about an axis
that is fixed in direction. Of course, given two distinct frames

from a dynamic scene containing a moving rigid object, a transfor-
mation taking the first three-dimensional position of the object to

the second three-dimensicnal position can always be defined that
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consists of only one translation and one rotation [47]. However,
the restriction is that the direction of the axics of rotation is
fixed throughout the sequence, or at least over subseguences of
frames,

Te understand the importance of this restriction consider
first, a dynamic scene containing an object that is simply rotating
about a stationary axis. The surface of the object is assumed to
produce identifiable feature points in the images under an orthogo=-
nal projection without occlusion. Clearly, as the object rotates,
each surface point will trace out a circle about the axis of rota-
tion. The parallel projection assures that the feature point,
i.e., 1image position, of each surface point will trace ocut an
ellipse in the image plane. Now, the axes of the ellipse can be
used to specify the orientation, in three-dimensions, of the plane
containing the original circle and thereby specify the direction of
the axis of rotation. Deriving this information for the given
feature points of an object allows one to build a model of the
three~dimensional structure of the object from the sequence of
images. This simple case indicates the basic steps in the process.

In general, since the motion constraint does not demand zero
translation nor a completely fixed axis of rotation, the surface
points will not actually be tracing circles and their projections
will not be ellipses. 1If, however, an arbitrary surface point is
chosen as the reference point and the object motion 1is considered
in a coordinate axis system having the reference point as origin,
then the motion in that system follows the case described above.
In other words, if the motion could be normalized to a coordinate
axis system with a surface point as origin then the remaining sur-
face points would trace circles about an axis through the reference
point, the projected positions would trace ellipses and the three-
dimensional structure could be derived.

Clearly, this normalization is not directly possible, but it
has been shown [39] that the given image sequence can be normalized
to yield the same effect. 1In particular, the feature point images
are translated so that the image plane origin coincides in each
case with the projected position of an arbitrarily selected surface
peint. The processing proceeds as follows: the image sequence is
acquired; feature points are detected for various surface points of
the object; the feature point images are normalized to have a
selected feature point as the origin of each image; the parameters
of the traced ellipses are determined; and finally, the three-
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dimensional structure is derived.

There are two major advantages of this approach. First, it
can accomodate dynamic scenes containing several independently mov-
ing objects by assuming that a set of feature points mutually
satisfying the motion constraint, 1i.e., each element of the set
traces an ellipse relative to the same reference point, constitutes
the feature points for a single object. 1In detail, a feature point
is selected as the reference point, the images are normalized to
this reference point, and all ellipse tracing points are included
in an object description. These points are deleted from further
consideration and the process is iterated until every feature point
is part of some object model. Ullman [33] used his rigidity con-
straint in a similar manner.

The second advantage is that analytically only two feature
points need be detectable in three consecutive frames to derive the
three-dimensional model. In this way articulated objects with only
two feature points on each part can be analyzed. By "articulated
object™ is meant an object comprising several rigid parts connected
through wvarious Jjoints that allow distinct but not independent
movements for each part. The experiments of Johansson [48] provide
a good example of articulated objects with minimal numbers of
feature points. In those experiments people with reflectors
attached to their major Jjoints moved about in front of a camera
that was calibrated to record only the positions of the reflectors.
The system discussed in this section adequately analyzed an example

taken from a Johansson experiment as reported in [49].

Occluding Contours in Dynamic Scenes: In this section we will

describe the results of work [40] done in the pursuit of two major
goals. The first goal 1is the development of a dynamic scene
analysis system that does not depend completely on feature point
measurements. The second goal is the development of a scheme for
representing three-dimensional objects that is descriptive of sur-
face detail, yet remains functional in the context of structure
from motion in dynamic scenes.

7o lessen the dependency on feature point detection, occluding
contours with viewpoint specifications are used. The term "occlud-
ing contour”™ means the boundary  in the image ©plane of the
silhouette generated by an orthogonal projection. Silhouettes can
most often be formed by a simple thresholding of the intensity
values. A connected component analysis [50, pp. 336-347] of the
resulting binary valued image yields the boundary of the object
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silhouette. An ordered list of the image plane coordinates of the
resulting boundary constitutes the initial repfesentation of the
occluding contour. Throughout the analysis of the dynamic image,
however, another representation, referred to as the rasterized area
[511, of the contour will also be used. For its use here, the most
significant attribute of this representation is that given an area
$o0 represented and an arbitrary segment on a line parallel to the
"raster direction® it is a simple process to determine what por-
tions of the given segment intersect the area, i.e., to clip that
segment to the represented area.

The three-dimensional structure to be derived from the
sequence of occluding contours is a bounding volume approximation
to the actual object. For this reason the representation incor-
porated in this system is based on volume specification through &
"volume segment®™ data structure. The volume segment representation
is a generalization to three-dimensions of the rasterized area
description. For the rasterized area, each of the segments denoted
a rectangular area. The generalization to three dimensions is to
have each segment represent a volume, i.e., a rectilinear paral-
lelepiped with edges parallel to the coordinate axes. In addition
to grouping collinear segments into lists, the set of segment lists
is partitioned so that the subsets contain lists having coplanar
segments. The primary dimension of the parallelepiped specified by
a segment is the length of the segment. The second dimension is
given by the inter-segment spacing within the plane of the segment,
while the third dimension is the inter-plane distance. The latter
two dimensions are specified to be uniform throughout the volume
segment representation.

The primary advantage of this structure in general situations
is that the process of determining whether an arbitrary point is
within the surface boundary consists of a simple search of three
ordered lists: select a "plane™ by z-coordinate; select a "line"” by
x-coordinate; and finally, check for inclusion of the y~coordinate
in a segment.

This volume segment representation is created from a dynamic
image by two processes. The first process combines information
from frames 1 and 2 of the dynamic image to form an initial volume
segment representation. The second process then accepts each
succeeding frame in order to refine the approximation represented
by the volume segment structure. Thus these processes analyze the
occluding contours with their view orientations to initially

- 28 -



construct and to continually refine the volume segment representa-
tion of the object generating the contours. Algorithm summaries of

the two processes are given in more detail in [52,53].

5.0 Conclusions

The three major ingredients of Dynamic Scene Analysis, namely
segmentation, occlusion and computation of three-dimensional infor-
mation from images have been discussed in depth. The approaches to
dynamic scene segmentation may be broadly divided into two classes
- pixel and feature based techniques. Each has its advantages and
disadvantages. It appears that a combination of the two approaches
may be necessary to accomplish segmentation in a difficult dynamic
scene segmentation task. Occlusion introduces some really diffi-
cult problems in dynamic scene analysis. Effective cues to occlu-
sion may be derived from scene-domain constraints. The use of
these cues depends upon the ability to integrate information
derived from widely separated spatial areas in an image or widely
separated temporal events in a sequence. The techniques for compu-
tation of three-dimensional information from images are still in
their early stages of evolution. The solution of a large number of
nonlinear equations and the sensitivity of solutions to noise pose
serious hurdles in a satisfactory computation of three-dimensional
information from images. The absence of an ideal description of
three-dimensional structure of objects compounds the difficulties.
Further, in each of the three areas discussed above, the correspon-
dence problem plays an important role.

in view of the active participation at the Braunlage Advanced
study Institute, it appears that the next decade will be an excit-
ing era in Dynamic Scene Analysis. In addition to the development
of new techniques for the solution of problems discussed above, one
will witness the application of dynamic scene analysis to many new

areas.
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