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ABSTRACT

Range data provide an important source of 3-D shape informa-
tion. This information can be used to extract jump boundaries
which correspond to occluding boundaries of objects in a scene
and "edges®" which «correspond to points lying between signifi-
cantly different regions on the surface of objects. We are
mainly interested in range data obtained from sensors such as
lasers. The main problem with this type of range finders is the
fact that the accuracy of the measurements depends on the power
of the signal that reaches the receiver. This study describes
how a range edge detection procedure can be designed that has low
sensitivity to noise and imbeds all the knowledge available on

the range measurement accuracy.



1. Introduction

Range data provide an important source of 3-D shape informa-
tion, Range data implicitly contain information about the shape
of the surface of objects because the coordinates of points on
the surface of these objects can be easily recovered from them.
Moreover, they can be used to extract jump boundaries which
correspond to occluding boundaries of objects in a scene, and
"edges"” which are points that lie on the intersection of two
regions on the surface with significantly different parameters
(e.g. the edge between two visible faces of a cube). Jump boun-
daries and edges are important cues in the segmentation process
because they delineate the extent of surfaces. These boundaries
and edges are intrinsic properties of the surface of objects
unlike edges in "intensity" images derived from range data.
Lynch ([1]) for example creates an image by using a range coding
convention in which dark = near and light = far. The image is
then enhanced to compensate for low frequency trends present in
systems which have shallow line of sight. Finally, edges are
computed using the Sobel operator. 1In this study we are con-
cerned with edges that actually occur on the surface of objects
in the scene. Although simple methods have been devised [2] that
are successful at computing jump boundaries, the problem of find-
ing edges is a much more delicate problem which has not received
enough attention [3,4,5]. Here, we are mainly interested in
range data obtained from sensors such as the one described in

[6]. The major problem with this type of range finder is that



the accuracy of the measurements depends on the power of the sig-
nal that reaches the receiver. The accuracy of the range data is
therefore dependent on the parameters of the system (transmitted
beam power and receiver variables) and on the characteristics of
the target (orientation and reflectance of its surface and actual
distance from the sensor). System parameters and target charac-
teristics affect accuracy because they affect the strength of the
signal that returns to the sensor. It should be pointed out that
we do not restrict ourselves to the SRI laser sensor [6]. But,
the well documented research described in [2] and [6] provides a
good example of the current activities in the field.

Our goal in this study is to design and analyze a procedure
for detecting edges using range information that has low sensi-
tivity to noise. We also want to relate the range measurement
accuracy to the problem of detecting edges. The input to this
procedure includes range data and a model for range measurement
error. Basically, this procedure determines the best partition
of a neighborhood of each point in the scene into two contiguous
regions. Planes are fitted to these regions and a measure of the
goodness of fit is calculated. The measure should imbed all the
knowledge that one has about range measurement accuracy, so that
the resulting value can be used to select the "best™ partition.
Subsequent analysis can then extract significant edges from the
scene. Although we are fitting planes to small patches on the
surface of objects, we are not looking for planar surfaces as in
[3]. We are interested in determining the presence or absence of

an edge at points on the surface of objects.



The remainder of this paper is organized as follows: Sec-
tion 2 is a formal definition of the problem, Section 3 is a
description of the criterion for selecting the best partition and
Section 4 <contains an overall description of the computational
procedure for edge detection and presents some experimental

results. Finally, Section 5 contains a summary.

2. Problem Definition

Let X be a point in the range image. Here range 1image
refers to the set of 3-D points obtained from the range finder.
The problem is to determine whether an edge is present at X. Let
N be an appropriately sized neighborhood of X and let N be
divided into two contiguous regions Cl and C,. Here, two range
points are neighbors if they project onto adjacent points in the
focal plane. The line connecting a point X in the range image to
the view point (sensor) is the projecting ray and intersects the
focal plane at X' as in Figure 1. Thus a neighborhood of X°
defines a neighborhood of X. Let the neighborhoods in the focal
plane corresponding to regions Cl and C, be called C'; and C'y.
With the assumption that C, and C, are planar surfaces, let n;
and n, be the surface normals of the planes best fit to the

points in C,; and C, respectively. The planes are best fitted to

the regions according to some selected criterion such as the
least squared error criterion or some other functional optimiza-
tion procedure. The collection of points in N together with

these best fit planes will be called a partition of N and denoted
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Figure 1. A partition at point X.



. An example of this situation is shown in Figure 1. Finally
let < be a measure of the quality of fit of these planes. For
example, this measure could be the minimum error associated with
fitting the planes to the observed points in N, if these are fit-
ted according to the least squared error criterion. But, for
sensors such as lasers, <€ should relate to the surface normals,
n; and ny, the surface reflectance of Cy and C, (we assume that
the reflectance 1is essentially constant over each of these
regions) and the actual distance of the points in N to the sen-
sor, since these parameters influence the accuracy of range meas-
urements. In general, <€ is a measure computed according to some
model for range measurement errors and should reflect how likely
the points in regions C, and C, lie on planar surfaces. An exam-
ple illustrating this idea is reported in Section 4.

The problem of finding edges in the range image can now be
formulated in its generality as follows:

"Find the best partition P(nl,n2,<,f) from a set of parti-

tions of N and test the significance of the difference between ny

and n, to declare the presence or absence of an edge at X."

Here £ is the intensity function. The intensity function
can be used in conjunction with range data to enhance the edge
detection performance [5]. This aspect of the ©problem will,
nevertheless, be viewed as a separate process that will not be

the subject of the present analysis.

3. Range Edges




The problem as defined above may suggest an analogue to the
sloped facet model of Haralick [7] for edge and region analysis
in intensity pictures. Using this model, an edge at point X |is
computed by using an F-statistic to test the significance of the
difference between the slopes of the planes best-fitted to
appropriate neighborhoods of X. The problem considered here is
much different in the sense that we are not dealing with simple
function graphs but with actual object surfaces. 1In the sloped
facet model, an ideal region is a sloped plane and the observed
region is obtained from the ideal region by adding random noise
to the intensities (z-values) in that region. Thus, in terms of
the (x,y,z)-coordinates of the resulting points, only the z-
coordinate is a random variable. In the problem considered here,
the x-,y- and z-coordinate of points on the surface of objects
should all be considered random (in the sense that random noise
is present). A straightforward statistical analysis as in [7] is
not possible.

Instead, a Baysian approach is taken here [8]. Given range
measurement as evidenée, we want to know how likely a given par-
tition is. 1In other words, we want to know how good a model the
planes in a given partition are for the observed points of this
partition. Consider a set of partitions {ﬁi}jzl,,,,n of an
appropriately sized neighborhood of point X as before and let S
be the sample of points in this neighborhood. Then the condi-
tional probability of partition . given the sample S can be

1

written as:
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where p(85) =

MDD

p(ssfj).Prob(rj)

Here p(Slrj) denotes the partition- conditional probability
.density function of the sample S and Prob(fj) is the a-priori
probability of partition fj. If the edges in the scene under
consideration are known to have high directionality then the a-
priori probabilities could be biased and a high value assigned to
a subset of them. The denominator in the ‘right hand side of (1)
is the same for all i and if the prior probabilities Prob(Pi) are
all equal, the problem of selecting the best partition reduces to
computing p(SlFi) for each partition fi and selecting the one
that vyields the highest value. 1In this study we will consider
all partitions equally likely.

Since these partition-conditional ©probabilities are the
basis for comparing partitions, we want to imbed in them any
knowledge we have about the accuracy of range measurements. In
general, given the wvariables of the sensing instrument and the
properties of the target under some basic assumptions, some
knowledge can be derived about the distribution of the range
measurements. For example, analytic expressions are derived 1in
[5] that relate the mean and variance of range data to the physi-
cal properties of the target and the parameters of the sensor.

Let X be a point on the target surface and let r be the

X

random variable that describes the range measurement at X, i.e.,



the measured distance from the sensor location to the point X.

1f we let p(rxifi) be the conditional probability density func-
tion of the range measurements given partition Pi (i.e. given

that the point wunder consideration actually lies on one of the

planes of the partition Vi) and assuming independence of these

measurements from point to point we can write:
- 1 -
P(SIF;)= yeg PrgIly)  3=l.n

As mentioned earlier ry is a function
of the physical properties of the target (surface orientation
with respect to the signal beam direction, reflectance and actual
distance from the sensor) and sensor parameters { fixed for a

given scenej. For example, given a partition Pj' ry can be

assumed to be normally

distributed with mean By = Ry and standard deviation Oy, where Ry
is the actual distance to point X, i.e., fhe distance from the
sensor locus to the projection of X onto the appropriate plane of
the partition Pj along the direction of the signal beam. Also
GX = dx(RX,p,Q) where Ry is defined as before, p is the .surface
reflectance (considered constant over the neighborhood in ques-
tion ) and & is the orientation of the appropriate plane in fj
with respect to the signal beam direction (See Figure 2). 1In the
example reported in this study, r, is normally distributed with
mean Rx and constant standard deviation.

Thus we have a method of selecting the best partition of a

neighborhood of a point that will imbed all the knowledge we may
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FPigure 2. A model for range error.



have about the range measurement accuracy. What we end up with
is a map of angles. Each angle is the angle between the normals
of the best fit planes of the most likely partition of an
appropriately sized neighborhood of the point at which it has
been computed. Moreover, a probability is assigned to each of
the angles and if an edge is present at a point, an orientation
can be assigned to it which is the orientation of the 1intersec-
tion of the two planes of the best partition at this point.
Although the normals to the best fit pPlanes contain more informa-
tion than just the wvalue of the angle between them, only this
value is of interest to us in this study. it is used, along with
other evidence, to determine the likelihood of edge presence,
For display purposes, we will be concerned only with the orienta-
tion in the focal plane of the line between the neighborhoods C'l
and C'2 (in the focal plane) corresponding to the best partition
at this point. This orientation will be referred to as the
orientation of the edge. 1In the above analysis the intensity
picture has not been used in the selection of the best partition.
The cooperation between, or combination of, intensity and range
data can be exploited as an enhancement process that would hope-~
fully yield a description of the target scene better than the
description which could be obtained by either intensity or range
alone. This aspect of the pProblem is discussed in [4] and will

not be considered here.

4. Computational Procedure

The computational procedure contains basically four steps:



extraction of jump boundaries, computation of partitions, dismis-
sal of flat surfaces and a non-maxima suppression step to select
the significant edges. These steps are described below in more
detail.

(a) Extraction of Jump Boundaries

Jump boundaries occur at points where there is a significant
change (jump) in the range values. These boundaries can then be
detected by comparing range values at neighboring points. This
procedure may, however, falsely detect jump boundary locations at
points on highly oblique surfaces such as a plane the orientation
of which is nearly orthogonal to the line of sight. A better
method would look for significant Jjumps in the first order
differences of range values at neighboring points. Non-maxima
suppression based on these differences can be used to thin out
these boundaries.

The subsequent steps of the procedure are aimed at detecting

edges at points other than jump boundary locations.

(b) Computation of Partitions

Let N designate the appropriate neighborhood of a point in
the range image and let n be the number of directions in which
edges are to be computed. For example, n could be 4 and the
directions are horizontal, vertical, left diagonal and right
diagonal. For each direction planes are fit according to some
selected criterion to the corresponding two regions in the neigh-
borhood N, thus determining the partitions ri’i=1""n' The
angles associated with these partitions are denoted by

@i,i‘_—'l,o-e;no



(c) Dismissal of Flat Surfaces

The elimination of points on flat regions can be accom-
plished in two steps.

1) Discard all points for which @i <t i=l,.ee,0N. This
thresholding step is intended to eliminate deep "interior” points
before computing the likelihood of the partition at these points.
Deep interior points are surface points far from edges or jump
boundaries of surfaces. This step saves a significant amount of
computation time since calculating the likelihood of a partition
might be a costly operation.

2) Points that survive the preceding thresholding operation
are considered next. The likelihood of each of the partitions at
these points is computed and the most probable partition, P, is
selected. This likelihood is determined as described in Section
3 by computing the distances from the points contained in the
partition to the appropriate plane and using the selected error
or range accuracy model. Now discard all points for which & < t

where & is the angle associated with the best partition [,

(d) Non-Maxima Suppression

At this stage, the remaining points are potential edge
points. These points are generally clustered around true edge
position because of the overlap of neighborhoods at adjacent or
nearby points. 1f Prob [I’] denotes the probability of the most
probable partition P, then this step will discard all points for
which Prob [I’] is not a local maximum in an interval orthogonal

to the edge. Non-maxima suppression is intended to discriminate
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Figure 3. The ideal cube scene, focal plane
and sensor.
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Figure 4. A line drawing perspective view of
the ideal cube scene of Figure 3
obtained from range data by joining
points when the scene is scanned hori-
zontally in raster fashion.
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5, It does not depend on a particular sensor.

In cur experiments, edges are detected in the horizontal and
vertical directions (n=2) using 5x8 and 8x5 neighborhoods respec-
tively, which seem a@equate for our example. Determining an
optimal size neighborhood for a given class of object models is a
hard and interesting problem that we have not considered here.
Some effort has been devoted to this problem by Davis and Mitiche
[9] in the context of intensity images. Shaping neighborhoods
differently to look for edges in different directions seems to
give better results than keeping the same neighborhood shape for
all edge directions. The best fit criterion is the least squared
error criterion. This implicitly assumes that the model for
measurement errors does favor small errors in the measurement of
range. For a model that does not favor small errors, the proba-
bility density function that describes it should be normalized to
have zero mean and the range data should be modified accordingly.
The angle threshold, t, |is 30° and the interval in which non-
maxima suppression is performed is of width 5.

Noise was added to the range of the ideal cube scene. This
noise 1is normally distributed with zero mean and standard devia-
tion equal to 0.1. This represents an appreciable amount of
noise since approximately 5% of the errors are greater than one-
fifth the side length of the cube and 32% of them are greater
than one tenth of it. This noise is considerably higher than the
noise for the office scene reported in [5] where distances were
sampled enough times to bring the accuracy within a couple of

centimeters. For relatively noisier scenes, larger neighborhoods



are necessary. The computed edges before non-maxima suppression
of step (C) are shown in Figure 5. Note the <clusters of
responses. The final edge map for this noisy cube scene is shown
in Figure 6. Due to the fact that we are looking for edges in
the horizontal and vertical directions, the detection of edges
which actually lie in other directions is not accurate. But basi-
cally all the edges in the cube have been extracted although some
noise edges are present. The edges on the left of the cube in
Figure 6 are noise created edges that could not be dismissed by
the computational procedure described in the paper. A possible
remedy to eliminate them would be to consider the probability of
the edge presence assertion at these points. But we chose not to
do this to provide a fair comparison with the results depicted in
Figure 7 and Figure 8. For comparison, the edge detection pro-
cedure was used on the same noisy cube scene but with the least
mean squared error of fit as the criterion for selecting the best
partition. Results are shown 1in Figure 7. Note that several
edges have been falsely dismissed. Minor 1isolated noise was
removed before edge maps are displayed in Figures 6 and 7.
Finally, and again for comparison, a simple edge detection
procedure based on pointwise computation of angles, thresholding
and non-maxima suppression as described in [4] yields the edge
map of Figure 8. Jump boundaries were extracted by looking at
the difference in range at neighboring points. This method 1is
obviously very sensitive to noise and indicates the need for
larger neighborhoods to reduce the effect of noise. Figure 9

shows that only marginal improvement is obtained when the range
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Figure 5. Probabilistic model - Edge map before
non-maxima suppression.
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data is smoothed. Performance with this method is, nevertheless,

good on almost perfect data.

5. Conclusion

This paper has discussed the problem of designing a method
for detecting edges in a scene using range information. Relia-
bility was the guiding requirement in the design of this pro-
cedure. The method proposed here is based on determining the
best partition of an appropriate neighborhood of a point into two
contiguous regions assumed to be planar surfaces.

It was shown that local computation of edges wusing larger
neighborhoods performed sensibly better than pointwise computa-
tion of edges which is very sensitive to noise. Moreover, it was
shown that it is possible to design a procedure that incorporates
all the available knowledge about range measurement accuracy,
resulting in a better edge detection performance.

Most of the computational time (our example runs in about 2
minutes on a PDP-10) is spent on computing the likelihood of par-
titions for potential edge points. The problem is then basically
linear in the number of partition edge directions one is willing
to consider. When the computation of 1likelihoods <contain time
consuming function «calls, efficiency can be improved using a
table to organize the function values and table lookup to replace
function <calls. 1In this paper, range edges were detected in the
horizontal and vertical directions. The partition selection pro-
cess to best represent a neighborhood in the range image can

benefit from the use of more partition edge directions. These
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can be straight line directions or curved partition boundaries.
But in this case, it is not quite clear how non-maxima suppres-
sion should be performed.

Results presented herein indicate that it 1is possible to
detect wedges reliably enough in the presence of an important
amount of noise. Thus, repeated and time consuming sampling of
range to bring accuracy of measurements within a given tolerance

as reported in [6] may not be necessary.
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