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ABSTRACT: The derivation of three-dimensional structure from two-dimensional images was pur-
sued as the stereoscopic vision problem and more recently as the structure from motion prob-
lem in the context of dynamic scene analysis where a sequence of images ig progessed to com-
pute the structure as well as the motion of a rigid object. The present paper reviews briefl
the stereoscopic vision equations and several formulations of dynamic scene analysis equation
It discusses the underlying assumptions and presents a coherent view of the various solutions
to the problem of determining three-dimensional structure from several two-dimensional images.
Further, it outlines recent results on the computation of three-dimensional structure from a
sequence of images where point correspondence in images may be omitted, however viewpoint must
be specified for cach of the views. Finally, the paper discusses possible directions for
future research.
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More recently, several researchers have considered

1.0 INTRODUCTION the problem of several views. The following sec-
There are fundamentally two distinet ways of tions review the works of Ullman [4], Roach and
describing three~dimensional scenes. These Aggarwal [5], Nagel [6], and Tsai and Huang [71,
descriptions are based on: (i) viewer-centered after presenting briefly the perspective equations
methods and (ii) object-centered methods. An and the stereoscopic vision problem as discussed in
intensity image is a viewer-centered description of [31. This is followed by a discussion of a method
the scene whereas, an edge-vertex description based upon silhouettes developed by Martin and
specifying relative distances between adjacent ver- Aggarwal [8] together with recent results. The
tices is an object-centered description of the last section of the paper discusses the possible
scene, The following incomplete list presents the directions of future research. The present paper
variety of available descriptions: emphasizes the three-dimensional character of
. ., dynamic scene analysis in contrast to the earlier
¥;i::;;§;ngggzgsdescr;ptions reviews by Martin and Aggarwal [9,10] where the

entire area of dynamic scene analysis was dis-

Sequences of images including stereo pairs
Range Images
Perspective and orthographic line drawings

cussed.

- v
Object-centered descriptions 2.0 PERSPECTIVE EQUATIONS

Sclid-geometric methods For the case of the simple geometry where the image
Generalized cones plane 1is in front of the lens center, the global
Medial axis transformation coordinate system coincides with that of the image
Surface descriptions plane and the optical axis aligns with the y-axis,
i £ r i -
There are descriptions which, strictly speaking, do Section of a point in space are reloced s forions:
not belong to either of the above classes, For ¥ X
example, the tomographic description of a volume of F s ?:§
tissue. A more detailed discussion of the methods Y=0 1
for the description of three-dimensional objects as z 2
well as for +the acquisition of data is found in Fe ?:E

Aggarwal et al [11].
Here, {(x,y,z) is the point in space, {(¥,0,Z) is its

The subject of the present paper 1is the integrating projection on the image plane as shown in Figure 1
of information contained in a sequence of intensity It is clear from the geometry of the Ffigure ané
images with the twofold objective of obtaining the the equations of projection (1), that the po;ition
three~dimensional description and the motion of the of the image point is uniquely détermined from the
object. This should be distinguished from another point in space. However, given the image point

class of efforts which combine several distinct one is able to fix only the'projecting -ray Thié
viewer-centered descriptions to obtain a single becomes evident if the projection equat;ons are
description of the scene. For example, one may rewritten as

combine an intensity image and a range 1image to X(Fay) Xz

obtain an edge map for the image (see Gil et al X = “‘i?z“ = 5 (2)
(2D or better still using a homogenecus coordinate sys-
The research for obtaining three-dimensional struc- tem as

ture was initially pursued as stereoscopic scene jxd F X

analysis (see Duda and Hart [31). Usually, the iyt = ?:§!Y§ (P
scene was stationary whereas the camera moved {or izl YA

there were two cameras) to obtain the two images.
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where Y is a parameter: and for various values of
¥, the point {(x,¥.2) traces out the projecting ray.

z Front
y Image
PL
Projection ,//gne
Point ////////, (x,¥,2)
) ,//’f/iZ;n% ey
Lens "’/ 'E'COBeb
Center ::::
F-Focal [Len 0 Optical Axis vy
X

Fig. 1. Llens center and image plane geometry.

For the case where (x_,y ,20) represents the gimbal
center, and the optgca aXis is panned through an
angle € and tilted through an angle 4, and
(£;,4,4F,£3) represents the constant offset of the
image plane center (relative to the gimbal center),
the relationship between the image plane coordi-
nates and spatial coordinates is considerably more
complicated as given in [3]. The inverse perspec—
tive equations are also given there. The above
simpler equations (1),(2), and (3) may easily be
derived from the complicated equations by simply
assuming ©=0=4, x =y.zz =0 £1=0=£3, and £2=-F. The
derivation of the abOve equations together with an
excellent discussion of perspective equations is
presented by Duda and Hart [3],

In order to locate the spatial coordinates of a
point in space from its image plane coordinates,
one may employ a method called stereoscopy, based
upon two image plane views. Each image plane point
will give rise to a projecting ray and given that
the point lies on both projecting rays, it lies on
the intersection of the two projecting rays. This
assumes that one has established the correspondence
of points in the two images. In its generality,
the correspondence problem is difficult and it is
not discussed in the following. The dinterested
reader is referred to [11,12].

The stereoscopy arrangement consists of two image
planes with two leng centers.» Lst the lens centers
be given by L1 and L2, and /L ~L, gives the base~
line vector as shown in Fiiuré 2. 1f U, and U
denote the unit vectors along the two projectiné
rays then the equation

> -

an =N\ 4 bU2 (4)
determines the point of intersection of the two
projecting rays, and thus the point in space, where
a and b are suitable scalar constants. In a nolsy

environment such a and b will not exist since the
two rays may not intersect. The problem may be

reformulated as a minimization problem with the
penalty function
- >
da,b) = i} aU? A bUe}ii (53

with the minimum being reached for the values of
parameters 25,05, The coordinates of the points in

Space are approximated by
v = (1/2)a 0 0 L 6
v o= a, 3 * A bOUZ)) + L!, (63

the midway point of the shortest distance between
the two projecting rays. The solution to the above
problem is simple and may be found in Duda and Hart
£31.

Object
Point

ZZ Image Plane 2

Stereoscopy arrangement with two
image planes.

Fig. 2.

This early work forms the basis of the more recent
work where several researchers have considered the
problem of computing the three-dimensional struc-—
ture from several views together with the motion
parameters of the object, The works of Ullman,
Roach and Aggarwal, Nagel, and Tsai and Huang are
discussed. It may be emphasized that notations
used by various authors are different, and at times
they are considering slightly different problens,
The purpose of the review is to present a coherent
view of the problem and its solutions.

3.0 EQUATIONS FOR DYNAMIC SCENE ANALYSIS

Several researchers have considered the
necessary for dynamic scene analysis of images
obtained by perspective transformations of scenes
containing three-dimensional objects. The present
section reviews the works of Ullman [4], Roach and
Aggarwal [5], Nagel [6], and Tsai and Huang [7].
The underlying assumption in all these works are:
(i) the objects are rigid and (ii) the correspon-
dence of points between images has already been
established.

In the above presentation of section 2 the y-axis
is used as the optical axis. However, this conven-
tion is not followed universally, In particular,
for the works discussed in the present section, the
original notation of the author is used. For exam-
ple, in sections 3.2 and 3.4, the z-axis is the
optical axis, whereas in 3.1 and 3.3 the y-axis is
the optical axis. The reader is forewarned of the
obvious inconsistency. In addition, it may be
noted that lower case triplets like (x,y,z) denote
peints in 3D space in terms of the global coordi-
nate system, whereas upper case pairs {X,Z) or

(X,Y) dencte image plane points in the image plane
coordinate system,

equations
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3.1 Polar Equations
Ullman considers the constraints imposed by the
perspective projection and combines them with the

constraints imposed by motion of a rigid object to
derive the structure of the object. Let
{X,,¥:,2.),1=1,2,3 represent the spatial coordi-
nates’of points on an object undergoing a transla-

tion (M/Y¥./¥¢) and a rotation @ about the =z-axis.
et the coordinates of corresponding points be
given by (x',,y'.,2".),i=1,2,3. The two sets of

. i if!
coordinates-“of %he points are related by the rela=
tionships:

_— _ .
LI xicose y131ne + I
y'i = xisine + y 0088 + A (7
L B
zhy sz o+ Nz
for 1i=1,2,3. The perspective transformation
imposes the constraint that
xi Xi
éiz'E:_F.'
z, Z,
S D ¥
% G v, = F (8)
where (X, Z,) are the image plane coordinates of
the point "(x,,y.,z.) and F is the focal length of

the perspectivé p%ojection.

In the derivation of the above relationships, it is
assumed that the optical axis is aligned with the
y-axls, and the rotation of the object takes place
about the z-axis. The geometry of the above rela~-
tionships is illustrated in Figure 3.

X
A
X
A
Global
Origin
>z
1 1
v ®' .2 )
@
Image Points i=1,2,3
X
e ( i029)
Z

Image Plane

After Movement

% H ¥
HEAPE AFEY )

Object Points
.<Xi’yi ’Zi)

Before Movement

Fig. 3. Geometry for Ullman's polar equation.

On combining the perspective and motion con—
straints, one obtains
x', %, Co88-y, sinB¥\x
4t = —t o 2 i
i Ty, X, 81n@+y cosd+y
i i i (93
z', z. 4%
R i i
Ny = y'i - xisin9+yicoseﬁﬁy
and on substituting
= = 10
ST Sl 2y 2 Vit (109
the above equations reduce to:
y.6.cos8~y sinB+/X
g1 = bt i
i 7 y,.4,.8in8+y, cosuy
i1 i
e (113
. LA
Ty yiéisin9+yic038ﬁﬁy
The following observations may be made about these
equations:
1. There are six equations in seven unknowns

v, Ly, 2, 80 ¥, Vo vy

2. VUllman provides a procedure for reducing the
six equations to a single equation in 6.

3. One variable is used to provide the scale.

4, The derived equation, called the polar equa-

tion, is of the form

Asin29 + Bcosze + Ccos@sin® + Dsin® + Ecos€=0.

5. In general the polar equation has four roots
and consequently there 1is ambiguity in the
choice of €.

Ullman suggests a possible strategy for settling on
the unique solution by introducing redundancy. 1In
particular, by considering four points and taking
the common sclution corresponding to various tri-
plets, the ambiguity may be resolved. The results
of experimental examples show that the correct
answer can usually be found from as little as two
views of 4 points.

Solution of the polar equation and the correct
choice of the root leads to the computation of
(%,,y,,2,0,(x',,y'.,2".),1=1,2,3 and /[, /v./¢ and &

inlte%mslof the scéliné parameter., The assumptions

are centered around the rigidity of the object and
the motion constraint.

3.2 A Generalization of the Stereo Problem

Roach and Aggarwal consider the problem as 1llus-—

trated in Figure 4. The object is assumed to be
stationary whereas the camera undergoes an unknown
motion. In order to reconstruct the motion and the
three-dimensional cocrdinates of object points from
two-dimensional images, two views of five points
are needed as shown in the following analysis.

The camera position model considered by Roach and
Aggarwal is slightly more general than that of Duda
and Hart [3]. In addition to the angles © and &
for pan and tilt, they consider the angle « for the
rotation of the image plane coordinates axes rela-—
tive to the global coordinate axes. This leads to
three position coordinates (xG.yo.z ) and three
angle coordinates (8,4,«x) for spec1fy?ng the camera
position. The equations relating the image plane
coordinates (X,¥) with the spatial coordinates
(x,v,2z), focal length F, and the camera parameters
(Xo,yo.zo),(e,é,x) are given in [5].
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X y0=zo=0
O=gp=r=0

Ko Y, »2

0,770,770,
U23q) SKZ
\\ unknown
.(Xia)’i,zi) i=1 ,A)
. unknown

(xs,ys,zs)
25 is known

B
Fig. 4. Roach's camera configuration and point
coordinates.

Iin Figure 4, there are twenty-seven unknowns: fif-
teen for the three-dimensional coordinates of five
points and twelve for the two camera positions (for
each position, three for the lens center and three
for the optical axis). However, from two views of
five points, there are only twenty equations (two
for each point in each view). If the six parame-
ters for the first camera position are known (it is
convenient to assume them to be zero), and 2z~
coordinates of one of the points is chosen as the
scaling factor, the number of unknowns and the
number of eqguations is exactly the same. It is
convenient to compute the x and y coordinates of
the point, whose z-coordinate is selected as the
scaling factor, from the equations X=Fx/z and
Y=Fy/z. Therefore, there are eighteen equations
with eighteen unknown parameters. In general,
these eighteen equations present @ formidable task
for solution, The difficulty of obtaining the
solution is considerably aggravated by the presence
of noise.

The system of nonlinear projection equations
explained above can be solved by using a modified
finite difference Levenberg-Marquardt algorithm due
to Brown [13-15] without strict descent that minim-
izes the least-squared error of the 18 equations.
The method employed 1is iterative and requires an
initial guess for each unknown parameter.

This work is somewhat like the camera calibration
systems of Sobel [16] and Yakimovsky and Cunningham
{17]. 1In their work multiple images of points
together with a central projection model and numer-
ical methods are used to determine camera parame-

ters such as focal length, position, and orienta-
tion., These studies, however, have considerably
more information about the three-dimensional posi-

zions of points than we are assuming. Thus, the
problems being solved and the information given for

the calibration systems are different from the work
described in this section.

are two very important
objects being observed are
are ncise

Implicit in this work
assumptions: that the
rigid and that the images of the object
free and thus completely accurate. To test the
effect of the second assumption on the numerical
method described above, from one to four pixels
were randomly added to or subtracted from the exact
photocoordinate data for a moving object. This
perturbation of the data causes extreme instability

in ‘the numerical solutions., However, one o he

main reasons for using a least-squared error tech-
nique to solve a problem is to make adjustments to

observations that contain error {(noise). Adjust-
ment is only pessible, however, when there are more
equations than unknowns. Two views of five points
are therefore inadequate for noisy data since there
are the same number of equations as unknowns. Two
views of six points or three views of four points
produce 22 equations in 21 unknowns using the same
problem model discussed above. Examination of
experimental runs using overdetermined systems of

equations shows that minimal overdetermination is
not very accurate. It is only with considerable
overdetermination (two views of 12 or even 15

points; three views of seven or eight points) that

the results become accurate.

Nagel uses compact vector notation to formulate the

problem of structure and motion. The camera is
assumed to be stationary, whereas the object 1is
moving. There are two coordinate systems. One is
attached to the camera and the second one toc the
object, In the camera coordinate system, each

object point is expressed as C_., gm' where the sub-
scripts i and m refer to the viéw afid point respec-

tively and the vector & ., is a unit vector, The
same point» in the object <coordinate system is
denoted by A . The object undergoes a translation

followed gy a rotation R. The relationships for
the two views {as shown in Figure 5) are given by

Cot Emp = Kﬂ ) (12
Cmz 3m2 = (Am+ TR (13)
Coordinate system :
4]
fixed to the object bject /,?

/“""'“‘“"-m'”)

Fig. 5.

Nagel's geometry of the two coordinate
systems.
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1n these equations 3 and Z 5 are known from the
image plane ,coordinates and" lens center location;
whereas Cm., Am‘ T and R are unknown. It may be
noted tha% in this geometry the lens center is at
the origin.

The matrix R can be expressed in terms of the
direction cosines of the axis of rotation and the
rotation angle. Nagel outlines a procedure by
which various unknown parameters may be computed in
terms of the scale parameter C_. . Nagel makes
extensive use of vector algebra in deriving the
above results and uses five points in two views Lo
derive the motion and structure parameters. Also,
for the special case similar to Ullman, the equa-~
tion reduces to the polar equation derived earlier.
Thus, Nagel's results substantiate earlier work of
Ullman and Roach and Aggarwal. Again, the assump-
tion of rigidity of the object and the existence of
correspondence between the image points in two
views are used to derive the above results.

3.4 The Planar Patch

Tsai and Huang consider an approach significantly
different from the above approaches., Instead of
considering the motion of individual points, they
consider the motion of a planar patch characterized
by eight points. The configuration of the coordi-
nate Ssystem, camera and object points are shown in
Figure 6. The perspective constraints are
expressed as:

View 1: X = Fg—
Yy = FL (1)
ZX'
View 2: X' = F;7
1
yr o= o {15)
Z
0
X

Image Plane

\ point at
view 1
(x,y,2)
point at
N view 2

z x",y",2")

Fig. 6. Tsai and Huang geometry of the image
plane.

The motion of a point is expressed as

1xt B SEN
fy'! = R iyl o+ T
AN iz}

where R is the rotation matrix and T is the trans-—
lation vector. Tsai and Huang assume that there is
a rigid planar patch in the object space character-—
ized by eight points and given by the equation

ax + by + cz = 1 (16)

Further, they express the change of position of
points in the image plane as the transformetion

a. X+a,Y+a

X' s iyt
a3 +a 4+
azhaax"\a
yr 2 =26 an
T a,X+a Y+l
7 8

where a,,iz1,...,8 are called the pure parameters.
Using he motion, rigidity and perspective con-
straints, the pure parameters may be expressed in
terms of the planar patch and motion parameters.
After a tedious algebraic manipulation a sixth
order polynomial may be formulated such that its
coefficients are expressed in terms of pure parame-—
ters and its solution yields (together with addi-
tional manipulation) the motion and structure
parameters in terms of scale. The sixth order
polynomial appears to have only two real roots,
however, no analytical demonstration of this fact
is possible at this time.

3.5 A Coherent View

The commonality in the underlying assumptions and
the analyses of the four papers reviewed above may
be summarized as follows:

1. Rigidity of the object
2. Perspective Transformation
3. Combining perspective and motion constraints

4, Solution being expressed in terms of a scale
factor

5. Need to establish correspondence of points
between views.

The solution of the equations, in general, is com-—
plex but manageable, However, it is the need to
establish correspondence of points between views
that has 1led us to the work described in the next
section.

4,0 OCCLUDING CONTOURS IN DYNAMIC SCENES

In this section we will describe the results of
work [8] done in the pursuit of two major goals.
The first goal is the development of a dynamic
scene analysis system that does not depemd com—
pletely on feature point measurements. The second
goal 1is the development of a scheme for represent-
ing three-dimensional objects that is descriptive
of surface detail, yet remains functional in the
context of structure from motion in dynamic scenes.

To lessen the dependency on feature point detec—
tion, occluding contours with viewpoint specifica-
tions are used. The term "occluding contour™ means
the boundary in the image plane of the silhouette
generated by an orthogonal projection. Silhouettes
can most often be formed by s simple thresholding
of the intensity values. £ connected component
analysis [18, pp. 336-347] of the resulting binary




;mage yields the boundary of the object

an ordered 1list of the image plane
.f the resulting boundary constitutes
s, representation of the occluding con-
sugnout the analysis of the dynamic
saie, TOWEYET, another representation, referred to
.. casterized area [19], of the contour will
) ~e used. For its use here, the most signifi-
e of this representation is that given

R
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repre ed.and an arbitrary segment on

& E / - - -

, -e parallel to the "raster direction™ it is a
5 - '; cess to determine what portions of the
joser tRED intersect the area, 1i.e., to elip

to the represented area.

ee-dimensional structure to be derived from
. of occluding contours is a bounding
= approximation to  the actual object. For
..330cn the representation incorporated in this
..1ne= 15 based on volume specification through a
= segment™ data structure. The volume seg-
+ation 1s a generalization to three~
the rasterized area description. For
4 area, each of the segments denoted a
rea, The generalization to three
£5 have each segment represent a
2 rectilinear parallelepiped with
o the coordinate axes. In addition
ollinear segments into lists, the set
is partitioned so that the subsets
having coplanar segments. The pri-
of the paralilelepiped specified by a
ne length of the segment., The second
: by the inter-segment spacing
of the segment, while the third
inter-plane distance. The latter
are specified to be uniform
olume segment representation.

T ima~y advantage of this structure in general
that the process of determining
trary point is within the surface
1328 of a2 simple search of three
select a "plane"™ by z~-coordinate;
we” by x-coordinate; and finally, check
usion of the y-coordinate in a segment.

segment representation is created from
image by two processes., The first pro-
nes information from frames 1 and 2 of
imzge to Torm an initial volume segment
ion. The second process then accepts
g frame in order to refine the
s -oximation represented by the volume segment

¥ Thus these processes analyze the
contours with their view orientations ¢to
nstruct and to continually refine the
representation of the object gen-
ntours. Algorithm summaries of the
e given in more detail in [20].

10

lustrate the results possible by

Four silhouettes of a box with knobs
in Figure 7. On combining occluding con-
d a and ¢; a,c and b; and a,c,b and
successively the volumes shown in
16. The continuing refinement of
airly apparent,
re 1la,b,c give the occluding con-
tangular parallelpiped with a hole,
give the volume constructed from a
nd ¢ respectively.

Fig.7.

(a)

(b)

(c)

(d)

Silhouettes for a box from four different
viewpoints.
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Fig. 8. Box surface description based upon 7(a) and (c).
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Fig. 9. Box surface description based upon 7(a), {(c) and (b).
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Fig. 10. Box surface description based
upon 7(a), (c¢), (b) and (d).

Fig. 11 (a). Occluding contours for rectangular
parallelpiped with a hole,
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Fig. 11(b). Occluding contours for rectangular
parallelpiped with a hole.

Fig. 11(c). Occluding contours for rectangular
parallelpiped with a hole.
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5,0 FUTURE DIRECTIONS FOR RESEARCH

The review of previous sections has focused on the
computation of three-dimensional structure and the
motion vector of objects moving in space from two-
dimensional images. The need for efficient methods
for inversion of perspective equations and for
storage of three-dimensional description of objects
becomes fairly obvious. The problems related to
the three-dimensional description of objects have
been around for a long time and they have received

the attention ol some more creative ressarchers.
However, there is still a need for additional
research in this area. The properties of an
"ideal’ three-dimensional description of objects

are fairly easy to enumerate but this ideal is far
from being achieved. In particular, an ideal
description should have the following properties:

i, The description should be compact so that it
is amenable to easy storage and fast transmis-

sion.

ii. The description should be easily transformable
to viewer-centered description.

iii. The description should be readily convertible
to other object-centered three-dimensional
descriptions.

iv. The description should be amenable for partial

and easy to update when
is available.

description of objects
additional information

v. The description should be able to accomodate
holes and concavities.
vi. The description should be extendable to

include deformation of objects.

The intensive computational needs for inversion of
perspective equations in a noisy environment are
rather severe, If one adds the constraints for
real time processng of videc images, the computa-
tional needs are indeed astronomical. Not only
must one provide for a super computer, but one must
come up with rather creative and innovative solu-
tions to the numerical drudgery. In particular,
the real time processing of color videco images of
512%x512 with 8 bits intensity for each colag
requires the processing of approximately 2
bits/sec. Parallel oprocessing of data and its
early reduction are important, necessary
ingredients.
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