OPERATIONAL RESPONSE TIME FORMULAS

AND THEIR SENSITIVITY TO ERROR
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| assumptions can be used to derive four different

response

formulas Tor an isolated service center. There are iwo
sources of error in using these formulas for performance prediction:
parameter estimation error and assumption violation. An analysis of the
error expressions gives insight into the expected accuracy of the response
time estimales.
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1. INTRODUCTION

Performance evaluation of computer systems has been an important application of gueueing theory.
Performance analysis use queueing models to study the eflects of proposed changes to existing systems
and to predict the performance of systems being developed. Validations have shown that queueing models

reproduce many observed performance quantities with high accuracy.

Operational analysis [DENN78| provides a framework for studying queueing phenomena during finite
time periods. Operational assumptions have been used io derive many common gueuneing formulas for iso-
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ated gueues and networks of gqueues. Because the violation of operational assumptions can be easily
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ity of formulas Lo assumption

quantified, the operational framework is convenient
%

RI183] has recently shown that performance measures for product form queueing networks

are not semsitive to small violations in one of the operational assumptions.

In this paper, we summarize the more important operational formulas for the response time at an

isolated service center and the assumptions needed to derive them. We then define measures for parame-
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ter and assumpiion errors and express the errors in the response time formulas in terms of these errors.

Finally, we analyze the structures of the error expressions to gain imsight into the expected accuracy of
W 3

each formula.

The main goal of this paper is to give insight into the applicability of queueing formulas.
amount of notation has been minimized; detailed derivations of the formulas have been omitied. Deriva-

this paper can be found in BRUMS2
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quantities and the operational variables we

The state of an isclated service center can be characterized by the number of cus-

A graph of the number of customers during a flme period is called a 1
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If at most one arrival or one departure occurs at 2 time, a
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Table 1. Operational quantities for an isolated service center.

fi mean gueue length

R mean customer response time

5 mean customer service time

oV coeflicient of variation of service times
U utilization

X mean completion rate {throughput}

N maximum queue length

o{N}  proportion of time queue length is N

1 can be determined directly from the behavior sequence.

Operational assumptions place restrictions on system behavior during a time period. These assump-
tions are said to be testable because we can theoretically determine from measured data whether each
assumption is satisfied. In reality, we would seldom test whether operational assumptions hold, The
detailed values needed to verify the assumptions would allow the direct computation of most performance

Also, we would not expect operational




There are several tvpes of operational assumptions. Hasic assumpiions are used to give the desired
meanings to operational variables. The quantity S is defined as the total server busy time divided by the
number of completions. For this to be the mean customer service time, po customers may be "in service”
at the beginning or end of the time period. Sufficient conditions for this are that the time period begin
and end with 2 customer completion and that & pon-preemptive, non-shared queueing discipline be used.
The quantity & is defined as the total customer waiting time divided by the number of completions. A

suflicient condition for this to be the mean customer response time is that the time period begin and end

with no customers in the queue.

Equivalently, the initial queue length is equal to the final queue length.

are independent. Given a sequence of pairs {z, 1), ..., {Z1:), the 2's and y's are independent if for all 2
plz=2 8 y=y) = p(z=1) ply=1y)

where p{-} denotes the proportion of oceurrences of a condition. For example, the homogeneity of queue-
ing and service {HQS} assumption requires that the service period lengths be independent of the gueue

lengihs at the beginnings of the service periods. In the above definition, if the z, are distinet then the y,

An mple of this restricted type of independence assumption is the homogeneous
arrivals {HA) assumpti that requires cusiomer arrival rates be the same during all observed queue
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Representative arrivals assumptions assert that arriving customers see some of the
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quantities as a continuous observer of the system. These quantities may include mean queue length, pro-

e

portion of time the queune is empty, and mean forward service period residua
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All of the independence assumptions and representative arrivals assumptions are summarized in the
appendix, along with the additional notation needed for their formal definitions. Behavior sequences have
been constructed that satisfy most combinations of these assumptions. No subset of the assumptions

seems to imply any other of the assumptions.

3. RESPONSE TIME FORMULAS

Table 2 lists four operational formulas for mean response time. All of these formulas rely on the

basic assumptions and on the flow balance assumption; the necessary indeper

arrival assumptions are shown in the table. Detailed derivations of these forr

BUZES0, and KOWAS81. Little’s formula, 7 = RX, can be used to produce analogous formulas for mean

Several of the formulas are similar in appearance to well-known results from stochasiic queueing

KLEI75]. The first two formulas correspond to the formulas for the M/M/1/N and M/M/1/co

represent steady-state quantities; operational varizbles represent quantities for a finite time period. Sto-

chastic assumptions place restrictions on underlying processes; operational assumptions place restrictions
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ormuls in Table 2 is undefined either when 1 or when U/ == 1-p{N}. It has been shown
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strueted that satisfy the assumptions and have fnite



Table 2. Response time formulas.

Formula Assumptions

§
1-U-p(N)

[1- (N+1)p(V) ] HA, HS

2) R = -2 RAL1, HS
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response times. Yet, the formulas cannot be applied.

¢t

When CV2 = 1. formula {3) simplifies to formula {1}. However, the assumptions needed to deriv
; } { 1Y

5 P . . , A s 2 i . : .. . . . ..
formuia {3} together with the fact that CV° == 1 are not e uivalent to the assumptions used in deriving
o) BUE 4

formula (1}. The same relationship holds for formulas (4} and (2).

Fach response time formula is exaet for a set of behavior sequences that satisfy the necessary
assumptions. Because p{N) > 0, the sets of behavior sequences for formulas {1) and {2} are disjoint and

the sets for formulas {3} and {4) are disjoint.



4. SOURCES OF ERROR

Operational formulas are most often used to predict performance measures for future time periods.
If estimates of the necessary parameters can be obtained, any of the formulas in Table 2 can be used to
compute an estimate of the response time. This estimate will contain error from two sources. First, the
assumptions under which the formula holds are unlikely to be satisfied during the time period of interest.
Second, the exact values of the parameters will not be known. Understanding how the assumption and

parameter errors affect the computed value is important when choosing an estimator.

3 s

The first step in analyzing error is to quantify the error in each parameter and assumption, To sim-

plify the analysis, we will not consider errors in the basic assumptions or the flow balance assumption. A

To measure the error in a parameter, we use the signed relative error in the estimate. For example,
the error in the estimate U of the utilization is e == (U-U) / U. We also use relative error for assump-
tions that equate scalar quantities. For example, the error in the first representative arrival assumption

(RA1) is eqy = (47 [ s

For assumptions involving vectors of values, it is easier to measure error using an immediate conse-

vence of the assumption. For example, the consequence of the HA assumption used in deriving the

response time formulas is an expression for the mean queue length seen by arriving customers,

4 1-p(N)

The error in assumption HA is then measured by

We have shown [BRUMBS2| that the magnitudes of the consequence errors are no greater than the max-




5. ERROR FORMULAS AND BOUNDS

Once we have quantified the sources of error, we can derive an exact expression for the relative error
in each response time estimate in terms of the parameter and assumption errors. In practice, we would
not know the exact value of each error measure; we would more likely be able to bound the magnitude of
each error and perhaps know its sign. Our purpose in deriving exact formulas is to better understand how

the errors interact. Bounds and approximations can be obtained from these exact formulas.
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The simplest response time

tions. If ¢sand ¢y are the parameter errors, and €gy
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slso be derived for the other respomse time formulas. The number o

the error formulas grows combinatorically with the number of assumptions and parameters. Yet, the error

F:

formulas all have a similar structure, which we will analyze in the next section.
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To bound the magnitude of the response time error, error measures can be replaced by bounds on
their magnitudes and weights can be replaced by 1. Exact parameters can be expressed in terms of esti-
mates and parameter error bounds. I parameter and assumption errors are sufficiently small, terms con-
taining a single error measure may be dominant. If higher order terms are omitted, the bound will only
be approximate. For example, in the error formula just considered the magnitude of the asrror due to

assumption violation has the approximate bound

. )
feasur] < g“";”{';;'g

2

We have found the bounds produced by this method are often too pessimistic to be use
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quently, errors are both positive and negative, and some cancellation occurs. The bounds do not reflect
this possibility. Examples can be constructed in which large errors in parameters and assumptions cancel,

giving 2 response time estimate thatf is surprisingly accurate.

8. ANALYSIS OF ERROR FORMULAS

While the exact formulas for the relative errors in the response time estimates are of limited use in
practice, their structures give us important information about assumptiion and parameter errors. To sim-

y the analysis of the formulas, we first consider only assumption errer and assume exact values of all

o

parameters are known. Then, we study parameter error by assuming all assumptions are satisfied exactly.

If assumption violation is the only source of error, the relative errors in formulas (1) and (3} have

the common form

1-p( N}

et | Flassumption errors} .
1-U-p{ N} { )

o = |
S

The errors in formulas {2} and {4} are of the form
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tp == QW% [ {assumption errors} .

The function flassumption errors) is a sum of terms, each of which contains one or more assumption
errors. Some terms include weights whose values reflect the importance of the error in the assumption,
The exact structure of f depends on the response time formula. The equation for ¢ 54p in section 5 ilius-

trates o simple flunciion.

Since assumption errors may be positive or negative, the errors may cancel or reinforce. But, in

every formula the aggregate assumption error is multiplied by either - or . If the magni-

regate assumption error will be magnified; if the magni-

The multiplier is similar to 2 condition number in numerical analysis. Time periods for which the

multiplier is large are “ill conditioned” in that even small assumption errors may produce large errors in

et

the computed response time. The value of the multiplier is easily computed since it requires the same
parameters as the response time formula.

1-p(N)
1-U-p(N)

Simee p{0), p{N), and {01+ p{ N} are restricted to values between O and 1, the domain of this function i
i by

Figure 1 shows a contour plot of the muliiplier as a function of p(0) = 1-U and p{N).

the triangular region having vertices {0,0), {0,1}, and (1,0]. We observe that the multiplier may assume
any positive or negative value except those in the range (0,1). Extreme magnification of the assumption
error occurs when p{N} = p(0). As p(0} approaches 1 or p(N) approaches 1, magnification diminishes

ess than 1 when p{N) > {1+p{(0}) / 2; in this case the aggregate
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Figurc 1. Contour plot of the multiplier mﬁﬁiﬂi—“‘gj;—pjﬁﬁ} ,



& ;

. , s i . - . . .
Figure 2 shows a graph of the multiplier T as a function of U. For comparison with Figure 1,

Figure 3 shows a contour plot of the multiplier as function of p(0) and p(N). Because the multiplier is
always greater than 1, the aggregate assumption error is always magnified. As U approaches 1, the

magnification increases without bounds.

The quantities p{0) and p{NN} can ususlly be measured or estimated more easily than the errors in
the assumptions. If assumption errors are not known, it is impossible to determine which formuls will
produce the most accurate response time estimate. However, if there is a large difference in the magni-

tudes of the multipliers, it secems reasonable to favor the estimator whose multiplier is smaller.

je]

Comparing the two multipliers shows has smaller magnitude when

2 p(0)
(N < Wp{
) < 1+ pl0)

It p(0) < 0.25 and p{N} < 0.35, both multipliers can still magnify errors by at least a factor of 4.

When all assumptions used in deriving a formula are satisfied, the only source of error is parameter
{

error. The relative error in the response time of formula (4} expressed in terms of the parameter errors g
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The guantities — and — mi;——mmii are weights having values in [0,1]. The quantity GV is
B R 2 %},‘ ’!} Cé‘%fé‘"%

aiways less than 1, but approaches 1 as V2 becomes large. This shows that the error in the estimate of

CV2 is less important if V2 is close to 0.

While ¢5 and epy enter into the error formulas in a simple way, U/ and ¢, combine to form 2 more

complicated term. This quantity can be rewritten in terms of U and U as follows
7 oy i {2
OO —— g et 66 fieonsead R e end
1-U l-¢f 1-U 1-U

regardless of the value of ¢¢

. LU - : :
Figure 4 shows a contour plot of g If Uis an underestimate of U, the term will be bounded by

1; if U is an overestimate of &/, the magnitude of this term can be arbitrarily large. We see from the
graph that if the true utilization is large, it is much better to underestimate U than io overestimate it. As

the true utilization approaches 1, small errors in U/ become much more significant.

Parameter errors, like assumption errors, can cancel. Usually we will not be able {o anticipate can-
cellation. To reduce error in the response time estimate, it is important to estimate the parameters as

sccurately as possible, being careful not to overestimate U if utilization is high.
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7. SUMMARY

For time periods that satisly the necessary assumptions, the four response time formulas presented
in this paper express exact relationships among the performance quantities. If the assumptions are not
satisfied or the exact values of the parameters are not known, the formulas are only estimators of response
time., We have derived exact expressions for the relative error in each response time formuls in terms of

assumption and parameter errors.

s

These error expressions reveal a complex inferaction among the parameter and assumpiion errors.
Frrors may cancel or reinforce, depending upon their signs. Weights on error measures delermine their

relative importance. Aggregate assumption errors are multiplied by 3 factor that may magnily or reduce

them. This multiplier may be used like a condition number in numerical analysis.

There are several directions for future research. An experimental study could investigate how well
operational assumptions are satisfied by real systems and whether assumption errors tend to cancel
These results, together with the formulas in this paper, couid help explain the apparent success of gueue-

ing models.

In some cases, performance analysts may know the signs of errors and perhaps upper and lower

sunds on their values. This additional information should allow us to more tightly bound the relative

errors in the response time estimates. Such formulzs have not yet been derived. Pipally, the techniques

in this paper may be applicable to other queueing formulas, including those for queue length distributions

and for queues embedded in closed networks.
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Appendix 1. Additional operational notation.

Symbel  Descriplion

S n) Mean busy time between completions when queue length is n
¥{n) Mean arrival rate when queue length is n

Y Overall mean arrival rate

Yz} Mean arrival rate during service periods of length z

Ys Mean arrival rate during 3 service period

fia Mean gueue length seen be arrivers

240} Proportion of arrivals occurring when queue is empty
r{0) Proportion of time queue is empty

7 Mean forward service period residual

7! Mean backward service period residual

9 Mean forward service period residual seen by arrivals

7 Mean queue length at beginning of service period

75 Mean of service period lengths times initial queue lengths

foatt
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Appendix 2. Operational assumptions.

Independence Assumplions

HS Jomogeneity of service
HA Homogeneity of arrivals

HQS Homogeneity of queueing and service
T1AS  Homogeneity of arrivals and service
HRE Hlomogeneity of residuals

FA1  Tepresentative mern queue length
HAZ lepresentative empty queue proportion

RA3  Represeniaiive service period residual



