DECIDING BRANCHING TIME LOGIC:
A TRIPLE EXPONENTIAL DECISION
PROCEDURE FOR CTL*

E. Allen Emerson and A. Prasad Sistla

TR-83-12 September 1983

DECIDING BRANCHING TIME LOGIC

E. Allen EMERSON! and A. Prasad SISTLA?

1. Computer Sciences Department, University of Texas, Austin, TX 78712
9. Electrical and Computer Engineering Dept., Univ. of Massachusetts, Amherst, MA 01003

Abstract: In this paper we study the full branching time logic {CTL*) in which a
path quantifier, either A (*for all paths®) or E (®for some path®), prefixes an assertion com-
posed of arbitrary combinations of the usual linear time operators F (®sometime®), G
(®always®), X ("nexttime®), and U ("until*). We show that the problem of determining if a
CTLY formula is satisfiable in structure generated by a binary relation is decidable in triple
exponential time. The decision procedure exploits the special structure of the finite state
w-automata for linear temporal formulae which allows them to be determinized with only a
single exponential blowup in size. We also compare the expressive power of tree automata

with CTL* augmented by quantified auxillary propositions.

key words and phrases: temporal logic, decision procedure, finite automata on in-

finite objects, expressive power

1Th% first author was partially supported by NSF Grant MCS-8302878.
2lexe second author was partially supported by NSF Grant MCS-8105553.

3Preliminary versions of some of these results were presented at the 1983 CMU Workshop on Logics of
Programs and the 1984 ACM Symposium on Theory of Computing.

1. Introduction
A number of systems of branching time temporal logic have been proposed for reason-
ing about existential properties of concurrent programs {e.g., potential for deadlock along

some future) in addition to universel properties (e.g., inevitability of service along all

futures). The modalities of these logics are of the general form: either A {*{or all paths®) or
E {("for some path®) followed by a combination of the usual linear time operators F
("sometime®), G (®always®), X (*nexttime®), and U (*until*). In many such logics restric-
tions are placed on how the linear time operators can combine with the path quantifiers. For
example, in the logic UB of [BMP81], A or E is always paired with a single occurrence of
F,G, or X. While these restrictions can reduce the complexity of reasoning in a logic, they
can also significantly limit the logic’s expressive power. For instance, a property associated
with fairness such as “along some future an event P occurs infinitely often® can be for-
mulated as EGFP; however, this formula involves a nesting of F inside G violating the
restrictions of UB's syntax and is provably (cf. [EH83]) not equivalent to any UB formula.

In this paper, we study the full branching time temporal logic CTL* of [EH&3] in
which a path quantifier, A or E, can prefix an assertion composed of unrestricted combina-
tions (i.e. involving arbitrary nestings and boolean connectives) of the linear time operators
F,G,X, and U. CTL* subsumes a number of logics from the literature including the systems
of [MP79], [LA80], [GPSS80], [BMP81], [EH82]|, [CES83|, as well as the Compulation Tree
Logic of [CES1]. (It is also closely related to the logic MPL of [AB&0]; see below.) We inter-
pret CTL* formulae over R-generable models (cf. [EM83]) - i.e., structures generated by a
binary relation like those used in [FL79] and [BMP81]. We show that satisfiability for CTL*
with this semantics is decidable in triple exponential time.

Somewhat surprisingly, for some time it was not known if there was a decision
procedure of elementary complexity for full branching time logic interpreted over this very
natural class of structures. In [AB80] a logic, MPL, is defined which has a very similar syn-
tax to CTL* but somewhat different semantics. While a double exponential decision

procedure is given for MPL interpreted over structures which violate the R-generability con-

dition, for semantics (corresponding to) R-generable structures, [AB80] gives only a non-
elementary decision procedure? and states that the existence of an elementary procedure is
open. Recently, other researchers ([PS83], [VW83]) have, independently, announced four ex-

ponential decision procedures for the R-generable case. Our procedure is thus exponentially

faster. We can give a faster decision procedure, in part, because we uncover some structural
properties of branching time and linear time logics which had gone heretofore unnoticed.

To get our decision procedure, we first show that given any CTL® formula fy we can
derive an ®equivalent® formula f; of length O(|fg|) in which the depth of nesting of path
quantifiers is at most fwo. This establishes a normal form for CTL* which is essentially
conjunctions and disjunctions of subformulae of the form Apy, AGEpg, and Epg where pg is
a pure linear time formulae (i.e. py contains no nested path quantifiers). We then argue
that f; is satisfiable iff it has an infinite tree-like model where the branching at each node is
bounded by |f;|. This enables us to reduce the satisfiability problem to the emptiness
problem for finite automata on infinite trees ([RA89]): For each subformula Ap,;, AGEpy, or
Epg, we build a complemented pairs tree automaton of size at most double exponential in
Ipgl- These tree automata are then combined using a cross product construction to get a
complemented pairs tree automaton for f; of size at most double exponential in |f;| which
accepts infinite trees that define models of f;. By the results of [ST81] the emptiness
problem of this tree automaton is decidable in time exponential in its size, i.e., in time triple
exponential in |fyl. As a corollary, we also obtain a small model theorem since an
automaton accepts an infinite tree iff it accepts a finitely generable tree obtained by
sunwinding® a finite tree ([RA69], [HR72]).

Building the tree automata for AGEp, or Ep, is straightforward. However, design of
the tree automaton for Apg is much more subtle. A fableau construction can be applied to
py to get a nondeterministic (Buchi) automaton 4; on infinite strings (where acceptance is

defined by repeating a designated set of states infinitely often} recognizing {x: x k py} with

“The decision procedure is obtained by translation into SuS, the second order monadic theory of n succes-
sors; by the results of [ME74], SaS is not elementary recursive.

N = exp(|py|) states. A seemingly natural next step would be to program the tree
automaton to simply run A; down every path from the root of the input tree to check that
py indeed holds along every path. In fact, for this tree automaton to work correctly, the

string automaton must be deferministic. It is well known that the subset construction

([RS59]) cannot in general be used to determinize finite automata on infinite strings; in-
stead, the ®classical® method for determinizing such an automaton involves application of
McNaughton’s construction [McN66] and yields an equivalent deterministic string
automaton with a number of states that is double exponential in N. However, we show that
A, has a special structure derived from the tableau which allows us to obtain, by means of a
rather delicate construction, an equivalent deterministic automaton with a number of states
only single exponential in N. This in turn enables us to construct the tree automaton for
Ap, of the desired size.

Lastly, we compare the expressive power of branching time logic with tree automata.
We show that while CTL* itself is less expressive than tree automata, CTL* (resp., UB)
with quantification over auxillary propositions is as expressive as pairs (resp., Buchi) tree
automata.

The remainder of the paper is organized as follows: In Section 2 we give some prelimi-
nary definitions. Then in Section 3 we discuss the normal form and tree-like models. Sec-
tion 4 shows how the tableau for a linear time formula defines a Buchi automaton and
describes its special structure while Section 5 shows how to determinize it with only a single
exponential blowup. The design of the tree automata is given in Section 6, and Section 7

gives our expressiveness results. Section 8 presents some concluding remarks.

2. Preliminaries: Definitions and Terminology

2.1 Syntax. We inductively define a class of state formulae (true or false of states) and a

class of path formulae (true or false of paths):

S1. Any atomic proposition P is a state formula.

S2. If p,q are state formulae then so are p A g, .
3. If p is a path formula then Ep is a state formula.
P1. Any state formula p is a path formula.
P2. If p,q are path formulae then so are p A g, —p.
P3. If p,q are path formulae then so are Xp, {p U g).

The set of state formulae generated by the above rules forms the language CTL". The other
connectives can then be defined as abbreviations: p V q abbreviates ={—p A —q), p = q ab-
breviates —p V g, p = q abbreviates (p = q) A (¢ = p), Ap abbreviates =E-p, Fp ab-
breviates true U p, Gp abbreviates ~F-p, and (p W g} abbreviates ~(-p U —q}. (Note: |p|

denotes the length of p viewed as a string in the obvious way.)

2.2 Semantics. We define the semantics of a CTL* formula with respect to a structure M
= (S, R, L) where

S is a nonempty set of states,

R is a nonempty, total binary relation on S, and

L is a labelling which assigns to each state a set of atomic
propositions true in the state

A fullpath (a,,89,35,...) is an infinite sequence of states such that (a;,3;,4) € R for all i. We
write M,a k p (M,x & p) to mean that state formula p (path formula p) is true in structure M
at state a (of path x, respectively). When M is understood, we write simply a k= p (x Ep). We
define & inductively using the convention that x = (a;,2,,35,...) denotes a path and xi

denotes the suffix path (ai,ai+l,ai+2,.,.):

S1. a P iff p € L(s) for any atomic proposition P
S2.akpAqiffarpandakgq

a k —p iff not {a & p)
S3. a & Ep iff for some fullpath x starting at a, x B Dp
P1.x kp iff a, k p for any state formula p
P2.xepAqiff xkpandxkp

x k =ip iff not (x & p)
P3.x eXpiff x2kp

x &(p U q) iff for some i > 1, x! k q and for all j > 1

[} < iimplies) & p]

We say that state formula p is valid, and write k p, if for every structure M and every
state a in M, M,a k p. We say that state formula p is satis fiable if for some structure M and
some state s in M, M,a & p. In this case we also say that M defines a model of p. We define

validity and satisfiability similarly for path (i.e., linear time) formulae.

Note that in determining whether x F py only the truth values of the atomic proposi-
tions actually appearing in py matter. We can thus view a fullpath x = a;a535... as an in-
finite string of sets of atomic propositions of pg (so each a, €

PowerSet(AtomicPropositions{py)), where AtomicPropositions(pg) denotes the set of atomic

propositions appearing in pg).

2.3 Definition. The Fischer-Ladner Closure of p;, FL{p,), is the least set of formulae such
that

(1) py € FL(pg)

1)

2)if p A q € FL(p,) then p,q € FL{py)

3) if =p € FL(p,) then p € FL(pg)

4) if (p U q) € FL{pg) then p,q, X(p U q) € FL(pg)
5) if Xp € FL{p,) then p € FL{pg)

Note: [FL{pg)| = Oflpyl)
The Eztended Fischer-Ladner closure of py EFL{p,), is the set FL{pg) U {-p: p €

F L(Po}}

(
(
(
(

2.4 Definition. A set s C EFL(p;) is mazimal provided that Vp = ~q € EFL{pg), at least
one of q,~q € s. A set s C EFL(p,) is consistent provided that

(1) ¥p = —q € s at most one of q, g € s
(2)(pAqEsiffpEsandgEs

~(pAq Esifil - pEsormgEs
(3)(pUqg)esiffgesorp, X[pUgqjEs

~(p U q) € s iff =q,~p Es or ~q,~X(p U g) €s

5

2.5 Definition. The fableau for pyis a labelled, directed graph T = (V,R) where the set of
nodes V = {s C EFL(p,): s is maximal and consistent} and R = {arcss — t: st € V and
for each formula Xp € EFL(p,) [Xp € siff p € t]}.

2.6 Terminology. The symbols Z and ¥ are read *there exist infinitely many® and ®*for
all but a finite number®, respectively. We write i.0. to abbreviate infinitely often®, f.o. to
abbreviate "only finitely often®, and a.e. to abbreviate ®almost everywhere® {meaning ®at
all but a finite number of instances®). We extend the AtomicPropositions(c) notation to in-
dicate the set of all atomic propositions appearing in formula ¢ or elements of node ¢ or in-
put symbol ¢c. We also write exp(n) to indicate ¢ for some ¢ > 1. We further use ezp®(n)

to abbreviate exp(exp(n)) and exp’(n) for exp(exp(exp(n})).

2.7 Finite Automata on Infinite Strings and Infinite Trees. There is an extensive
literature for finite automata on infinite strings and on infinite trees, and the reader is
referred to [McN66], [RA69], [RA70], [HR74] as well as [ST81]. For now, we briefly review
the following definitions:

A finite automaton A on infinite strings consists of a tuple (X,S,6,s5) - where L' is
the finite input alphabet, S is the finite set of stales, 6: S X 3 --> PowerSet(S) is the tran-
sition function, and sy € S is the start state - plus an acceptance condition as described
subsequently. A run r A on infinite input string X = a;8585... is an infinite sequence r ==
$g515983..- Of states such that Vi > 0 6(s;a;,4) 2 {s;;1}- For a Buchi automaton acceptance
is defined in terms of a distinguished set of states, GREEN, (think of a green light flashing
upon entering any state of GREEN): x is accepted iff there exists a run r on x such that
% GREEN flashes along r. For a pairs automaton we have a finite list ((RED,,GREEN,)
-y (RED,GREEN,)) of pairs of sets of states (think of them as pairs of colored lights
where A flashes the red light of the 15 pair upon entering any state of set RED,, ete.): x is
accepted iff there exists a run r on x such that for some pair i € [1:K] (—-c%OREDi flashes and
%QGREENi flashes) along r. Finally, a complemented pairs automaton accepts x iff there ex-

‘sts a run T on X such that the above pairs condition is false, i.e., iff for all pairs i € [1:k]

{ %OGREENi flashes implies %OREDi flashes) along 1.
8

Let I, = {bg,by,....by 1} be an alphabet over n distinct symbols by,...,b, ;. Then IF
may be viewed as an in finite n-ary tree T where the empty string X is the roo! node and
each node t has as its successors the nodes tby,...,th . A finite (infinite) path through T is a

finite (resp., infinite) sequence x == tg,t;,t,,... of nodes such that for all i, ¢, , is a successor

of t,. An in finite n-ary Z-tree is a labelling ¢ which maps T, =2 2.

A finite automaton A on infinite n-ary L-trees consists of a tuple (X,S,6,5) plus an
acceptance condition similar to a string automaton except that 6 : 5 X Z'--> PowerSet(S").
A run of 4 on Z-tree ¢ is a function p : T --> S such that for all s € T, (p(sbg),...,p(sby.1))
€ 8(p(s),#(s)). We say that 4 accepts input Z-tree ¢ iff 3 a run p of A on ¢ such that V path
x starting at the root of T, if r = p|x, the sequence of states A goes through along path x,

then the string acceptance condition (as above} holds along r.
3. Normal Form and Tree Models

3.1 Theorem. Given any CTL* formula f, we can construct a corresponding formula f; in
a normal form composed of conjunctions and disjunctions of subformulae of the form Ap,
Epg, or AGEp, where pg is a pure linear time formula such that (1) f, is satisfiable iff f; is
satisfiable and (2) |f;| = O(|f;]). Moreover, any model of f; can be used to define a model of
f, and conversely.

Proof. We will initially obtain a preliminary normal form f, composed of conjunctions
and disjunctions of subformulae of the form Apg, Epg, or AG(P = A/Ep,) where P denotes
an atomic proposition or its negation and, for brevity, we write A/Ep to indicate a formula
of either the form Ap or Ep. We will then apply the validities AG(Q = Ep) = AG(-Q
= A-p) and AG(Q = Ap) = (A[G(Q = p)] A AGE(=Q = —p)) to transform f; into {; in
the final normal form.

To get the preliminary form, we first drive negations inward using DeMorgan’s laws
and dualities such as ~Fp=G=p, —Ap = E-p, etc. so that only atomic propositons appear
negated. The resulting formula f; consists of conjunctions and disjunctions of the form g =

A/Ep where each p is a path formula possibly containing nested A's or E’'s. We then reduce

each such g appearing in f5 to the form g0 = A/Ep® A AP_,AG(Q; = A/Eq;) where p® and
the g; are all pure path formulae and where n < |f|. We do this by introducing *fresh®
atomic propostions for each "deeply® nested A/Ep subformula. For example, E(GEFAFP
A FAGR) becomes E(GEFQ; A FAGR} A AG(Q; = AFP) which becomes E(GQ, A FAGR)

A AG(Q, = AFP) A AG(Q, = EFQ,;) which finally becomes E{(GQ, A FQa) A AG(Q,
= AFP) A AG(Q, = EFQ;) A AG(Q; = AGR).

To describe the reduction formally, let g, = g. Inductively, assume we have g, =
A/Ep, A A%‘zlAG(Qi = A/Eq;) where the g; are pure path formulae but p; may not be. If
py is a pure path formula, we are done. Otherwise, let A/Eq, ; be a subformula of p, such
that q_,; is a pure path formula. Then let p,, be the result of substituting a unique,
previously unused atomic proposition Q; ,, for A/Eq ., in py and define f , = A/Ep, +1
A A%‘__ﬁAG(Qi = A/Eq;). Note that g, is satisfiable iff g; is satisfiable. In particular, a
model of g, defines a model of gy . ; by extending the labelling so that that Q; , is true ex-
actly at the states where A/Eqy, ; holds. Conversely, a model of g, ; must be a model of
Bk

This reduction process must terminate within n < |p| steps because |p, ;| < [pyl-
When it does terminate, let p® = p, so that po,ql,m,qn are all pure path formulae.
Moreover, |g%] = Of|g]) since [fK+1| = | + some constant C, as can be seen by transform-
ing gy, into gg A AG(Qy,, = Qy41) by textually swapping the occurrence of Q,, in
P41 With A/Eqy ¢ in AG(Qy = A/Eq)

The reduced formula f, is of length O(|fy|) and is in the preliminary normal form.

Sinee f, is of length about 2 - |fy| = O([fy]}, we are done. O

It is well known that any R-generable model may be unwound into an equivalent in-
finite tree-like model. Using an approach similar to that of [ST81] we can ensure that the
resulting tree-like model has some additonal structure which simplifies programming the tree
automata:

Suppose M = (S,R,L} is a model of f; so that M,sy ¥ {;. We will construct another
model M’ = (S",R’,L’) with S’ = I'f where I} is the alphabet {by,by,....b,} and Ep,,...Ep,

&

are all the Ep subformulae of f;. Intuitively, M’ is obtained by unravelling M so that each
Ep, subformula is satisfied along a designated path of M' which is a copy of a corresponding
path in M. We define a function g:8' —> S. Let g(\) = sy where X is the empty string. In-
ductively, assume g(z) is defined = t;. For each subformula Epy, if M,t; & Epy then let x =
tgtybg,.- be a pathis M such that p, holds along it. Then let zbyby* be a ®copy® of x, e,
let g(z) = by, 8(zby) = t;, g(zbyby) = ty, g(zbybgbg) = ts, ete. Now define R’ by the rule
(zq:29) € R iff (i) 25 = 2,;b; for some i € [0:n] and (ii) (g(zy), glz,)) € R. Finally, let L'(z) =
L(g(z)). (Note: let zby” be a copy of any path starting at g(z).)

By construction of M, every path starting at A of M’ is a copy of a path starting at s;
of M. Hence, if M,s; & Ap then M’,\ k& Ap. In addition, for every state z of M’ and for each
Ep, subformula, if M,g(z) £ Ep; then M’z & Ep;. Thus, if M,s; & Ep (M,s; & AGEp) then M)\
k Ep (resp., M’ X £ AGEp). It follows that M",\ 1.

We have thus shown

3.2 Theorem. For any formula f; of CTL* in the above normal form, if f; is satisfiable,
then it has an infinite tree-like model where each node is of outdegree < [f;|. Moreover,

each Ep subformula of f; is satisfied along a designated path of the tree-like model.

4. The Tableau as a Nondeterministic Finite Automaton

We may view the tableau for a linear time formula p; as defining the transition
diagram of a nondeterministic finite automaton 4 on infinite strings which accepts {x:xFpy}
by letting the arc u—v be labelled with AtomicPropositions{v). A run r of 4 on input x =
a48584... is an infinite sequence r == §;8;8,83... of tableau nodes such that ¥i > 0 &s;2;,,) 2

{s;41} where & is the transition function of A. (Actually, s; is not a tableau node but the

unique start state defined so that &sga) = {tableau nodes w: p, € u and
AtomicPropositions(u) = AtomicPropositions(a}}.). Note that Vi 2> 1
AtomicPropositions(s;) = AtomicPropositions(a;). Any run of A would correspond to a

model of py (in that, Vi > 1, x! {formulas p: p € s;}) except that eventualities might not

be fulfilled. To check fulfillment, we can define acceptance via complemented pairs: if

EFL{p,) has m eventualities, we let A have m pairs (RED;, GREEN,} of lights. Each time a
state containing (p; U q) is entered, flash GREEN;; each time a state containing g; is en-
tered, flash RED;. A run r is accepfed iff Vi € [1:m] [[%0 GREEN, flashes = ¥ RED); flashes]

iff every eventuality is fulfilled iff x ¥ pg.

However, we find it more convenient to convert £ into an equivalent nondeterministic
Buchi automaton, #;: We say that the eventuality {p U q) is pending at state s of run r
provided that (p U q) € s and q ¢ s. Observe that run r of 4 on input x corresponds to a
model of py iff not(3 eventuality (p U a), {p U q) is pending a.e. along r) iff (V eventuality (p
U g}, (p U q) is not pending i.o. along r). The Buchi automaton 4, is then obtained from 4
by augmenting the state with an m+1 valued counter so that a state of 4, is of the form
(tableau component, counter component). (The start state of A, is (start state of A, 1)).
The counter is incremented from i to i+1 (mod{m+1)) when the ith eventuality, (p; U gy, is
next seen to be not pending along the tableau component of the run. When the counter is
reset to 0, flash GREEN and set the counter to 1. (If m==0, flash GREEN in every state).
Now observe that 3 GREEN flashes iff Vi € [1:m] ((p; U q;) is not pending i.0.) iff every
pending eventuality is sometime fulfilled iff x & pg. Moreover, A; still has N = exp{|pgl) -

O(|pgl) = exp(|pyl) states.

The tableau has the following special structure:

4.1 Lemma. If 5;,5,,t are nodes of T such that s,,3, are both immediate predecessors of t,

and AtomicPropositions(s,) == AtomicPropositions(s,), then s; = s,.

Proof. We argue by induction on the structure of formulas in s,8, that p’ € sy iff p’
€ s,, for all p’ € EFL{py). The basis case of atomic propositions follows directly by assump-
tion.

Suppose p’ € s;. If p’ = —p then p ¢ s;. By induction hypothesis, p & s,. So —p € s, by
maximality.

If p’ = p A q € s, then consistency of s; implies p,q € s,. By induction hypothesis, p,q € s,
so, again, by consistency p A q € s,.

If p’ = Xp € s, then, by definition of the tableau, p € t and so Xp € s,.

10

Finally suppose p’ = (p U g} € s,. By consistency, either ¢ € s; or pX{pUq)Es,.lfqEs
then, by induction hypothesis, q € sy, so consistency implies p Uq€syalso. i pX(pUq) €
s; then by induction hypothesis, p € s,. By definition of the tableau, (pUq) €1t and also
X(p U q) € s,. By consistency then, {pUq) € sy

We just showed that p’ € s, implies p’ € s,. By symmetry, p’ € sy ifp’ € s, o
The automaton A, inherits from the tableau a similar special structure so that, essen-

tially, different runs on the same input cannot merge:

4.2 Theorem. If rlx(so,sl,sz,.,.) and rzm(tﬁ,tl,tz,.n) are two runs of A; on input x,
and r,r, "intersect® after having read the same finite prefix of x (technically, Ik s, = t,),
then ry,r, coincide up to the point of intersection (technically, ¥j < k §; == tj).

Proof. Let s (t;') denote the tableau component of s; (resp., t;). By hypothesis, s; =
t, and hence s’ = t;’. Since the two runs r; and r, are on the same input, for all > 1
AtomicPropositions(s;’) = AtomicPropositions(t;). Thus by repeatedly applying the lemma
4.1, we see that for all j <k, sj’ == tj’ (i.e., the tableau components of the two runs coincide
out to position k). Note that the counter component of the ith state along a run of A
depends only on (i) the initial value of the counter and (i) the tableau components of the
preceeding states along the run. Since the start state of A, is unique and since the two runs
coincide in their tableau components out to position k, it follows that they also coincide in
their counter components out to position k. Thus the two runs coincide entirely out to posi-
tion k as claimed. o

Given a Buchi automaton A; for linear time formula py’ == —pg with N = exp(lpg’l)
= exp(|py|) states, we will show in the next section how to construct an equivalent deter-
ministic pairs automaton A* of size (exp(N?) states, N2 pairs). Since A* is deterministic and
A* accepts x iff x k —py, we may view A¥ as a deterministic complemented pairs automaton

which accepts x iff x & py. This will allow us to construct the desired tree automaton for

Apg.

11

5. How to Determinize the Buchi Automsaton

5.1 The Run Tree. The set of all runs of the nondeterministic Buchi automaton A, on in-
put x may be viewed as an infinite Directed Acyclic Graph (DAG) of width < N =
exp(|pg|) where the nodes on level i of the DAG represent the possible states A, could be in
after having read the first i symbols of x. Since by Theorem 4.2 no two runs on x can
merge, it is actually a tree. However, a run can dead end, (e.g. if =Fp € a node on level i
and p appears In i+15¢ input symbol). Observe that, while there may be an infinite number
of Tuns in this tree, there are at most N distinct runs of in finite length; the rest are finite.
(In the sequel, we will say that a P-node of the run tree is one corresponding to a state of 4,

where A,’s GREEN light flashes.)

5.2 Intuition. The dfa A* is based on the subset construction - it builds the tree of all runs
on input x, 2 level at a time - plus some machinery to do, roughly, a depth first search of
the run tree looking for an infinite run along which there are infinitely many P-nodes. The
problem is complicated by the possibility that there may be infinitely many P-nodes in the
run tree but only a finite number of them on any one path. Up to N markers are used in
order to follow each active run. Associated with each marker i are N pairs of lights:
<i,0>,..<i,N-1>. There are thus a total of N2 pairs of lights. The need for multiple
pairs of lights per marker is explained subsequently.

Intuitively, 4% operates as follows. As each symbol of x is read, the next level of the
run tree is built from the current level which will shortly become the new current level.
{Only two levels are kept in memory at one time.) Each state of the current level is the tip
of an active run which is associated with some marker i. Note that some runs split apart
and others die out. Whenever (the) run (associated with marker) i splits, one alternative is
followed by marker i and the other alternatives are assigned “free® (i.e., currently unused)
markers jj...jp- We then say that the runs just started up, j;,.-..Jy, SpPawn off run i. When
and if run i dies, its marker becomes free for use with another run that may later start up.
Since there are at most N active runs at any level, the N markers can be re-cycled in-
definitely so that each active run is always assigned a marker.

12

We want each marker i to follow an infinite run if possible. However, run i may split
apart many (even infinitely many) times, Some branches may be infinite and others finite.
How does A* know which of the alternatives is infinite and should be followed? If there
were a way for A* to know this, one pair of lights per run would suffice. For we could then
simply have, for each run i, the pair of lights <i,0> flash GREEN whenever marker i en-
countered a P-node and flash RED whenever run i encountered a dead end. See Figure 1.
(The RED flashes are needed to ensure that an infinite number of "non-collinear® P-nodes
do not cause erroneous acceptance.)

However, there is in general no way for A* to know which alternatives to follow be-
cause this depends on the suffix of the input yet to be read: one suffix might make alterna-
tive A infinite and alternative B finite while another suffix might do the opposite. Since A*
is deterministic, on some inputs it may repeatedly make poor decisions in which case the
above rules can lead to false results. For example, in Figure 2, A* erroneously rejects be-
cause both <1,0> and <2,0> flash RED as well as GREEN i.o. .

The problem is that the single infinite path in the run tree has been parsed into in-
finitely many finite pieces rather than a single infinite piece. The solution is to have any
run i which dead ends backup - but as little as possible - by taking over the ®*youngest® sur-
viving run j which previously spawned off i. For example, in Figure 3 because *father® run
1 is older than its ®son® run 2 (it was ®"born® earlier), when run 1 dead ends it takes over
its youngest son, run 2. The rules for the backup require that 4* flash RED on pair <2,0>,
<2,1> since run 2 is totally obliterated when run 1 takes it over. 4* also flashes RED on
the pair <1,0>. This ensures that A* will not falsely accept due to GREEN f{lashes on
<1,0> caused by non-collinear P-nodes detected by run 1 prior to backups. Then, A*
flashes GREEN on the pair <1,1>> iff a P-node has been seen on the finite path from the
site of the previous backup of run 1 to the site of the current backup (indicated by *s}.

Consider the simple case where the width, N, of the run tree is at most 2. Then for
any input x, one of two situations obtains:

(1) After a certain depth, 4* always makes ®good® decisions and run 1 never again has {g
backup. Then pair < 1,0> will never again flash RED. It will flash GREEN i.o0. iff 3
P-nodes along the run 1.

13

{2) A* makes infinitely many ®pogr® decisions so that run 1 backs up i.0. in which case
<1,0> flashes RED i.o. Then d P-nodes along run 1 iff 3 GREEN flashes of <1,1>.

In general, when the width N > 2, we have N pairs of lights and associated sfages of
backups for each marker i. (By convention, when marker i is pushed from a node to a suc-

cessor node without any actual backup we have a stage 0 backup of run i. P-nodes detected

in this way are ®recorded® via GREEN flashes of <i,0>.) Roughly, ancestor run i takes
over descendent run j in a backup of stage m when the highest stage of previous backups of
run i which must be *undone® is m-1. See Figure 4. P-nodes detected by run i on the path

between comsecutive stage m backup points are recorded via GREEN flashes of <i,m>.

5.3 The Spawning Tree. To perform these backups, A* does not have to re-read portions
of the input. Instead, A* is able to remember enough information in various ®"flag bits® to
simulate re-reading of input as needed. The ®data structure® used in implementing A* is
the spawning tree which is defined as follows:

1. There is one node, labelled i, for each active run i. Thus, there are at most N nodes.

2. If run i has spawned, in order, runs j;,...,j, then node i has soms, in order from left to
right, ji,....j;- (Note: if two or more sons are spawned simultaneously, order them
using some fixed convention.)

3. Each node i is labelled with its name as well as

a. birth[i] - a single bit = 1 iff a P-node has ever been seen along i since its birth

b. bstageli] - a Oflog N bit) counter = m, the maximum of the stage numbers of
the backups of b, the father run of i, which have occurred at descendents of the
point where i spawned off from h.

c. backupli] - an array of N bits: backupli][k]=1 iff a P-node had been seen along i
since its last stage k backup.

d. fbirth[i] - a single bit = 1 iff, at the time i spawns off from its father h, h has
seen a P-node since its birth.

e. fbackup[i] - an array of N bits: fhackupli]k] = 1 iff, at the time i spawns off
from its father h, h had seen a P-node since its last stage k backup.

f. state[i] - a Oflog N bit) counter = k iff the current state associated with run 1 is
state k.

See Figure 5 for an example of the spawning tree and how it represents active runs. The
spawning tree provides all needed information for performing backups, controlling the lights,

and associated bookkeeping operations. Moreover, it can be represented using O(N?) bits.

14

5.4 Implementation. The following ®pseudo-code® describes the implementation in

greater detail:

Flash GREEN on <-,0>> pairs with P-nodes:

for each active marker i
if state[i] is a P-node then flash GREEN on <i,0>
birth[i] == 1
backupli] := (&,...,1)
end

Read input symbol
Pre-compute successor states of each current state associated with a node of

the spawning tree.
In the spawning tree, cross-out all nodes corresponding to markers with no successor.

Backup as needed:

Repeat the following until all crossed-out nodes are deleted.
Find a topmost crossed-out node: i

Pre-order walk the subtree rooted at i to try to find the first non-crossed-out node: j

if j exists then
Run j is the *youngest® surviving descendant run of i
Let i backup and take over run j as described below

if j does not exist then
delete the entire subtree rooted at i from the spawning tree
flash RED on <k,0>,...,<k,N-1> for all k in the subtree
return all such k to the pool of available markers

End of repeat
(At this point, all remaining runs have > 1 successors)

for each active run i
if 1 has a single descendant, advance marker i to it

if i has several descendants sy,...,s; then
assign i to s;
assign "free® markers iy,...,J; t0 8g,...,8, respectively
for each i’ € {iy,...,i} }
add i’ as a leftmost son of i in the spawning tree
let bstageli’] == 0

15

let fbackupli’] := backupli]
let fbirth[i’] := birthli]
end
end

We now describe how to do a backup of run i. Refer to Figure 6 as needed. Suppose
the current node, A, associated with marker 1 has no successors, there is a descendant run of
i which survives beyond depth(A), and i is not taken over at this depth by a backup of an
ancestor run. Let run j be the ®youngest® {as determined above) descendant run of run i
which survives beyond depth(A). Let the sequence of descendant runs of i that are ancestors
of j be i = kyky,....k; = J. (Possibly, I = 1 so that k; = j; if { > 1 then runs kyenkp g
dead end at depth{A) just as does run i). Run i will take over run j (as well as runs
ky,..k; ;) in a backup of stage bs = 1 + bstagelk,] by performing the actions numbered
below.

Note that node B is the current node of run j, node C is the first node of run k;, and
node D is the deepest node of run i which has a descendent node (namely, some immediate
successor of B) at a depth greater than depth(A). We say that, for this backup of run i,
node A is the dead point, node B is the advance point, node C is the backup point, and node
D is the branch point. We also say that the backup occurs at location node C at time
depth(A).

(1) Flash RED on <i,bs-1>, <i,bs-2>,...,<1,0> since for each m < bs, the most recent

previous stage m backup of run i has failed in that its backup point does not live on
any infinite path.

(2) Flash RED on <k,N-1>,...,<k,0> for each run k whose node is encountered in per-
forming the preorder walk from (but not including) i to (and including) j in the spawn-
ing tree because each such run dies at depth(A). (Each of ky,...k; = j is such a k but
there may be more.)

(3) Flash GREEN on <ibs> iff fbackuplk,|[bs] (iff between the time of the previous
stage bs backup of i and this new stage bs backup point, run i has seen a P-node; note
that the new stage bs backup point is the first node of run k,).

(4) For each m € [1:0], let § V fbirth[k] so that for each such m, t | = 1 iff on the
path from where k_ is born baci to run i, a P-node occurs. (Note that t; = 0; for m
> 1, this path mchsdefs exactly the following segments [first node of k;: last node of k;

16

before k, splits off] [first node of ky: last node of k, before kj splits off]... [first node
of k ;: last node of k, ; before k splits off}).

(5) Let run i resume at the current node of the run j = run k; which has just been taken
over: Flash GREEN on <i,0>> iff t; V birth[j].

(6) We must now adjust birth[i], backup(i] for where run i resumes {the ®old® current
node of j, node B): birthi] = fbirthlk,} Vv t; Vv birth{j] corresponding to the path,
reading backwards, [the current node of j = k;: the first node of j = k] [the last node
of k,; before k; splits off: the first node of k,] [the last node of i before k, splits off:
the first node of i
For n 54 bs, backupli][n] := fbackup[k][n] V t; V birth[j]

For n = bs, backupli][bs] := t; V birthlj].

(7) Now i may get some new sons k which were sons of the ky,....k; = j. We must collapse
the spawning tree properly to install these new sons, and for each new son k of i, up-
date fbirth[k], fbackup[k]:

forn:= 1tol
add the oldest surviving son of k as a son of i

add the youngest surviving son of k as a son of i
end
(When the above loop is done, the oldest group of sons of 1 will be those that were
there originally, still present in their original order. The next oldest group of sons will
be those of k,, with the oldest having been added first, the youngest last. So the
youngest son of i will be the youngest surviving son of k), provided it exists.)
Delete all the nodes on the walk from (but not including) i to (and including) j from
the spawning tree. This has collapsed the tree and installed i's new sons k.
To adjust fbirth[k], fbackup[k] where k is a surviving son of k, 1 < m < &
fbirth[k] := fbirth[k,] V t_, v fbirth[k] corresponding to the path, reading backwards,
[the last node of k, before k is born: the first node of k| [the last node of k,_; before
k, is born: the first node of k;] [the last node of i before k, is born: the first node of i
for n £ bs,
fbackuplk][n] := fbackup[k,]n] V t_, V fbirth[k]
for n = bs,
fbackup[k][bs] := t_ Vv fbirth[k]

(8) We must ensure that for each son k of i, bstage[k] = the maximum stage of backup of
run i, which has occurred at a descendents of the point where k split off from i. If k is
an older sibling of k; (so k was a son of i present before this backup), let bstagelk] =
max{bs, bstage[k]} to reflect the fact that i took over k; at a descendant of k via a

17

stage bs backup. If k is a son just added to i, let bstage[k] = 0 to reflect that no back-

ups of i have yet occurred below where k splits off from the ®new, backed up® i.
Remark: The above description provides a template for 4* to be implemented by a

program with O(N) instructions on a RAM (Random Access Machine) of wordlength O(log

N) bits. Since the spawning tree can be represented in O{NQ} bits, A* can be realized as a

deterministic complemented pairs finite state automaton of size (exp(N?) states, N? pairs).

5.5 Correctness.

5.5.1 Proposition. If 2 stage n backup of run i occurs then (using the notation of Figure 8)

we have the following:

(a) For each m < n, a stage m backup of i has previously occurred whose branch point is
a descendant node of D.
(b) Each backup of run i that has previously occurred whose branch point is a descendant

node of D is of stage m < n.
(¢) Moreover, each such branch point lies on no infinite path.
(d) For some d, depth(C) < d < depth(A), the width of the run tree at depth d is at least

n+1.

Proof. We can argue by induction on n. Recall that, by convention, a stage 0 backup
means no actual backup at all. So for n = 0 parts {a)-(c) hold vacuously and (d) holds
trivially.

Now, suppose a stage n>0 backup occurs. This means run i takes over k;,....k;=j and
that bstagelk;] = n - 1. By the way the algorithm maintains bstage[-], there has been a
stage n-1 backup of i whose branch point is a descendant of D. By induction hypothesis, we
see that for each m < n, there is a stage m backup’s branch point at a descendant of
D. This establishes (a). The truth of (b} also follows from the way bstage[-] is maintained: if
there were previously a stage n or higher backup of i at a descendant of D, then bstage[k,]
> 1 - 1, a contradiction. To see that (¢} is true, note that the algorithm is designed so that,
for any backup, its branch point D*® is the deepest ancestor node of its dead point A® which

has any descendant node at depth greater than depth(A®). Finally, to establish (d) note

18

that, by part (2), there is a stage n-1 backup whose branchpoint D’ is a descendent of D. By
induction hypothesis, there is a d’ such that depth(C’) < d’ < depth(A’) (where C’ is the
backup point, A’ is the dead point of this stage n-1 backup) and the width at depth d’ is at

least n. Since the path from B up to C does not include any descendent nodes of D’ accessed

by the time of the stage n-1 backup, depth(C) = depth(D)+1 < depth{D’}+1 = depth(C’},
and depth(A’) < depth(A), we have that depth(C) < d’ depth(A) and the width at depth d’

is at least n+1. See Figure 7. O

5.5.2 Proposition. Every infinite run r is eventually assigned a marker i that follows it
(allowing for backups) forever. This marker never has to make more than a stage N-1

backup to follow r.

Proof. Suppose r is an infinite run. After a certain depth, every node on r of greater depth
lies on only 1 infinite run, namely r. (If this were not true, the width of the run tree would
increase without bound.) Let v; be such a node. Now v, is assigned a marker, i;. Since v,
has a unique infinite path (the suffix of r starting at v,) coming out of it, the only way i,
will not follow r forever (allowing for backups) is if i; is taken over by an ancestor marker
ig. So either i; follows r forever after v, or i; is taken over by an ancestor iy at some node
v, In the latter case, either i, follows r forever, or iy is taken over by an ancestor i3 at some
node v,. Etc. This process must stop with some ancestor run ij for j < N because, other-
wise, the width of the tree would exceed N. To see this, note that run i, started prior to run
i, and continued down to depth(v,) (> depth(v,)) where it takes over i;. Similarly, ig
started prior to i, and continues down to depth(vg) (> depth(v,)) where it takes over i,.
Ete. When ij takes over ij—l the width at depth(v;) must be at least j. So the process must
stop by iy. See Figure 8.

To see that a backup of stage > N-1 is not required, observe that by part (a) of the
previous Proposition, a backup of stage > N-1 would imply that the width of the run tree

was > N, o

19

5.5.3 Proposition. Suppose that, for run i,

(1) At time t there is a stage n backup with backup point C,

(2) At time t' > t there is a stage m backup with backup point C,

(3) For every backup occurring at time t* € (t:t'), the backup point C* is a descendent of
C, and

(4m<n
Then C’ is a descendent of C.

Proof. Suppose (1),(2),(3) hold. Immediately prior to the time ¢’ backup, run i is a line seg-
ment of the form (first node of i):C:A’ where A’ is the dead point of the t' backup. Thus
branch point D’ is either an ancestor of C or a descendent of C. If D’ is an ancestor of C
then m > n by the way backup stages are computed. Now if (4) holds so that m < n, then

D’ (and C’) must be a descendent of C. 0

5.5.4 Theorem. For any input x,

3 a run r of A; along which %OP-nodes iff
3 a pair <i,j> of A* which flashes GREEN i.0. and RED f.o..

Proof. (=:) By proposition 5.5.2, any infinite run r in the run tree of A; on an input x, will
eventually be assigned, by #% a marker i, which it keeps forever allowing for backups of
i. After that point, we consider run r parsed by the backups of marker i. We have the fol-

lowing cases:
w 13
3 stage N-1 backups of i along r or
o0 . i~ - .
~3 stage N-1 backups of i along r and 3 stage N-2 backups of i along r or ...

*s%o stage N-1 backups, -3 stage N-2 backups,..., and -3 stage 1 backups of i along r.

If the last case obtains, then there are only finitely many backups of any stage of marker i
as it follows the path r. After the last backup, marker i is always pushed forward directly to
the next node of r, and <i,0> flashes GREEN every time a new P-node is encountered on
r. If there are infinitely many such P-nodes, then plainly <i,0> flashes GREEN i.0.; fur-
thermore, after the last backup, <i,0>> will never again flash RED so it flashes RED f.o. .

20

For the other cases, let j be the maximal j’ such that =i stage j’ backups of run
i. Then for all j* € (j:N), there are only finitely many stage j* backups of run i. So after
some time, there will never again be a RED flash of the <i,j> pair. Consider the suffix of r
after that time. It is parsed by the infinitely many stage j backups of i into infinitely many
contiguous segments. Infinitely many of these segments will contain P-nodes iff %O P-nodes
along r. Hence, at infinitely many of the stage j backups, a P-node will be detected in the
segment from the previous to the current backup point. Accordingly, the pair <i,j> will
flash GREEN each such time and hence L.0. .

(&=:) When j=0 we note that if <i,0> flashes GREEN i.0., RED f.o., then (by con-
struction of A*) the marker i never backs up after the last RED flash. So at a certain node,
say v, in the run tree, marker i is assigned and is thereafter always pushed forward without
backing up. Since there are infinitely many GREEN flashes, (by construction of the A%*)
there is an infinite path r’ starting at v followed by marker i with no backups which has in-
finitely many P-nodes along it. Since there is a finite path r from the root to v, r con-
catenated with v’ is the desired infinite run with infinitely many P-nodes along it.

Otherwise assume j > 0 and <i,j> flashes GREEN i.o., RED f.o. That there is a last
RED flash of <i,j> means that there are no more backups taken by marker i of stage j’ >
j. Consider the GREEN flashes occurring after the last RED flash of <i,j>. For each n, at
the o't such GREEN flash of <i,j>>, marker i backs up (via a stage j backup) with a
backup point that is some node v . After being assigned to node v,,, marker i is never taken
over by an ancestor marker i’ (because if it were, <i,j> would again flash RED). For each
n, v, .q is a descendant of v, (because it is reached from v, without any backups of stage j’
> j and repeatedly applying Proposition 5.5.3) and there is a P-node on the finite path from
vy to vy Letr be the finite path from the root to v;. Then r concatenated with

(v4,¥9,73,..) is the desired infinite run along which there are infinitely many P-nodes. O

21

8. Programming the Tree Automata
In section 3 we argued that a normal form CTL* formula f; is satisfiable iff it has an
infinite tree-like model where the branching at each node is bounded by |f;| and where each

Ep, subformula is satisfied along a designated path. This enables us to reduce the satis-

fiability problem to the emptiness problem for finite automata on infinite trees: For each
subformula Apgy, AGEpg, or Epg, we can build a complemented pairs tree automaton of size
at most (exp?(|py|) states, exp(|pgl) pairs). These tree automata can then be combined using
a cross product conmstruction to get a complemented pairs tree automaton for f; of size
(exp*(|f,]) states, exp(|f;]) pairs) which accepts an infinite |f;]-ary Z-tree (where L =
PowerSet(AtomicPropositions(f,})) iff it defines a model of f; as described above. By the
results of [ST81] the emptiness problem for a complemented pairs tree automaton with m
states and k pairs can be decided in time exp(k + log m); hence, emptiness of the f,
automaton is decidable in exp3(|f,]) time.

The tree automaton for an AGEp, subformula is designed so that it starts up at each
node of the tree the nondeterministic Buchi string automaton for py and runs it down the
designated path for Ep, to ensure that p, actually holds along it. (Along the designated
paths acceptance is determined by the string automaton; along non-designated paths accep-
tance occurs unconditionally). The tree automaton for an Epy subformula operate similarly
except that the string automaton only needs to be run down the designated path starting at
the root of the tree. These tree automata can be implemented in size (exp(|pg|) states, |py
pairs).

To build the tree automaton for an Ap, subformula, we first construct the determinis-
tic complemented pairs string automaton of size (expz(}pﬁﬂ) states, exp(|pyl} pairs) as
described in section 5 for the linear time subformula p,;. The tree automaton for Apg sub-
formula is then designed to simply run the deterministic string automaton for p; down every
path from the root. Since the tree automaton is deterministic, it accepts iff for all paths x in
the input tree the deterministic string automaton accepts iff for all paths x in the input tree

pg holds along x iff Ap, holds at the root of the input tree. This tree automaton will be of
size (exp?(|pgl) states, exp{|pgl) pairs).

22

Remark: The string automaton for p, must be deterministic in order to get the tree
automaton for Apg. To see this, consider two paths of the tree xy and xz which start off
with a common prefix but eventually separate to follow two different infinite suffixes y and

z. It is possible that pg holds along both paths, but in order for the nondeterministic string

automaton to accept, it might have to ®guess® while reading a particular symbol of x
whether it will eventually read the suffix y or the suffix z. The state it guesses for y is in
general different from the state it guesses for z. Consequently, no single run of a tree
automaton based on a nondeterministic string automaton can lead to acceptance along all
paths.

As a corollary, we have also obtained a small model theorem for CTL* since an
automaton accepts an infinite tree iff it accepts a finitely generable tree obtained by

*ynwinding® a finite tree ([RA69], [HR72]).

7. Expressiveness Results

We wish to relate the ®expressive power® of tree automata with branching time logics.
A precise comparison is difficult since (i) the logics can be interpreted over structures which
are trees with nodes of infinite outdegree whereas the automata take input trees of fixed,
finite outdegree, and (ii) the tree automata can distinguish between, e.g., the leftmost and
the rightmost successor node whereas the logics cannot. To facilitate a comparison, we
therefore restrict our attention to (i) structures corresponding to infinite binary trees and (ii)
symmetric binary tree automata with a transition function & S X X --> PowerSet(S X S)
for which (t,t') € &s,a) iff (t',t) € &s,a). We can then show that CTL* augmented with ex-
istential quantification over atomic propositons (EQCTL*, for short) is exactly as expressive
as symmetric pairs automata on infinite binary trees. Moreover, if we similarly augment UB
of [BMP81] (recall that in UB, A or E is paired with a single F, G, X, or U}, the resulting
logic {call it EQUB) corresponds to symmetric Buchi automata on infinite binary trees.

An EQCTL* formula is of the form 3Q,...3Q, f where { is a CTL* formula and the Q;
are atomic propositions appearing in it. The semantics is that, given a structure M =

(S,R,L), M,s £ 3Q,...3Q_ f iff there exists a structure M’ = (S,R,L’) such that M’;s & f where

23

L' extends L by assigning a truth value to each Q; in each state of S. EQUB is defined

similarly.

7.1 Theorem. EQCTL* is exactly as expressive as symmetric pairs automata on infinite bi-

nary trees.

Proof. Given any EQCTL* formula f; = 3Q,;..3Q_ f(P;,..P) with free atomic
propositions Py,...,P, we can construct an equivalent formula g(P,,..., P } of 525 with free
set variables P,...,P . For example, EFP, could be translated into a formula IP(PATH(P)
A 3x(x € P A x€ P,) where PATH(P) abbreviates A € P A Vy(yEP = (ybpePVyb, €P
A —{(ybg € P A yb; € P))). By [RA69] we can therefore construct a pairs automaton 4
which accepts an infinite binary Z-tree with &' = PowerSet(P,,...,P) iff f; holds at the root
of the corresponding structure. Since f; does not distinguish between left and right subtrees,
we can assume without loss of generality that A is symmetric, i.e., if A itself is not sym-
metric we can obtain an equivalent automaton A’ which is.

Let A’ be the same as A but with transition function & such that &(s,a) = {(t,u), (u,t)
: (t,u) € §s,a)}. Since any run of 4 is also a run of A', if 4 accepts an input tree, so does A’
Conversely, suppose there is an accepting run of A’ on an input tree M. M can be viewed as
an infinite graph G which has the shape of a binary tree with nodes labelled from 2 and
arcs labelled by either by or b;. By swapping the arc labels below appropriate nodes, we can
get a graph G* which is identical except for the arc labels and which corresponds to an in-
put tree M* accepted by A. Thus M* and G* define a model of ;. Since f; is oblivious to
the labels on arcs, G and M also define a model of f;. Because A accepts all trees defining
models of f;, 4 must also accept M. Thus, A and A’ accept exactly the same set of trees as
desired.

For the converse, let A be a symmetric pairs automaton on infinite binary trees. For
simplicity, we assume that the input alphabet is (or is coded as) X' = PowerSet({P;,..., P.}H
for some list of atomic propostions Py,...,P,. We can design an EQCTL* formula which is
true at the root of a binary S-tree (viewed as a structure in the obvious way) iff A accepts

the tree: Let {q,,...,q,} be the state set of A. Associate with each q; an atomic proposition

24

Q; Intuitively, Q; holds at node s iff A is in state q; at s. Any truth assignment to the Q;
defines a candidate run of 4 on the input tree. This is an actual run provided all transitions
are consistent with the transition function § of 4. We can easily write a formula
run(Q;,...Q,,) Wwhich ensures such consistency. For example, if 8(a;,1P1.Po}) = {(a9,93);
(43,9)} then AG((Q; APy AP, AP ALA -P) = (AX(Q, V Q3) A EXQ, A EXQy)) is
a conjunct of run(Qy,....Q,)-

Now, let the acceptance condition of A be given by the list
((RED,,GREEN,),...,(RED},GREEN, }) of pairs of sets of states (i.e., lights). If, for example,
RED,; = {q;,95} and GREEN; = {qs, a4} then the assertion that RED; flashes f.o0. and
GREEN, flashes i.0. along a path can be expressed by the path formula flash, = -~GF(Q;
V Qy) A GF(Q; V Q). Thus, the EQCTL* formula 3Q,...3Q_(run(Q,;...Q,) A A(flash,
V...V flash,) is equivalent to 4. 0

7.2 Theorem. EQUB is exactly as expressive as symmetric Buchi automata on infinite bi-
nary trees.

Proof. Let f; = EQI“'Bme(Pl’"'sPn’QD“'?Qm) be an EQUB formula with free
propositions P;,....P . Then f(Py,...P,Qq,,Qp) by itsell is UB formula with [ree
propositons Py,...P ,Qq,...,Q . Let 525, ¢ be the second order language of two successors
with one class of set variables ranging over only finite sets, another class of set variables
ranging over infinite sets, and explicit second order quantification allowed only for variables
of the first class. We can construct from f an equivalent formula g(P,,....P,Q,,...,Q) in
S2S, 5 (where the free variables are of the second class) because quantification over finite
sets suffices to express all the modalities of UB (e.g., AFP, can be expressed as ®there exists
a finite subtree all of whose frontier nodes satisfy P;*}). It is known ([RA83]) that for every
formula g(Pl,...,Pn,Ql,“.,Qm) of S2S, ¢, there is an equivalent Buchi automaton over binary
X'-trees where ' = PowerSet(Py,... P ,Q,,...Qy}). By introducing additional nondeter-
minism to ®*guess® the truth assignments to the Q; we can obtain from A a Buchi
automaton B on X-trees with & = PowerSet({P;,....P_}). The automaton B accepts exactly
those trees corresponding to models of 3Q,..3Q_f(P,....P,Q,,...Q,). As before, we can

assume without loss of generality that B is symmetric.
25

The proof of the converse, parallels the corresponding part of the proof of the previous
theorem: Let A be a symmetric Buchi automaton. This formula run(Q,,...,.Q,,) is actually
in UB syntax. To express the acceptance condition, that along every path, there are in-

finitely many occurences of states in GREEN we can write AGAF(V{Q;, : q; € GREEN}).

inl

8. Conclusions

We have given a triple exponential decision procedure for the full branching time logic
COTL* interpreted over R-generable structures. We have also compared the expressive
power of some branching time languages derived from CTL* with finite automata on infinite
trees. We believe that our results serve to underscore the intimate relationship between sys-
tems of Temporal Logic and finite automata on infinite objects. This relationship was first
exploited in [ST81] to give a decision procedure for PDL with repeat and was further
developed in [VWSS83]. An interesting aspect of our approach here is that by identifying
some special structure of the automata derived from the temporal formalism, we could ob-
tain better results than those obtained by relying solely on automata-theoretic techniques
([VW83],[PS83], [Wo82]). Perhaps such special structure will allow similar improvements in
decision procedures for other logics. Finally, we note one shortcoming of the automata-
theoretic approach as opposed to tableau based methods (cf. [BMP81], [EC82], [EH82]): it
provides little help in constructing an explicit, sound and complete axiomitization. Indeed,
the problem of giving an axiomitization for CTL* interpreted over R-generable structures is

still open.

g. Bibliography

[AB80] Abrahamson, K., Decidability and Expressiveness of Logics of Processes, PhD
Thesis, Univ. of Washington, 1980.

[BMP81] Ben-Ari, M., Manns, Z., and Pnueli, A., The Temporal Logic of Branching Time.
8th Annual ACM Symp. on Principles of Programming Languages, 1981.

[CE&81] Clarke, E. M., and Emerson, E. A., Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic, Proceedings of the IBM
Workshop on Logics of Programs, Springer-Verlag Lecture Notes in Computer
Science #131, 1981.

26

[CES83] Clarke, E. M., Emerson, E. A, and Sistla, A. P., Automatic Verification of
Finite State Concurrent Programs: A Practical Approach, POPL&3.

[EC82] Emerson, E. A., and Clarke, E. M., Using Branching Time Logic to Synthesize
Synchronization Skeletons, Science of Computer Programming, vol. 2, pp.
241-266, 1982.

[EHR2] Emerson, E. A., and Halpern, J. Y., Decision Procedures and Expressiveness in
the Temporal Logic of Branching Time. 14th Annual ACM Symp. on Theory of
Computing, 1982.

[EH83] Emerson, E. A., and Halpern, J. Y., 'Sometimes’ and 'Not Never’ Revisited: On
Branching versus Linear Time. POPLS83.

[EM83] Emerson, E. A., Alternative Semantics for Temporal Logics, Theoretical Com-
puter Science, vol. 26, pp. 121-130, 1983.

[FL79] Fischer, M. J., and Ladner, R. E, Propositional Dynamic Logic of Regular
Programs, JCSS vol. 18, pp. 194-211, 1979.

[GPSS80] Gabbay, D., Pnueli, A., et al.,, The Temporal Analysis of Fairness. 7th Annual
ACM Symp. on Principles of Programming Languages, 1980.

[HR72] Hossley, R., and Rackoff, C, The Emptiness Problem For Automata on Infinite
Trees, Proc. 13th IEEE Symp. Switching and Automata Theory, pp. 121-124,
1972.

[LA8O] Lamport, L., *Sometimes® is Sometimes *Not Never.® 7th Annual ACM Symp.
on Principles of Programming Languages, 1980.

[McN66] McNaughton, R., Testing and Generating Infinite Sequences by a Finite
Automaton, Information and Control, vol. 8, 1966.

[MP79] Manna, Z., and Pnueli, A., The modal logic of programs, Proc. 6th Int. Col-
loquium on Automata, Languages, and Programming, Springer-Verlag Lecture
Notes in Computer Science #71, pp. 385-410, 1979.

[ME74] Meyer, A. R., Weak Monadic Second Order Theory of Successor is Not Elemen-
tary Recursive, Boston Logic Colloquium, Springer-Verlag Lecture Notes in
Mathematics #453, 1974.

[PN77] Pnueli, A., The Temporal Logic of Programs, 19th Annual Symp. on Foun-
dations of Computer Science, 1977.

[PNg1] Pnueli, A., The Temporal Logic of Concurrent Programs, Theoretical Computer
Science, V13, pp. 45-60, 1981.

[PS83] Pnueli, A. and Sherman, R., Personal Communication, 1983.

[RAGY] Rabin, M., Decidability of Second order Theories and Automata on Infinite
Trees, Trans. Amer. Math. Society, vol. 141, pp. 1-35, 1969.

[RA70] Rabin, M., Automata on Infinite Trees and the Synthesis Problem, Hebrew
Univ., Tech. Report no. 37, 1970.

[RA83] Rabin, M., personal communication.

[RS59] Rabin, M. and Scott, D., Finite Automata and their Decision Problems, IBM
J. Research and Development, vol. 3, pp. 114-125, 1859.

[ST81] Streett, R., Propositional Dynamic Logic of Looping and Converse (PhD Thesis),
MIT Lab for Computer Science, TR-263, 1981. (a revised version appears in In-
formation and Control, vol. 54, pp. 121-141, 1982.)

[Wo82] Wolper, P., A Translation from Full Branching Time Temporal Logic to One

Letter Propositional Dynamic Logic with Looping, unpublished manuscript, 1982.

27

[VW83] Vardi, M., and Wolper, P., Yet Another Process Logic, CMU Workshop on
Logics of Programs, Springer-Verlag, 1983,

[WVS83] Wolper, P., Vardi, M., and Sistla, A., Reasoning about Infinite Computations,
24th FOCS, 1983.

28

