SET THEORY AND ITS SYMMETRIC LOGIC

Dr. Frank M. Brown

TR-83-13 August 1983



SET THEORY AND ITS SYMMETRIC LOGIC

Dr. Frank M. Brown
Dept. Computer Sciences
e University of Texas at Austin
Austin, Texas 78712
CS BRGW NQUTEXAS-20

1 INTRODUCTION

The SYMLolic EVALuator deduction system and the SYMMETRIC LOGIC rules are applied to proving
theorems in classical and Ontological set theories.  After briefly describing SYMEVAL and the
SYMMETRIC LOCIC, we give one example proof from each set theory.

2 SYMEVAL

The SYMbolic EVALuator is a general interpreter of the Frege's quantificational logic[Frege] (ie. first
order logic with schemalors, but not higher order logic). Higher order logic is handled by axiomatizing it
within first order logic. The actual symbols and inference rules of the logic are arbitrary as far as
SYMEVAL is concerned. SYMEVAL evaluates a function value {f argl..argN} in one of two ways. If the
funciion  is not an FSUBRSYM then it applies the definitions, axioms, and rules about [ to the result of
evaluating cach argument. However if { is an FSUBRSYM then only the [irst argument is evaluated
before the f laws are applied. SYMEVAL’s symbolic evaluation of expressions is thus somewhat analogous
to LISP's[McCarthy | method of evaluating expression with the exception that SYMEVAL returns a

snormalform® expression equal to the input expression whereas LISP returns the meaning of that
form® expression. Thus whereas (CONSIQUOTE AYQUOTE BJ} evaluates to its meaning: {A.B}

2

“normal
in LISP, it SYMbolically EVALuates to the equal expression (QUOTE{AB)).
expression allows SYMEVAL 1o handle guantified variables in o graceful manner. For example, whereas
the evaluation of {CONS X Y} with unbound variables X and Y gives an error in LISP, its SYMbolic
EVALuation results in the equal expression {CONS X Y} SYMEVAL is described in more detail in

The evaluation to an equal

B?(}Wﬁééﬁ% .

3 THE SYMMETRIC LOGIC DEDUCTION SYSTEM
The 5YM X A1, theorem prover now runs with a new logical systemn called SYMMETRIC LOGIC which
treats universal and existential quantifiers in an snalogous manner. For example as suggested by [Wang2]
several vears ago, SYMMETRIC LOGIC rewrites both of the following sentences to (FOO A), after
evaluating their subexpressions, when Lrying to prove them:
(ALL X (IMPLIES (EQUAL X A) (FOO X}))
(EX X (AND (EQUAL X A) (FOO X)}))
Thus the essence of the SYMMETRIC LOGIC technigue 15 to push guantificrs to the lowest scope possible
in  hopes  of finding a2 way to  climinate  them. Thus  unlike  the  sequent
caleulus(Szabo,Brown1,3,4,6,12,25 Bibel2] and other logic systems[Bledsoel,2] based on the Prawitz-
Lm;s;;sm; Unification algorithm [Prawitz, Robinson|, which essentially loses the scope of the existential
quantifier during the skolemization process, SYMMETRIC LOGIC handies equalities very well indeed.



The power of a logic which handles equalities like this is very convincing, in an application domain dealing
essentially with equations such as real algebra, logic programming, and language analysis. 5YMMETRIC
LOGIC is the synthesis of several earlier logic systems including the initial symmetric logic used by the
real algebra rule paekage%ﬁrmmﬁé?, and the bind logic used by the logic programming and natural

i

language rule pac%ages{Bmwn‘Zﬁ]. SYMMETRIC LOGIC is described in more detail in BROWN{&G}.
ABSTRACTION LOGIC

The SYMMETRIC LOGIC has a primitive symbol: LAMBDA for functional abstraction {ie. for forming
the werthverlauf of a function value} and a primitive symbol: AP for function application: AP,

(LAMBDA v(p v)}
(AP g a)

Five Axioms and theorems similar to the set theory abstraction axioms used in [Brown4,6] are assumed for
lambda conversion:

Ti.(BADLAMBDAP X)  ==> (AP 5 X) = NIL
T9. (NOT(BADLAMBDAP X)) ==> (AP(LAMBDA X(p X)X = (p XJ
A3, (AP{LAMBDA X(p X))X) = (IF(BADLAMBDAP X)NIL(p X))

T4 . (AND (NOT (BADLAMBDAP X))
(NOT (BADLAMBDAP S))
(NOT (LAMBDAP $))) ==> (AP § X) = (EQUAL S X)
AS . (AND{NOT{BADLAMBDAP 5})
(NOT (LAMBDAP §))) ==> (AP S X) = (IF(BADLAMBDAP Y)NIL(EQUAL S X))

One axiom for determining the equality of functions is assumed:
A6. (EQUAL(LAMBDA v(p v)) (LAMBDA v{g v})) =
(ALL ¥ (EQUAL(AP(LAMBDA v(p v))X) (AP(LAMBDA v{p v))X) )
One theorem (similar to T1 above) is assumed for use by the type system:

T7.(AP F ¥) ==> (NOT(BADLAMBDAP X))

Set theoretic abstaction: SET and ELEmenthood are defined as follows:

(SET v{p v)) = (LAMBDA v{p v))

(ELE x s) = (APPLY s %)
Thus every function is a set and every set is a function. Functional equality 1s of course EQUAL, whereas
set equalily s

(SETEQUAL x y) = {ALL V(IFF(ELE V ®(ELEV w3 ))

The set theory axioms are neutral with respect to a classical or Lesniewskian set theory. For example, ot
least the following axiom should be added for Lesniewskian set theory: (EQUAL (SET v(EQUAL v X}} X}

4 TRACING PROOFS

As SYMEVAL recursively evaluates expressions tracing information is produced whenever a definition,
axiom, or rule is applied. This information consists of three parts: 1. An input expression to which the
axiom is being applied, called 1. 2. The midterm expression produced by the application of the axiom,



called M. 3. The outpul expression obtained by recursively evaluating the M expression, called O. Thus, a
irace will generally be of the form:

Ii:exp
Mi:exp
12:exp

H2:8xp

02:exp
12:exp

02:exp
0i:exp
where the numbers immediately following [ M,or O are the level at which that application takes place. At
a given level number i, Oi and Mi are always associated with the preceeding Ii.

5 CLASSICAL SET THEORY

Axioms for LAMBDA abstraction are part of the SYMEVAL-QUL system and are described earlier. Set
Theory is developed in terms of LAMBDA abstraction by first defineing set theoretic abstraction and
elementhood in terms of LAMBDA abstraction and APPLYcation, and then by asserting which sets are
good sets in the sense that they may be members of other sets.

EXAMPLE

SYMEVAL can prove that the Weiner-Kurtowski st theoretic definition of an ordered pair is in fact an
ordered pair. This proof is obtaind without the use of any lemmas whatscever, and in fact in the course
of the proof SYMEVAL proves a number of interesting lemmas about the equality of unordered pairs and
unit sets. The only other automatic proof of this theorem that we are aware of in the literature is the
sequent calculas based proof in [Brown€] which assumed several lemmas about unordered pairs and
unitsets, {That sequent caleulas theorem prover could prove the lemmas that were assumed if they were

explicitly given to it.}

In order to state the ordered pair theorem, quantifiers whose bound variables range over anything but
bad sets are declared

(SETZ QUANTSYM(APPEND ° (QALL QEX SET) QUANTSYM))
(VASSUME *SET (REMOVE 'BADLAMBDAP UNIVERSE))
{VASSUME 'QALL (REMOVE °BADLAMBDAP UNIVERSE))
(VASSUME 'QEY (REMOVE 'BADLAMBDAP UNIVERSE})

and then the following definitions are made:

(DCLLG(FQUAL (FLE X Y) (AP Y X
{EQUAL (SET X{SCHi X)) (LAMBDA X{SCHi X))
(EQUAL (QALL X(SCHI X)) (ALL X(IF (BADLAMBDAP X) T (8CH! X))
{EQUAL (GEY ¥(SCH2 X)) (EX X{AND (NOT(BADLAMBDAP X)) (SCH2 X)))
(EQUAL {EQUALSETS A& B) (QALL X(IFF(ELE ¥ AJ(ELE X B})) )
(EQUAL (UNITSET A) (SET X(EQUAL X 4)) )
(EQUAL {PAIRSET A& B} (SET X (LOR{EQUAL ¥ A)(EQUAL X B))) )

)



(EQUAL (DRDPAIRSET A B) (PAIRSET(UNITSET A) (PAIRSET A B)) )

Two axioms of set theory are assumed, namely that unit sets and unordered pairsets are not
BADLAMBDAPs:

AXS: (EQUAL (BADLAMBDAP (LAMBDA X(EQUAL X A))) NIL)
AX6: (EQUAL (BADLAMBDAP (LAMBDA X(IF(EQUAL X A)T(EQUAL X B)))) NIL)

The ordered pair theorem: that two ordered pairs are equalsets iff their components are equal is now
proven.

The expression to be recursively simplified is:
(QALL ¥ (QALL ¥ (QALL U (QALL V (IFF (EQUALSETS (ORDPAIRSET X Y)
{ORDPAIRSET U V)
(A¥D (BQUAL X U)
(EQUAL Y VI
T1i:(ORDPAIRSET X Y}
by use of: ORDPAIRSET
¥1: (PAIRSET (UNITSET X}
{PAIRSET X YJ)
12: (UNITSET 1)
by use of: UNITSET
%2 (SET =1 (EQUAL %1 X))
02: (LAMBDA *1 (EQUAL #1 1)}
12: (PAIRSET X Y3
by use of: PAIRSET
M2: (SET *2 (LOR (EQUAL »2 X)
(FEQUAL *2 V3))
02: (LAMBDA %2 (IF (EQUAL *2 XD
T

(EQUAL %2 1))
- (PATRSET (LAMBDA =1 (EQUAL *1 X))
(LAMBDA =2 (IF (EQUAL %2 X)
T
(EQUAL %2 Y))))

et
(o]

by use of: PAIRSET
M2:{SET *3 (LOR (EQUAL *3 (LAMBDA =1 (EQUAL *1 X))}
(EQUAL #3 (LAMBDA =2 {(IF (EQUAL %2 X}
T
(EQUAL *2 YD)
02 (LAMEDA %3 (IF (EQUAL =3 (LAMBDA =1 (EQUAL #1 X})J
T
(FQUAL 3 (LAMBDA =2 (IF (EQUAL *2 X
T

(EQUAL #2 Y330
01 (LAMBEDA =3 (IF (EQUAL %3 (LAMBDA =1 (EQUAL %1 X))

i
(EQUAL =3 (LAMBDA =2 (IF (EQUAL %2 X)
T
(EQUAL %2 Y3)22))
T1:{ORDPAIRSET U V)
by use of: ORDPAIRSET
Y1 (PAIRSET (UNITSET U)
{PAIRSET U V))
12 (UNITSET 1)
by use of: UNITSET
M2 (8ET *4 (EQUAL =#4 U})
02: (LAMBDA *4 (EQUAL =4 U))
19 {PAIRSET U V)
by use of: PAIRSET
M2 (SET =5 (LOR (EQUAL #5 U)
(EQUAL =5 ¥)))
02: (LAMBDA %5 (IF (EQUAL %5 U)



T
(FQUAL x5 VI 1)
72 (PAIRSET (LAMBDA =4 (EQUAL *4 U))
{LAMBDA #5 (IF (EQUAL 5 )

4
{EQUAL =5 V})))
by use of: PAIRSET
M2: (SET *6 (LOR (EQUAL %6 (LAMBDA %4 (EQUAL *4 U)))
(EQUAL *6 (LAMBDA *5 (IF (EQUAL %5.1)
T
{EQUAL =5 V3333 1)
02: (LAMBDA %6 (IF (EQUAL =6 (LAMBDA #4 (EQUAL x4 U)))

T
(EQUAL %5 (LAMBDA *5 (IF (EQUAL 5 U}
T
(EQUAL *5 V)10
01:(LAMBDA %6 (IF (EQUAL %6 (LAMBDA x4 (EQUAL %4 U)))
T
(EQUAL %6 (LAMBDA *5 (IF (EQUAL *5 U)
T

(EQUAL *5 ¥))))))
I1:(EQUALSETS (LAMBDA #3 (IF (EQUAL *3 (LAMBDA *1 (EQUAL *1 X)J})
T
(EQUAL *3 (LAMBDA *2 (IF (EQUAL *2 X)
T
{EQUAL =2 Y)))33)

(LAMBDA *6 (IF (EQUAL *6 (LAMBDA *4 (EQUAL %4 U)))

PN I

FQUAL %65 (LAMBDA %5 (IF (EQUAL =5 U)
T
{FQUAL =5 ¥)33300)
by use of: EQUALBETS
Mi:(QALL %7 (IFF (ELE *7 (LAMBDA %3 (IF (EQUAL %3 (LAMBDA *1
(EQUAL *1 X))
T
(EQUAL #3 (LAMBDA
%9
{IF {(EQUAL x2 X
T
{EQUAL #2 )30 0)
(ELE *7 (LAMBDA *8 (IF (EQUAL =85 (LAMBDA #4
(EQUAL *4 01

T
(EQUAL *6 (LAMBDA
*5
{IF {EQUAL *5 U)

T
(EQUAL %5 V33)3101))
19: (IFF (IF (EQUAL *7 (LAMBDA %1 (EQUAL *1 XJ))
T
(EQUAL #7 (LAMBDA *2 (IF (EQUAL *2 X)
T
(EQUAL =2 )13}
(IF (EQUAL #7 {(LAMBDA %4 (EQUAL %4 D))

{EQUAL =7 (LAMBDA %5 (IF

(EQUAL *5 U)
T
(EQUAL *5 V23303
by use of: IFF
M2 (IF (IF (EQUAL %7 (LAMBDA »1 (EQUAL *1 X3))

T
(EQUAL %7 (LAMBDA *2 (IF (EQUAL #*2 X)



M3

03:
i3

M3

03:
I3

=
[

13:

ks

by use of:

by use of:
D(ALL =9 (EQUAL (AP

:: (ALL

(FQUAL %2 Y33
(IF (IF (EQUAL %7 (LAMBDA *4 (EQUAL *4 U)))
T
(EQUAL *7 (LAMBDA #5 (IF (EQUAL »5 U)
T
(EQUAL *5 ¥)3)))
T WIL)
F{EQUAL-*7—(LAMBDA *4 (EQUAL %4.U}))
T
(EQUAL #*7 (LAMBDA %5 (IF (EQUAL =5 U)
T
(EQUAL #5 V)23
HIL T

- (EQUAL (LAMBDA =1 (EQUAL %1 X))

{LAMBDA *4 (FQUAL =4 U)})

(LISPLINK SYMEQUAL)

(ALL =8 (EQUAL (AP (LAMBDA #1 (EQUAL *1 X))
%*8)

(4P (LAMEDA =4 (EQUAL =4 UD

%*83))

{(EQUAL U X

(FQUAL (LAMBDA =1 (EQUAL =1 X3

(LAMBDA *5 (IF (EQUAL =*5 U)

T
{EQUAL *5 V331
{(LISPLINK SYMEQUAL)
{LAMBDA =1 (EQUAL %1 X))
%G
(AP (LAMBDA =5 (IF (EQUAL *5 U)
T
(EQUAL *5 V)))
*¥8)))

NIL

(FQUAL (LAMBDA =2 (IF (EQUAL 2 X)

(EQUAL %2 Y)))
{LAMBDA x4 (EQUAL #4 U)))

by use of: (LISPLINK SYMEQUAL)
10 {EQUAL (AP (LAMBDA x2 (IF (E%UéL 2 1)
(EQUAL ¥2 YO
%10}
(AP (LAMBDA =4 (EQUAL *4 U))
#1033)
S(IF (EQUAL U XJ
(FQUAL ¥ X0
HIL)
(EQ Ué? {LAMBDA *2 (IF (EQUAL =2 X}
T
{EQUAL =22 Y)3)
{LAMBDA #5 (IF (EQUAL =5 U}
T
(EQUAL *5 V)3 ))
by use of: (LISPLINK SYMEQUAL)
“(ALL *11 {EQUAL (AP (LAMBDA #2 (IF (EQUAL *2 X}
T
(EQUAL =22 V)))
#11)
(AP (LAMBDA »5 (IF (EQUAL %5 U}
T

(EQUAL »



*1131)
p3: (IF (EQUAL X U)
(IF (EQUAL Y U}
{EQUAL V )
(EQUAL ¥ V1)
{(IF (EQUAL X V)
(IF (EQUAL Y ¥)
HIL
(FOUAL Y 1))
NIL))

02: (IF (EQUAL %7 (LAMBDA *1 (EQUAL #1 X)))
(EQUAL U X)
(IF (EQUAL *7 (LAMBDA #*2 (IF (EQUAL *2 X)
T

{EQUAL *2 )33
(IF (EQUAL U X
(IF (FQUAL Y X0

T
(EQUAL Y V)
(IF (EQUAL X ¥
(IF (EQUAL Y V)
WIL
(FQUAL ¥ UD)
NIiL))
(IF (EQUAL #7 (LAMBDA =4 (EQUAL *4 U)))
NIL
(IF (EQUAL *7 (LAMEDA 5 (IF (EQUAL 5 U)

T
(EQUAL #5 V)1))
HIL T3
12: (QALL #7 (IF (EQUAL *7 (LAMBDA *1 (EQUAL *1 X)))
(EQUAL U XD
(IF (FQUAL *7 (LAMBDA *2 (IF (EQUAL %2 X}
T

{EQUAL *2 Y1)
{IF (EQUAL U 1
(IF (EQUAL Y O

(EQUAL ¥ V)
(IF (EQUAL X ¥
(IF (EQUAL Y V)
HIL
{EQUAL Y U})
WIL)Y)
(IF (EQUAL %7 (LAMBDA *4 (EQUAL *4 U)))
NIL
(IF (EQUAL #7 (LAMBDA *5 (IF (EQUAL %5 U)
T
(EQUAL =5 V)01

HIL 1333132
by use of: QALL
M2 (ALL *12
(IF (BADLAMBDAP %12}

(IF (EQUAL %12 (LAMBDA =1 (EQUAL *1 X)))
(EQUAL U X
(IF (EQUAL =12 (LAMBDA *2 (IF (EQUAL *2 X)

(EQUAL %2 Y))))
{IF {EQUAL U X0
(IF (FQUAL Y X



-3

T
{(EQUAL Y V)

(IF (EQUAL X V)

{IF (FQUAL Y V)
WIL
{(EQUAL Y UM
NIL))

(IF (EQUAL =12 (LAMBDA x4 (EQUAL x4 Uy

13:

M3

03:
13:

M3:
03:
13:

M

03:
13

M3
03:
I3:

M3
03:
- {BADLAMBDAP (LAMBDA

T
4

W3
CRIL
02: (IF (EQUAL U X)

03

01 (IF

(IF (EQUAL *12 (LAMBDA *5 (IF (EQUAL *5 U)

{BADLAMEDAP (LAMBDA
by use of: AXB

(HIL

HIL
(BADLAMBDAP (LAMBDA

by use of: AXE

NIL

NIL

(BADLAMBDAP (LAMBDA
by use of: AXS

(NIL

NIL
{BADLAMEDAP (LAMBDA

by use of: A6

NIL

KIL

{BADLAMBDAP (LAMBDA
by use of: AXb

NIL

NIL

by use of: A¥XS
NIl

(IF {BQUAL Y X)
(EQUAL V XD
(EQUAL ¥ V)

NIL)

(EQUAL U X}

(IF (EQUAL Y XJ
{EQUAL ¥V X
(EQUAL Y V)

HIL)

11:(IFF (IF (EQUAL U X

{IF (EQUAL Y X0
(EQUAL V 1
(EQUAL Y V)
NIL)
(IF (EQUAL X )
(EQUAL Y V3
HILY)

by uss of: IFF

#3

%2

#4

%5

x4

%5

3
/

NIL T30
(EQUAL =1 X))}

{IF (EQUAL #2 X)

{
T
(EQUAL %2 T))))

{EQUAL %4 X))

(IF (EQUAL #5 X)
T
{EQUAL *5 V)31

{EQUAL =4 10}

(IF (EQUAL x5 X}
T

{EQUAL %5 V1))

T
{EQUAL =5 V3)))



Mi:(IF (IF (EQUAL U X

(IF (EQUAL Y X)
{EQUAL V X0
(FQUAL Y V)

WILY

(1F {IF (EQUAL X U}

(EQUAL Y V)
NIL)

il
{(IF (IF {(EQUAL L U}
(FQUAL Y V3
HIL)
HIL ™H
01:7
11:(QALL V T
by use of: QALL
Mi:(ALL %21 (IF (BADLAMBDAP #21)
T TV
01T
71:(QALL U T
by use of: QALL
¥1:(ALL %22 (IF (BADLAMBDAP %22}
T TH
01:T
11 (QALL Y T)
by use of: QALL
Mi:(ALL %23 {IF (BADLAMBDAP %23}
TTH
01:7T
1:(QALL ¥ TJ
by uge of . HALL
M1 (ALL #24 (IF (BADLAMBDAP %24)
T T))
01:7T

The result of recursive simplification is:
T
which is true. QED.

EXE:OXEXQZG;’EXS:GfEXiZ@!EXSSﬁfEX%Z%XEX?ZG,’EXSZQEEXQ:G!EXE{)ZG,’
ALLK:QfALL*E:f}fﬁii&zQZ!ALL4=GKAL15$$féLL§:iO/RLL??-G!ALLSZ@;’ALLGZGf’éLLi%2(};”

6 ONTOLOGY

Lesniewski's GﬁtfﬁogyEiasshf’ié§f=my} is 2 set theory which grew out of the traditions of Medieval logic.
Its "sets® closely correspond to noun phrases, including names, fictitious names(eg. Pegasus) and more
general nouns. Its "elementhood® predicate corresponds to to the intransiiive verb IS in English, and

more closely to the Latin EST.

EXAMPLE SYMEVAL can prove that (Z X Y} is a permutation of (X Y Z). In order to do this, we
first define recursive ontological definitions of of the notion of a permutation:

(DCLLE
(EQUAL(PERMSET L) (IF (EQUAL L (NILSET)
HIL
{INSERTSET (CAR L
(FQUAL (NILSET) (LAMBDA X (EQUAL X NIL)
(FQUAL(CONSET 4 B)
(LAMBDA X(EX Y(EX Z(AND(IS Y A)(AND(IS Z B) (EQUAL X(CONS Y Z)31)))))

S



(FQUAL (INSERTSET X L)
(IF(EQUAL L (NILSET))
{CONS ¥ NIL)
(NOMINAL DR(CONSET X L)
(LAMBDA Y(EX Z{AND(IS Z L)

{1S Y{CONSET(CAR Z}

(EQUAL (NOMINAL.CR A B)
Py "{1

(INSERTSET X(CDR Z)3)331333))

LAK FR LI AN

(SETQ TRACELIST *(NOMINAL.OR CONSET PERMSET INSERTSET)

A proof of the Ontological theorem:

(IS (QUOTE(Z Y X)) (PERMSET(QUOTE(X Y Z))))
The prooi was edited by deleting most traces

is given below.
less than level 2.

The expression to be recursively simplified is:

(1s {(QUOTE {(Z ¥ X}
(PERMSET (QUOTE (X Y Z33))
11 {PERMSET (QUOTE (X Y Z)))
by use of: PERMSET
Mi:(JF (EQUAL {QUOTE (X Y Z))
(KILSET))
NIiL
(INSERTSET (CAR (QUOTE {X Y Z)J)

{PERMSET (CDR (QUOTE (X Y Z3))3))

12: (PERMSET (QUOTE (Y 2)))
by use of: PERMSET
M2: (IF (EQUAL (QUOTE (Y Z))
(NILSET))
NIL
(INSERTSET (CAR (QUOTE (Y 2)))

{PERMSET (CDR {(QUOTE (Y Z})1)3)

1% (PERMSET (QUOTE (Z)))
by use of: PERMSET
M3 {IF (EQUAL {(QUOTE (Z))
(NILSET))

[

i1
I

L
{INSERTSET (CAR {(QUOTE (Z)))

{PERMSET {CDR (QUOTE (23313}

14 (PERMSET NIL)
by use of: PERMSET
¥4 (IF (EQUAL NIL (NILBET))
WIL
(INSERTSET (CAR NIL)
(PERMSET (CDR NIL)))

V3
T (QUOTE Y}
(QUOTE (Z)))
by use of : INSERTSET
M3:{IF (EQUAL (QUOTE (Z))
{HILSET})
{CONS (QUOTE Y)
HIL)
{NOMINAL .OR (CONSET (QUOTE V)
{(QUOTE (233}
{LAMBDA
#8

(EX =8¢ (AND (1S %9 (QUOTE (Z))3
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(1S #8 (CONSET {(CAR *§)
(INSERTSET (QUOTE Y)
(CDR *932)3)3))

3
03: {LAMBDA %20 (IF (EQUAL (QUOTE (Y 20)
%207

T
(EQUAL (QUOTE (Z Y3)

02 (LAMBDA %20 (IF (EQUAL {(QUOTE Y zn
%207

i
(EQUAL (QUCTE (Z Y))
*203))
12 (INSERTSET (QUOTE O
(LAMBDA *20 {IF (EQUAL (QUOTE (Y Z))
%*20)

i
(EQUAL (QUOTE (Z Y3
*20))))
by use of: INSERTSET
¥2: (IF (EQUAL (LAMBDA #2¢ (IF (EQUAL (QUOTE (Y 7))

*20)
T
{EQUAL {(QUOTE (Z )
*20)))
{NILSET))
(CONS (QUOTE 1)
NIL)

(NOMINAL.CR
{CONSET {(QUOTE X)
{LAMBDA =20 (IF {(EQUAL (QUOTE (Y Z})
#20)

i
{EQUAL {(QUOTE (Z Y))
*203)3)
{LAMBDA *21
(F¥ %22 (AND (IS =22 (LAMBDA
%20
{IF (EQUAL {QUOTE (Y Z))

%20}

T

(EQUAL (QUOTE (Z ¥
%2037

(15 %21 {CONSET (CAR %22)
(INSERTSET (QUOTE X)
(CDR %2233)323)))
02: (LAMBDA #81
(IF (EQUAL #*8B1 (QUOTE (LY 2}
T
{1F {EQUAL =81 (QUOTE (X Z Y3))
i
{IF

(EQUAL %61 {(QUOTE (Y X 2)))

T

(IF (EQUAL =61 {(QUOTE (Y Z X3
kel

i
{IF (EQUAL %81 (QUOTE (Z X O))
T
(EQUAL #81 (QUOTE (Z Y 132333030}
01: (LA¥BDA %81
(IF (FQUAL *81 (QUOTE (X Y 2))3
T



i1

(IF {(FQUAL %81 (QUOTE (X Z I
T
(IF (EQUAL =81 (QUCTE (Y X Z)))
T
(IF (EQUAL #»81 (QUOTE (Y Z X3 )

i
(IF (EQUAL =81 (QUOTE (Z X V)))
T
OUAL %81 (QUOTE (Z Y X110

The result of recursive simplification is:
T
which is true. QED.

EXG:O/EXX:5/EX2=O/EX3:25iEX@ZOfEX5=8/EXS=4XEX7:GfEX8:§/EX%ZG/EXlG:O/
ALLOZG/ALLI:GféLLEZO/ALL3=1/ALE%ZGIALLEZQfALLSZ1fALL?=0/ALL8=GfALL9=G/ALLi0=Ol

7 CONCLUSION

The SYMMETRIC LOGIC has been applied to proving some theorems in set theory in order to fest its
ability as a general logic for deduction. We do pot pretend that the SYMMETRIC LOGIC can yet prove
as wide a range of theorems as the sequent calculas based set theory theorem
provers[Brown4,6,Bledsoel,2, Pastre]. However, we have shown that the SYMMETRIC LOGIC can prove
theorems which have not been proven with sequent calculas based theorem provers.

T wish to thank my students who have worked on this project, particularly Song Park worked on the set

theory examples.

8 REFERENCES

BibelZ? W. and Schreiber J. ®Proof Search in a Gentzen like system of
first order logic®, INTERNATIONAL COMPUTING SYMPOSIUM 1975,
North Holland, Amsterdam.

Bledsoel ¥W.W. "Splitting and Reduction Heuristics in Automatic Theorem
Proving® ARTIFICIAL INTELLIGENCE vol. 2, no.l Spring 1971.

Biedsoe? W.W. "Non Resolution Theorem Proving® ARTIFICIAL INTELLIGENCE
Yol. 9, 1877.

Brown4,F.M., ®*A Theorem Prover for Elementary Set Theory®, bth
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, MIT, August
1977. Alsc the abstract is in the WORKSHOP OH AUTOMATIC DEDUCTION
COLLECTED ABSTRACTS, MIT, August 1977.

Browns,F.M., *Towards the Automation of Set Theory and its Logic®,
ARTIFICIAL INTELLIGENCE, Vol. 10, 1978.

Brown24 ,F.M. "A Deductive System for Real Algebra” TR 141, March 1980.

Brown26,F.M. "Computation with Automatic Theorem Provers®, to appear
in the proceedings of the NSF workshop on Logic Programming,
Los Angeles, 1981

rown25,F.M *Experimental Logic and the Automatic Analysis of Algorithms”®
The Army Conference on the Applications of Artificial Intelligence to
Battlafield Information Management® To appear in Spring 1884.



Frege Gottlodb, "Begfiffschrift, a formula language, modeled upon that
of arithmetic, for pure thought® 1879, in FROM FREGE TO GODEL,
Harvard Univ. Press 1867.

Henry,D.P., MEDIEVAL LOGIC AND METAPHYSICS, Hutchinson & CO LID, 1972.

Luschei,E. C., THE LOGICAL SYSTEMS OF LESNIEWSKI, 1982.

McCarthy, J. eb. al. LISP 1.5 Programmer’s Manual, MIT Fress, 1986.

Pastre D. DEMONSTRATION AUTOMATIQUE DE THECOREMS EN THEORIE DES ENSEMBLES
These de 3eme cycle, Paris VI, 1876.

Prawitz D. ®An Improved Proof Procedure® THEORIA 26, 1960.

Robinson,J.A. "A machine oriented logic based on the resclution
principle® J.ACM 12, 1865.

Szabo,M.E. ed. THE COLLECTED PAPERS OF GERHARD GENTZEN, Horth Holland,
Amsterdam, 1969.

Wang2 Hao "On the long-range prospects of automatic theorem-proving®,
LECTURE HOTES IN MATHEMATICS: SYMPOSIUM ON AUTOMATIC DEMONSTRATION,
held a2t Versailles/France 1968, Springer-Verlag 1970.



