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Abstract

This paper discusses two general schemes for performing branch-and-bound {(B&B) search in
parallel. These schemes are applicable in principle to most of the problems which can be solved
by B&B. The schemes are implemented for SSS#, a versatile algorithm having app“lications in
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parallel SSS# is studied in the context of And/Or tree and game tree search. The paper concludes

with comments on potential applications of these parallel implementations of 555+ in structural

pattern analysis and game playing.
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1. Introduction
And/Or graphs provide graphical representations for problem reduction formulations. Due
to the natural correspondence between context-free grammars and And/Or graphs [8], they have

also been found quite useful as structural (descriptive) models for some types of patterns [12]. In

the context of waveform parsing applications, Stockman [30], [32] developed a procedure called
SS§S* (state space search) which searches an And/Or graph for the description of a pattern. By
developing alternate descriptions of a pattern in a “best-first manner”, S55+* efliciently produces a
largest merit description, when the merit is defined in a specific manner. Stockman noticed that,
due to a structural correspondence between And/Or graphs and game trees, SSS* can also be used
for performing minimax search of game trees. What came as a greater surprise was that SS5%
outperforms the classical alpha-beta algorithm [13] for game tree search in terms of the number of
nodes evaluated [31]. The relative performance of SSS* with respect to alpha-beta, according to

various performance measures, is a subject of continuing investigations [31], [25], [28], [5].

Various heuristic search procedures for state space search (e.g., A* [23]), And/Or graph
search (e.g., AO* [24]), and game tree search have been developed in Artificial Intelligence, and
have been thought to be related to Branch and Bound(B&B) procedures [10], [18] of Operations
Research: but the relationship between these two classes of procedures has been rather controver-
sial (e.g., see Pohl [26]). In [15], [16], [22] we have presented a general formulation for B&B and
have shown that a number of Al search procedures such as A*, AO*, 555, B+ [4] and alpha-beta
are special cases of our B&B formulation. By considering these procedures under B&B framework
it is easy to understand their similarities and differences. The B&B formulation presents 2 unified

approach to simulating and analyzing a number of search procedures.

Besides providing a better understanding of the nature of and the relationships among vari-
ous search procedures, the B&B formulation also makes it easy to visualize parallel implementa-
tions of many search procedures. This paper discusses two general schemes for performing B&B
search in parallel. These schemes are applicable in principle to most of the problems which can

be solved by B&B. But the effectiveness of a parallel implementation is expected to be dependent
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upon the nature of the specific problem being modeled. The schemes are implemented for S85=,
and the performance of the parallel implementations is studied in the context of And/Or tree and
game tree search. A number of parallel implementations of alpha-beta and B&B have been pro-
posed and implemented; the effectiveness of the parallel implementations of SS5# can be

evaluated in the context of the performances of these implementations.

Section II surveys the work on parallel implementations of alpha-beta and B&B procedures.
Section III briefly reviews And/Or trees and considers how they can be viewed in two different
ways as models of two person, perfect information board games. Section IV presents a brief
review of branch and bound. Section V shows how SSS#* can be considered as a B&B procedure
from two different view points. Section VI presents two general schemes for performing B&B pro-
cedures in parallel and implements‘ them for SSS*. The simulation results of parallel SSS*
applied to game trees of various heights and depth are also presented. Section VII comments on
the potential applications of these parallel implementations of SSS* in structural pattern analysis

and game playing, and concludes with suggestions for further work.
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/1. A Brief Survey of Previous Work

Various researchers [6], [11], [19] have proposed and investigated parallel implementations
for Branch-and-Bound. Imai et. al. [11] proposed a parallel depth first B&B algorithm in which n

processes work concurrently on n ”deepest” {(or n most recently generated) subproblems. The set
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of generated subproblems is kept in a common store accessible to ail the processors so that th
B&B processes running on them can choose the currently deepest subproblem in each cycle of
branching and bounding; hence this implementation is suitable only for multiprocessor architec-
tures. In a parallel implementation proposed by Ma and Wah [19], n concurrent B&B processes
work on n currently "best” subproblems. In their implementation, processors do not share com-
mon memory; but the subproblems need to be compared and exchanged between different
processes to ensure that the concurrent processes work on n currently best subproblems. They
proved that after n cycles of compare and exchange, the processes will have the n currently best
subproblems. Due to the considerable communication required between the parallel processes,
this approach is also unsuitable for implementation on ”general purpose” distributed architectures

like cm* [33] or zmob [27].

Various paralle] implementations of the well known alpha-beta minimax search procedure
have been proposed and investigated in the literature [1], [3], [7], [5]. Baudet [3] proposed a paral-
lel version of alpha-beta, in which multiple processes search the same game tree concurrently, but
with different alpha-beta windows. The speed-up provided by this technique is limited by a con-
stant even if a large number of processors are available. The reason is that even if 2 process is
started with the correct alpha and beta bounds, the amount of search needed to establish that the
bounds are correct still is, on the average, a major fraction of the search required by a process
started with "uninformed” starting alpha and beta [-00,+00] values***. Hence this kind of imple-
mentation is suited only for multiprocessors with a few processors. In the parallel Alpha-Beta
procedure of Akl et. al. [1], processes search disjoint parts of the game tree; but to avoid unneces-

sary node evaluations, certain processes are assigned higher priority over other processes. Their

«x* This reasoning is supported by Baudet’s analytical results [3] and by our experiments.
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data showed that the speed-up is bounded from above by a constant (approximately 5). Finkel
and Fishburn [7] implemented a somewhat similar scheme, in which "higher” processes were desig-
nated as Master, which scheduled "lower” slave processes to search disjoint parts of the look-
ahead tree. With n processors, a speed-up of at least o;der of n**1/2 was predicted. Their paral-

lel implementation becomes very effective if the game tree to be searched is strongly ordered, i.e.,

the best move from a position is in the beginning part of the heuristically ordered {in terms of
merit) list of moves possible from that position. Marsland and Campbell [20] present a

comprehensive survey of parallel algorithms for searching strongly ordered game trees.
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/II. And/Or trees and Game Trees

A detailed treatment of And/Or graphs can be found in [23], [24]. To keep the discussion
simple, in this paper we limit our presentation to AND/OR trees. Most of the concepts and tech-

niques presented are also applicable to And/Or graphs. In this section we briefly review And/Or

trees and their correspondence with game trees.

A. And/Or trees

Each node of an And/Or tree represents a problem, and a special node called 'root’
represents the original problem to be solved. Nodes having successors are called nonferminal
Each nonterminal node has all immediate successors either of type AND or of type OR. A prob-
lem whose {nonterminal) node has immediate successors of type OR is solved if any of the succes-
sors is solved; while a problem whose node has immediate successors of type AND is solved if all
of the successors are solved. Nodes with no successors are called ferminal, and each terminal node
represents a primitive problem which is known to be either solved or unsolved. Given an And/Or
tree representation of a problem, we can identify its potential solutions, each represented by a
”solution tree”.

A solution tree T of an And/Or tree G is a subtree of G with the following properties:

(i)  The root node p of the And/Or tree G is the root node of the solution tree T.

(ii) If a nonterminal node of the And/Or tree G is in T then all of its immediate successors are
in T if they are of type AND, and exactly one of its immediate successors is in T if they are

of type OR.

wskwxk Fig 1wk

Fig. 1 shows an And/Or tree and one of its solution trees. In many problems, a merit (or a
cost) function is associated with solution trees, and a largest merit (or a least cost) solution tree is
desired. There are various ways in which a merit function can be defined, but the one defined

below is of special interest to us. Let c(n) denote the merit {or cost} of a terminal node n of G.
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Merit function f: Let T be a solution tree of an And/Or tree G, then f(T} = min{ c{t} | t is

a terminal node of T}.

B. Correspondence with Game frees

And/Or trees can also be used as models of two person, perfect information board games
[23], [29]; e.g., the And/Or tree of Fig. 1 can be viewed as a game tree. The game is played
between players MAX and MIN; in the corresponding And/Or tree, board positions resulting from
MAX’s moves are represented by OR nodes (circle nodes in Fig. 1), and the positions resulting
from MIN's moves are represented by AND nodes (square nodes in Fig.1). Moves of the game
proceed in strict alternation between MAX and MIN, until no further moves are allowed by the
rules of the game. After the last move, MAX receives a payoff which is a function of the final
board position {c-value of the corresponding terminal node). MIN has to forfeit the same amount.
Thus, MAX always seeks to maximize the payoff while MIN does the converse. Assuming that
the root node of the tree corresponds to the current position of the game from which MAX is to
move, the objective is to find a move for MAX which guarantees the best payoff. The best payoff
that MAX can be guaranteed for a game is given by the minimax value of the correspending
And/Or tree. This evaluation can be defined in a recursive manner. We first define a minimax

function g for all nodes of an And/Or tree G as follows:

(i) If n has immediate successors of type OR:
g(n) = max{g(n,)} for all immediate successors n, of n.

(ii) If n has immediate successors of type AND:
g(n) = min{g(n )} for all immediate successors n, of n.

(ili) If n is a terminal node of G:
g(n) = c(n).

Then the minimax value of an And/Or tree G is defined a g(p), where p is the root node of

In [31], Stockman made a remarkable observation (with a formal proof) that the minimax

value of a game tree is the same as the maximum f-value (as defined in section IL.A} of all solu-
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tion trees when a game tree is viewed as an And/Or tree. An intuitive explanation for this result
is that a solution tree represents all possible responses by MIN to some particular sequence of
moves made by MAX, ie., it represents a particular strategy for MAX. MIN can always choose
the sequence of moves leading to the minimum valued tip node and thus minimize the payofl for
a strategy chosen by MAX. Thus the merit {or the guaranteed payofl) of a solution tree is taken
25 the minimum c-value of all its tip nodes. Each solution tree represents an alternative strategy
for MAX. Since MAX is free to choose any possible strategy he would choose the one correspond-

ing to the solution tree with the highest merit, to guarantee the maximum payoff by MIN.

The above intuitive explanation suggests that the AND/OR tree may also be viewed from
MIN’s point of view which is complementary to that of MAX described above. In this comple-

mentary formulation, a solution tree T of an And/Or tree G is defined as follows:
(i)  The root node of the AND/OR tree G is the root node of the solution tree T.

(ii} If a nonterminal node of G is in T then all of its immediate successors are in T if they are of

type OR and exactly one of its immediate successors is in T if they are of type AND.

We refer to such a solution tree as an "OR solution tree” in contrast to the previous solu-
tion tree which will, henceforth be termed an "AND solution tree.” However, for the sake of con-
vention and simplicity, we shall also continue to use the term “solution tree” to mean “And-
solution trees”.

An OR solution tree represents all possible sequences of responses by MAX to some possible
sequences of moves made by MIN. Given a particular sequence of moves made by MIN, MAX is
at liberty to choose the responses which lead to the highest valued tip node hence giving max-
imum payoff for that particular sequence by MIN. Therefore we define the value of an OR solu-

tion tree to be the maximum f-value (or cost) of all terminal nodes in T.

Each OR solution tree represents one possible sequence of moves by MIN, and MIN would
choose the sequence corresponding to the OR solution tree with lowest value to guarantee
minimum payofl. Hence the minimax evaluation of a game tree can also be defined as the

minimum cost of all OR solution trees when a game tree is viewed as an AND/OR tree.
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I1V. Branch and Bound : A Brief Review
The class of problems solved by Branch and Bound procedures can be abstractly stated as
follows:

For a given arbitrary discrete set X ordered by a real valued merit function f: X-->R, find some
x* G X such that: for all x G X, f{xs) > f(x).#s=

Branch and Bound procedures decompose the original set into sets of decreasing size. The
decomposition of each generated set (branching operation) is continued until tests reveal that it is
either a singleton {then we measure its merit directly and compare with the currently best
member’s merit) or proved not to contain an optimum element (an element with greatest merit)
of the set X, in which case, the set is "pruned” or eliminated from further consideration *¥*%* If
the decomposition process is continued (and satisfies some properties), we eventually find an

optimum element. Often, only a small {raction of the total set need be generated.

In the earlier formulations of B&B [21], [2], only the lower and upper bounds on the merit
values of the elements of (sub)sets (of X} were used for pruning. If two sets X, and X, are in the
collection of sets under consideration, and the lower bound on the merits of elements in X1 is no
smaller than the upper bound on the merits of elements in X,, then X, can be pruned. The use of

bounds for pruning gave the procedure its name branch-and-bound.

The concept of pruning by bounds was later generalized to include pruning by "dominance”
(see [14], [9], [10], [15], [22]). A dominance relation D is defined between subsets X , X, of X such
that X, D X, if and only if an optimum element of X, is no worse than an optimum element of
X2. If two sets Xx’ X2 are in the collection under consideration and X1 D Xz, then X2 can be
pruned.

There are various ways of selecting a subset of X (from the collection of subsets of X under

consideration) for branching, leading to different performances in terms of time and space

##* Discussion in this section is also applicable {with appropriate modifications) to the case,
when [ denotes the cost of the elements of X, and a least cost element is desired.

#xxx% More precisely, we need only to prove that even after eliminating the set in question,
at least one of the remaining sets still under consideration contains an optimum element of X.

section 4



requirements. The following two selection strategies for branching are rather commonly used in

B&B procedures.

Best-first Selection Straiegy

In many problem domains it is possible to associate an upper bound#**#* with the subsets of

X. This upper bound information can be fruitfully used in the selection of an element for
branching. If the branching is always performed on that subset of X which has the largest upper
bound of all other available subsets of X then the selection rule is called besi-first, and the branch

and bound procedure using such a strategy is called best-first branch and bound.

If these bounds are tight (i.e., if the upper bound of a subset of X is close to the merit of an

optimum element of the subset, for all subsets of X) then best-first B&B becomes very efficient

(18].

Depth-first Selection Strategy

Another way of selecting a set for branching from the active collection A, is to select a set
from those sets which have been generated most recently as a result of branching [18]. This
selection rule is called depth-first. The major advantage of the depth-first selection rule over the
best-first selection rule is that, in general, it requires less storage. But the depth-first search,

being an exhaustive search, can be much slower than the best-first search.

x+xor lower bound instead, if f{x) represents the cost of x, and we are interested in a least
cost element of X

section 4



10

Section V. 555+ as a BEB Procedure

In this section we discuss how SSS* can be considered as a B&B procedure in two different

ways. We assume familiarity with the SSS# algorithm as presented in [31].

V.A. SS5+# as a Best-first Search Procedure in the Space of AND Solution Trees

SSS#* can be interpreted as a B&B procedure searching for a largest merit solution tree of an
And/Or tree G. The discrete set X is the set of all solution trees of G. The merit of function { is
as defined in Section IILLA. SSS* as presented in [31] maintains a list of states (n,sh) called
OPEN; each of these states can be considered as representation of a set of solution trees of G.
The value h is essentially an upper bound on the merit value of the solution trees represented by
the triple {n,s,h). Expanding a state corresponds to the operation of branching. Purging states
from OPEN corresponds to pruning dominated subsets. The precise details of this interpretation

can be found in [16]. Fig. 2 illustrates this informally through an example.

wdkkrk [ig, 2 wkkEdksdis

Fig. Qna‘shows just the_ root node of the And/Or tree G of Fig. 1. It represents the set of all
solution trees of G. Fig. 2.b shows the two disjoint set of solution trees resulting from the
branching operation on the set of Fig. 2.a, or equivalently from the expansion of node 1 in SSS*.
The branching operation splits the total set of solution trees into two disjoint subsets now

denoted by T ' and T, . Fig. 2.c shows the sets of solution trees T, ' and T, resulting from the
branching operation on Tl’, or equivalently from the expansion of node 2 (and later node 4) in
SSS*. Fig. 2.d shows the sets of solution trees T, ' and T, after evaluation of node 16 of T '
and nodes 18, 19 of T . From lemma 3.5 given in [16], T’ dominates T,’, hence T, is

eliminated; equivalently, in SSS#* node 17 is eliminated.
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V.B. $§5% as Depth Firsi Search in the Space of OR solution Trees.

SSS* can also be viewed as a depth first Branch & Bound search for a minimum cost
solution in the space of OR solution trees (also called OR trees for brevity). Viewed this way,
SSS* keeps partitioning the most recently generated subset until it contains only one OR tree.
The value-of this-OR-tree;, which is-defined-as-the maximum value-of all tip nodes then works as
an upperbound. Other alternate solution trees are then partially (or fully) generated. Any time a
new partial OR tree is found to have a lower bound greater than the cost of the current OR
solution tree, the complete set represented by the partial OR tree is eliminated. If a better OR
tree is found, it replaces the previous best-known solution. This process is repeated until the

complete space of OR trees represented the And/Or tree has been explored.

A formal development of a depth first B&B procedure equivalent to SSS* can be done along
the lines developed in [16]. For the sake of brevity, we shall demonstrate this informally by an
example. In the following, we describe some steps in the search of And/Or tree G of Fig. 1 by the
SSS# algorithm, and then reinterpret the operation of SSS* as that of a depth first B&B

procedure searching in the space of OR solution trees.

Fig. 3.2 shows the And/Or tree G after its four tip noodes have been explored by SS5=*.
Each arrow corresponds to a state (3-tuple representation of a partial tree} on the ordered list
OPEN maintained by SSS*. We can also regard the four arrows as pointing to the tip nodes of
the complete OR-solution tree {of value 78) represented in boldface. The OR-tree space is thus
divided into two parts: the completely explored OR-tree, and the rest of the OR-trees. By
exploring node 19 we will be pulling in another OR-tree (nodes 16, 19, 24, 26} from the second

subset.

In Fig. 3.b, after evaluating node 19, we have an OR-tree (nodes 16, 19, 24, 26) of value 52,
which is better (lower cost) than the previous OR-tree, which is now rejected. Also rejected are all

OR-trees containing node 18, as they can never have value less than 78.

In Fig. 3.c, node 19 has the highest value and all AND-successors of its parent node 9 are

solved. Therefore, in SSS#, the solved node 19 is replaced on OPEN by solved node 9 with the

section 5



12

same value. In terms of OR-trees, the OR-tree (nodes 16,9,24 26) now represents the previous

OR-tree (nodes 16,19,24,26).

In Fig. 3.d, the solved node 9 is an OR-successor of its parent and has the highest value on
OPEN. It is replaced by its parent, node 4. All successors of node 4 (node 16 in this case) are
purged from OPEN. In terms of OR-trees, any OR-solution tree having either node 16 or 17 will
also have (from the definition of OR-solution trees) node 9 in it, hence its value is bounded from
below by 52. These solution trees are dominated by the already found OR-solution tree (nodes

16, 19, 24, 26) which is represented along with the value by (nodes 4, 24, 26).
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VI. Pargllel Implementations

This section presents two approaches to implement SSS#* in parallel, which in fact are
parallel implementations of the general B&B procedure. Hence both can be universally applied in

any context in which B&B is applicable. In the first approach multiple processes perform depth

first search concurrently. At any time at least one process has the property that if it terminates i
returns an optimum solution; the other processes conduct a look-ahead search. In the second
approach, the total search space is divided into several disjoint parts and each part is searched
concurrently in depth first manner by a different process. Both approaches require very little '
inter-process communication and, therefore, are ideally suited for implementation on loosely

coupled distributed systems (e.g. zmob [27], cm* [33]).
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VI A. Parallel Implementation of S§5* - 1

Let us consider the case of a depth first B&B procedure searching for a least cost
solution***. While searching depth first, a large portion of the search space can be pruned if a
solution close to the optimum is found early in the search process. To speed up the search

Lrocess. we can assume the existence of some hypothetical solution with a value which we hope is

larger than but close to the optimum solution. We then keep discarding any partial solution {or
set of potential solutions) whose lower bound is greater than the value of the hypothetical
solution. If the optimum value is really smaller than the value of the hypothetical solution, the
best solution will be found during the search by exploring a much smaller part of the total
solution space. However, if the assumed solution has smaller cost than all other existing solutions,
they will eventually be climinated in favor of the assumed one, and the search will terminate

without finding the best solution.

In Section V we argued that SSS* can be viewed as a depth first search for a least cost OR
solution tree. In SSS* [31] the search is started by associating +oo as a bound with the starting
state. In terms of depth first B&B search in OR tree space, this is equivalent to starting with a
by pothetical solution of value +oo. If the starting bound (associated with the initial state) is
chosen to be smaller than +oo but larger than the cost of an optimum OR solution tree then the
procedure finds an optimum OR solution tree by searching a smaller part of the total space. Fig.
4 shows the number of nodes expanded vs. starting bound in the search of a random uniform
game treex*+* (RUG tree) of degree 2 and depth 10. The terminal values of the RUG tree are

independently drawn from a uniform distribution between 0 and 100.

If we have multiple processors we start several (otherwise sequential) Branch & Bound
processes, one on each processor, with different starting bounds (the assumed solutions). To avoid

disappointment we start one B&B process with the most pessimistic bound (e.g. +00). To speed

#+* Discussion in this chapter is applicable to depth-first B&B search for largest merit solu-
tion with obvious modifications.

xx+x A game tree is called a random uniform game tree {or RUG tree) if all of its terminal
nodes are at the same depth and if its terminal values are independently drawn from a common
distribution.
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up the search, the other B&B processes are started closer to the expected value of the optimum
solution. Fig. 5 shows depth first B&B processes searching for an optimum solution with different

starting bounds when the costs of all solutions lie between 0 and m.

In the beginning only one process (with the pessimistic bound) is guaranteed to provide the

optimum solution: the others can be considered as look-ahead processes. If at any time, any of the

look ahead processes finds 2 better solution than the hypothetical one it started with, we know
that the process, if allowed to continue, would terminate with the optimum solution. Now any
other process whose current best known (actual or hypothetical) solution is worse than the
recently discovered solution can be given a more optimistic {(hypothetical) solution for further
search. Thus at any time, at least one process is guaranteed to terminate with the optimum
solution and the others conduct a look ahead search. This goes on until the optimum solution is

found by one of the processes, assuming the solution exists.

This kind of search can be particularly eflicient if some probabilistic information about the
optimum value {e.g. the probability distribution) is available. This type of implementation
requires very little inter-process communication as processes need to communicate only when a
process finds a better solution than the one previously known. Furthermore, processes never wait
to receive some input from other processes but continue or terminate according to whatever

information is currently available.

Stmulation Resulls

We implemented a version of parallel SSS*, along the lines proposed above. Concurrent
search processes were obtained by simple modifications in sequential SSS5* by including steps for
updating local and global bounds (a bound for a process denotes the merit of the best actual or
hypothetical OR-solution tree found so far by the process). Simulation rums for a two processor
system were conducted for uniform trees of different depths and degree of branching. Tip values
were assigned from a uniform distribution. Using a simple, adhoc procedure for selecting assumed

bounds (i.e., knowledge of the probability distribution of the minimax value of the AND/OR tree
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was not used in selecting the bounds), a speedup of up to 30% over the sequential case was

estimated for the two processor system.

The speedup achieved by this approach is very much dependent on how much pruning can
be done by “hypothesizing” a good solution (i.e., how steep is the curve in Fig. 4 around the

optimum value). Also, to be able to make a proper selection of look-ahead bounds, one needs

some probabilistic information {e.g., expected value) about the optimum value. This kind of
approach did not turn out to be very efficient for implementing SSS#* in parallel, but it could be
quite effective in B&B implementations in many other applications. This approach is somewhat
similar to the one proposed by Baudet [3] which provided an efficient parallel implementation of
the alpha-beta procedure. This type of parallel search (like Baudet’s parallel implementation of
alpha-beta) is suited only for multiprocessors with a few processors because the speedup achieved
is usually limited even if many processors are used. The reason is that the amount of search done
by a B&B process started with a correct bound could be a major fracgion (as it is in the case of
minimax search) of the search required by a process started with an uninformed (ie, a

pessimistic) bound.
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VI.B. Parcllel Implementation of §55* - I

An alternate approach to conducting Branch & Bound search in parallel is to divide the
total search space into several disjoint parts and let each part be searched in depth first fashion,

concurrently, by a different process. Whenever, during the search of its local space, 2 process

comes up with a better solution, it communicates it to all the other processes in the system.
Whenever any process encounters a partial solution (or a group of solutions) which is guaranteed
to be worse than the globally known solution, it discards that partial solution. Thﬁs the
independenﬁ processes cooperate (by keeping a current global best solution) and perform the
search in parallel. Processes work asynchronously, as at no time does a process have to wait to
receive any input from another process. Therefore, this approach should be ideal for
implementation on a loosely coupled distributed network (see Kung [17]). A technique for
deriving parallel B&B similar in spirit to the one we describe here was proposed in [6]. The
speedup provided by any such parallel implementation would depend upon how neatly a search
space can be divided into similar disjoint subspaces, and the extent to which search in one space

affects the search in the other space.

In contrast, note that if individual (concurrent} processes perform a best first search on their
local space, they will not be able to benefit from each other’s search by sharing information on
bounds. The reason is that in best first search, a process does not obtain a complete solution until
it actually terminates. Information about the best recent bound (e.g. lower bound when searching
for a least cost solution) of one process cannot help in pruning the local search space of another
process.

An AND/OR tree with the root node having OR successors, can be easily divided into
disjoint subspaces {of AND solutionﬂ trees) each a subtree rooted at an OR-successor of the root
node of G. On the other hand a division of the total space of solution tree;s in terms of OR
solution trees is going to be rather complicated since all the OR solution trees will have all the

top OR branches in common.
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Having divided the AND solution tree space into disjoint parts, we need to find an efficient
method for doing depth first search in the AND solution tree space. In its present form, S55* does
best first search in the AND solution tree space and depth first search in the OR solution tree
space. What we wish is the converse, i.e. depth first seérch in the AND solution tree space, or

auivalently best first search in the OR solution tree space.

A Branch & Bound strategy for the search of the best (i.e., least valued) OR-solution tree of
an And/Or tree can be formulated (in a way similar to the search for the best And-solution tree
of an And/Or tree) by expanding and evaluating partial OR solution trees in the best first (i.e.,
least lower bound first) order. We call the resulting procedure dual-S5*. Using an argument

similar to the one used in Section V it can be shown that dual-SS* is also a depth first search in

the AND solution tree space.

Viewed as a depth first search in And-solution tree space, dual-S5* maintains a complete
AND-solution tree found to be best so far, eliminates any partially explored AND-solution tree of
lower merit than the current solution, and replaces the current solution only when a solution tree
with better merit is found. The merit of the current best AND-solution tree characterizes the
search at any stage of the process. It follows that we can use concurrent dual-55* profcesses to

perform depth first search in the disjoint subspaces of the original AND/OR solution tree.

Speed up factor

Let R(n) be the branching factor (as defined in [23]) of SS5# for a RUG tree of degree n and
depth d {denoted as G(n,d)). The average number of terminal nodes evaluated by S35+ {or by
dual-SS#) *#* in searching G(n,d) is [R(n)]%. If the tree is statically divided at the top level then
each resulting subtree is G{(n,d-1). The average number of terminal nodes evaluated by SS55* {or

by dual-SS*) in searching G(n,d-1) is [R(n)]**. Let us assume that the time taken by a search

process is proportional to the number of terminal nodes evaluated. It follows that n processes,

s++Fven though, the SSS* and dual-SS* procedures search the nodes of a game tree in very
diflerent orders, there is no reason to believe that one procedure would have a lower branching
factor than the other. This intuitive observation is supported by our simulations.
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running on n independent processors, searching G{n,d-1) trees, will finish search faster, and the
speedup (over the case when the whole G(n,d) tree is searched by a single process) should be
[R(n)]4/[R(n)]** = R(n). This assumes that all independent processes finish search of their
G(n,d-1} trees at the same time. But, the number of terminal nodes evaluated and, therefore, the
search time taken by these processes is.a random variable as it depends upon the terminal values

of the game tree being searched. Hence, the actual speedup is also a random variable. Let NG(n Q)
be the number of terminal nodes evaluated by a SSS* process in the search of a G(n,d) tree, and

let NI be the number of terminal nodes evaluated by the dual-SS* process searching the

G(n,d-1)

game tree G(n,d-1) rooted at the ith successor of the root of G(n,d). Then, the speed-up =
NG(nyd)/max{NiG(n‘d.l) § 1< i< n}. Thus the speedup should be less than R(n). But in our
implementation, these parallel processes searching G(n,d-1) are allowed to communicate which

should increase the value of speedup.

Simulation Results

We implemented dual-SS* by making modifications in the existing implementation of 555%,
seeking a maximum wherever a minimum was taken, replacing OR’s by AND’s and vice versa.
We ran simulations for the parallel implementation on RUG trees G(n,d) for various branching
factors n and depths d. For each of these (n,d) pairs, 50 RUG trees were generated, and their tip
values were independently drawn from a uniform distribution between 0 and 10000. For 2 RUG
tree G(n,d), n dual-SS* processes were used to search the game trees rooted at the n immediate
successors of the root of G{n,d). In the absence of parallel hardware, a controller process was used
to run the “parallel” dual-55*% processes in an interleaved fashion and\ to provide the
communication of global bounds between them. For each G(n,d) tree the largest of the number of
terminal nodes evaluated by concurrent dual-SS* processes searching the subtrees of G(n,d), was

measured. The largest number is denoted by M The speed-up, in searching G(n,d}, of the

Gln.dy

parallel implementation over the sequential procedurJe was calculated as Nqn’d)/MG{n,d).
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For various values of (n,d), Table 1 shows average, maximum and minimum speed-ups of
the parallel implementation (on n processes) over the sequential case, in searching 50 G(n,d) game
trees. It also shows the average values and the standard deviations in M and N Note

Gln,d) Gln, gy

that the standard deviation of qu a is consistently much smaller than the standard deviation of

'NG(n,d). This suggests that the maximum of the number of terminal nodes evaluated by the
parallel processes is not very much larger in a case where sequential SSS* evaluates lots of nodes.
To verify this, for each (n,d) pair, out of the 50 G(n,d) trees we selected the 10 G(n,d) trees in
which sequential SSS* evaluates the largest number of terminal nodes. For these 10 G(n,d) trees
we computed the average speed-up, denoted by Sm‘ Interestingly, this speed-up figure was always
found to be considerably better than the average speed-up over the 50 cases (see the last column

of Table 1). Thus the parallel implementation is most effective in the situations where it is

peeded most.
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VII. Conclusion

The formulation of Section VLB allows parallel non-directional search of a description of a
pattern in alternate structural models (context free grammars). Each candidate model for an

observed pattern can be considered as an AND/OR subtree of a larger AND/OR tree with the

root of each subtree being one of the OR successors of the root of the larger AND/OR tree. The
procedure can be implemented via a set of processes working independently and asynchronously
on the different models with the merit of the recent best parse tree being communicated among
the processes. As noted earlier such a mode of loosely coupled parallel computation is natural for
a distributed computer environment. In the context of game playing, each process analyzes the
goodness of an alternative move for MAX. The processes together maintain a globally best
strategy found so far for MAX, and discard any partial strategy (or a set of strategies) which are
guaranteed to be worse than the global solution. This kind of parallel search on independent
different subtrees of a game tree does not suffer from the lack of information flow between various
processes (mentioned by Baudet [3] in reference to alpha-beta) because, at any point during the
search, the decision of pruning by amy process is based upon all the information previously

acquired during the search by all the processes.

Due to the complex nature of the interaction between communicating processes, it is
difficult, even under simplifying assumptions, to come up with a model to calculate the actual
speedup due to parallelism. It would be interesting to run extensive simulations of the parallel
implementations discussed in Section VI and the others proposed in the literature for the alpha-

beta and B&B procedures and compare the results.
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Table ]: Summary of simulation results of the parallel implementation
of section VI . B

S is the speedup of the parallel implementation (on n processors)
over the sequential case for a RUG tree G(n,d) of branching degree n
and depth 4.

NG(n d) 1s the number of terminal nodes evaluated by a (sequential)
SSS* process in the minimax search of G(m,d).

MG(n d) is the largest of the number of terminal nodes evaluated
by cdncurrent dual-SS* processes searching the subtrees of G(n,d).

Ti0 1s the average speedup over those 10 G(n,d) trees (out of 50
G(n,d) trees) for which sequential SSS* evaluates the largest number
of nodes.

Speedup § NG(n,d) WG(n d) §i0

n,d Average Max Min ! Average o Average

3,7 2.29 | 4.22 | 1.27 456 | 91.8 203 | 31.1 2.738
3,8 1.71 | 2.66 .96 8731 204.78 520 | 66.8 | 2.178
3,9 2.11 | 3.65 | 1.23 2148 | 454.65 | 1043 |153.9 2.810
5,5 3.14 | 5.58 | 1.84 626 | 162.35 203 | 28.82 4,235
5,6 2.25 | 4.10 | 1.20 1662 | 333.74 755 | 88.70 2.936
5,7 2.80 | 4.64 | 1.20 6037 [1367.86 | 2193 |249.92 3.856
8,3 4,95 | 6.74 | 2.74 187 | 31.53 38 3.32 5.960
8,4 2.92 | 4.39 | 1.83 693 | 142.5 239 22.17 4.05%
8,5 4,09 | 6.10 | 2.10 3631 | 713.97 | 897 83.57 5.284




Fig. 1:

An AND/OR tree G with hatch marks showing an AND-solution tree of G.
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Fig. 2: Some steps of SSS* viewed as B&B search for a largest
merit solution tree of the And/Or tree G of Fig. 1.



Fig. 3.a

Fig. 3 Interpretation of SSS* as a depth first B&B search in the
space of OR solution trees of the And/Or tree G of Fig. 1.
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Fig. 4 Starting bound vs. number of tip nodes N evaluated by SSS*.
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Figure 5 Depth first B&B processes searching for an ontimum
solution with different starting bounds. The process
Py is started with bound Bj.





