AUTOMATIC ANALYSIS OF THE
COMPLEXITY OF RECURSIVE FUNCTIONS

Dr. Frank M. Brown

TR-83~15 August 1983



AUTOMATIC ANALYSIS
OF THE COMPLEXITY OF RECURSIVE FUNCTIONS

r. Frank M. Brown

@eg %; Computer Sciences

The %Eﬁive rsi ity of Texas at Austin
Austin, Texas 78712

C 8&{}‘&’ NQUTEXAS-20

1 INTRODUCTION

The Complexity Analysis Project is conmcerned with the development of a reasoning system to
automatically analyze and determine the complexity of computer programs. This research is important
not only for theoretical computer science in providing a method for automating the process of analysing
the complexity of algorithms, but also for the practical problem of verifying time dependent properties of
computer programs used in such real time areas as flight control systems. The current complexity
analysis system called ANALYZE is capable of for automatically analysing the complexity of simple
recursive LISP functions ANALYZE calls on our automatic deduction system SYMEVAL[Brown50] in a
number of places in order to achieve its results. ANALYZE is described in section 1, and the use it makes
of SYMEVAL is exemplified in section 2.

2 COMPLEXITY ANALYSIS SYSTEM: ANALYZE

¢ have developed a prototype system called ANALYZE for analyzing the complexity of recursive LISP
functions. The basic approach to automatic program analysis used by ANALYZE is thiss The user
specifies a recursive LISP function F of which he wishes to analyze the complexity. The user may also
specify that the analysis is to be performed in terms of certain basis functions which essentially compute

the size of the input data of the original function. The system then does the following:

{STEP 1) First, the COMplexity FUNction subsystem, called COMFUN automatically produces 3 new
LIS function OF which computes the complexity of ¥, This function is created by mimicking the
recursive structure of F indicating the complexity of each branch.

(STEP 2) Second, the SiMplification FUNction subsystem, called SIMFUN tries to simplify the C.F
function by deleting irrelevant argument positioss and by SYMbolically EVALuating the function body.

{(STEP 3) I %hs; are not already specified, then the BASis FUNction subsystem, called BASFUN
automatically produces the possible appropriate basis functions. A basis function is 2 {unciion which
measures the size of some data object such as, for example, a tree.

Fal

{STEP 4} Fourth, the system tries to guess a closed form soletion to C.F in terms of the basis functions.

{(STEP 5) Finally, using existential variables for coeflicients, the system iries to prove that the recursive
complexity function C.F equals the conjectured closed form solution. In the course of the proof, the
system may automatically determine explicit values for those existential variables,



(PLUS 1 {(PLUS (NODEKNT (CAR T1})
{NODEKNT (CDR T1))))
)

(STEP 1) After the system states the problem, the subsystem COMFUN creates a
recursive function which computes the abstract complexity of FRIKGE:

The local constant (AD007) is the complexity of taking the true branch of the
LISTP test except for the complexity of the recursive calls to FRINGE which are
mentioned explicitly. The local constant (40008) is the complexiby of taking

the false branch of the test.

The complexity function of FRINGE is:
(EQUAL (C.FRINGE T1 L)
{IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1)
(FRINGE (CDR T1)
L)
(C.FRINGE (CDR T1)
L))
(A0008)))
where the local constants are defined as follows in terms of the complexities
of the primitive operations of LISP. For example (C.LISTP) is the complexity
of executing the LISTP function and (C-VAR) is the complexity of looking
up the value of a variable in a shallow binding environment.
((EQUAL (ADCO7)
(PLUS (C.IF.T}
(PLUS (C.LISTP)
(PLUS (C-VAR)
(PLUS (TIMES 2 (C-BIND))
{(PLUS (C.CAR)
(PLUS (C-VAR)
(PLUS (C.CDR)
(PLUS (C-VAR)
(C-VAR}})))3I D)

(EQUAL (A0008)
(PLUS (C.IF.NIL)
(PLUS (C.LISTP)
(PLUS (C-VAR)

(PLUS (TIMES 2 (C-BIND))
(PLUS (C.CONS)
(PLUS (C-VAR)

(C-VAR}}})3)))))
STEP 2) The subsystem SIMFUN now tries to simplify the complexity
unction definition just produced:

ety o,

Obgerving that the variable L is
not used in the body of the definition, it follows
that the complexity function simplifies to the new complexity function:
(EQUAL (C.FRINGE T1)
(IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1))
(C.FRINGE (CDR T1))))

(40008)))
(STEP 3) Step three is omitbed in this example because we already suggested
to the system that NODEKNT was an appropriate basis function.

(STEP 4) An appropriate complexity conjecture relating C.FRINGE to NODEKNT
is now produced:

You hinted that the complexity of FRINGE



The result of steps {1)-(5) is an algebraic formula expressing the complexity of I in terms of {a]) the size
of the data object to which F is applied, and {b} the complexity of its subroutines. If the complexity of
each subroutine and any subroutines called by such subroutines is determined by repeating steps (1)-{5),
the complexity of F is then expressed as an algebraic formula coninining only the complexity of primitive
instructions and the size of the input data objects. The deductive parts of the system are based on the
SYMEVAL theorem prover, the SYMMETRIC LOGIC, and the Real Algebra rule package. One novel
aspect of this deduction system is that it integrates general structural inductive capabilities over arbitrary

data objects along the lines of [Boyerl] with quantifier elimination techniques of the SYMMETRIC
LLOGIC and equation solving techniques of the real algebra theorem prover|Brown24]. Some inductive
parts of the system have been studied earlier in collaboration with Prof. Sten-Ake Tarnlund of Upsalla
University|Brown5,10}.

A SIMPLE EXAMPLE We suppose that the user of our proposed system wishes to analyze the
complexity of the function FRINGE which computes the fringe of a binary tree T1 when L==NIL in terms
of the number of nodes in the tree T1. The (FRINGE L NIL} of a binary tree is a list of its leaves. The
definition of FRINGE is:

EQUAL (FRINGE T1 L)
(IF (LISTP TiJ
(FRINGE (CAR Ti)} (FRIKGE (CDR T1) L)}
(CONS T1 L)J)
The definition of the function NODEKNT which counts nodes in a tree
is:
(EQUAL (NODEKNT T1)
(IF (LISTP T1}
(PLUS 1 (PLUS (NODEKNT (CAR T1)) (NODEKNT (CDR T1))))
i)
The binary tree is assumed to be constructed from LISP CONSes. For
example (CONS(CONS A B)C) represents the tree:
&

A
/A
* C
/A
/A
A B
The LISP functions are all written in the SYMEVAL's logical language, which
includes logical expressions, real numbers and recursive functions of pure
LISP. We write (IF p % y) instead of the usual LISF conditional
(COND{(p x)(T yJJ.

We ask the system to try to analyze the complexity of FRINGE in terms
of the function NODEKKT. The following is a trace of the complexity
systems reasoning:

7 (ARALYZE FRINGE HODEKNT

We are trying to determine whether the complexity of:
(EQUAL (FRINGE Ti L)
{(IF {(LISTP T1}
(FRINGE (CAR T1)
(FRINGE (CDR T1)
L)

(CONS T1 LID)
sd to the basis functltion:
NODEKHT T1)
IF (LISTP T1)

P e v



[

was related to the basis function: NODEKNT.

We will now try to see if its linearly related to that basis
by first forming an expression stating that fact:

(ALL Ti (EQUAL (C.FRINGE T1)
(PLUS (TIMES ¥ (WODEKNT T1))
333

2 % g 3 Fard r i = much . as ihle usi

our aubomatic theorem prover. The result returned by our theorem
prover will be logically equivalent bo this original expression.

(STEP 5) The conjectured relabion between the complexity function and the
basis is now proven:

The first SY¥bolic EVALuation

The expression to be recursively simplified is:
(ALL T1 (EQUAL (C.FRINGE T1)
(PLUS (TIMES X (NODEKHNT T1))
3
The result of recursive simplification is:
(ALL Ti (EQUAL (PLUS (C.FRINGE Ti)
(PLUS (MINUS (TIMES X (NODEKNT Ti)))
{MINUS 1))
0))

Induction is now itried giving a new expression bto simplify.

‘The expression to bs recursively simplified is:
{aND
(ALL T+ (IMPLIES (NOT (LISTP Ti})
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES ¥ (NODEKET Ti}))
(MINUS OO0
8333
(ALL
T
{IMPLIES
(&ND (LISTP Ti
{AND (EQUAL (PLUS {(C.FRINGE {(CAR T1))
(PLUS {MINUS {TIMES ¥ (NODEKNT (CAR T1)}))
{MINUS V)
o)
(EQUAL (PLUS (C.FRINGE (CDR Ti)}
(PLUS (MINUS (TIMES ¥ (NODEKNT (CDR T1)}})
(MINUS Y303
0333
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
{MINUS Y303
0333)
The result of recursive simplification is:
{1F {EQUAL (PLUS (A40008)
(PLUS (MINUS XJ
(MINUS ¥2))
o)
{FQUAL (PLUS (A0007)
(PLUS ¥ (MINUS X))
0}
NIL)
end of deduction



53798 conses
174.162 seconds
11.479 seconds, garbage collection time

We call the theorem prover again, bhis time letbting
it selve for the unknowns
The expression to be recursively simplified is:

(1F (EQUAL (PLUS (A0008)
5 (YT )!

(MINUS Y303
0)
(FEQUAL (PLUS (A0007)
(PLUS Y (MINUS 1O}
o)
NIL)

The result of recursive simplification is:
(IF (FEQUAL (PLUS (A0008)
{(PLUS (WINUS X)
(MINUS Y233
03
(FQUAL (PLUS (A0007)
(PLUS (TIMES -2 XJ
{A0008)))
o)
WIL)
end of deduction
1412 conses
2.685 seconds
1.836 seconds, garbage collection tims

Observing that (IF p x NIL) means (AND p x) ve see that the Automatic theorem
prover has simplified the original closed form expression to an equivalent
expression which is essentialy a conjuction of linear equations which when
solved give explicit values for the unknowns X and Y. By solving these

two linear equations we see thatb:

((A0007) + (A000B)) /Z
{(ao008) - (A00073) /2

X
Y

ton

where (AGO07) and (AO008) are defined by the local definitions
which in turn are defined in terms of the complexities of the primitive
LISP operations.
Thus not only has the system proven the theorem:

(EX X(EX ¥
{ALL T1(EQUAL(C.FRINGE T1}

(PLUS (TIMES X (NODEKNT T1)) Y)))
»
where the unknowns ¥ and ¥ are intsrpreted as being exisbentially qusntified
but in bthe course of proving this theorem, it has computed the only possible
vaiues for ¥ and Y which make the expression true. Thus, in fact it proves the
stronger theorem:
(ALL T1(EQUAL(C.FRINGE T1)

(PLUS(TIMES ((A0007)+(A0008))/2 (NODEKNT T1))

({40008)-{A0007)) /2 (NODEKNT T1) )))

Since the deductive system itself can handle existential variables, this
greatly eases the burden on the inductive step (4) of the proposed system
since that step will not have to worry about guessing the exact coefficients
of a coniecture of a closed form solution.



3 USING THE SYMBOLIC EVALUATOR: SYMEVAL

Although SYMEVAL is used by ANALYZE i a number of places, for example to simplily the bodies of
function definitions, its major use is in step 5 where it is used to prove the equivlence between the closed
form solution and the original complexity function. It is therefore worthwhile looking at this reasoning
step in more detail in order to describe SYMEVAL's current abilities. The outline of the proof given
below is presented in the manner as one might trace the execution of a LISP program. Issentially an
imput-expression-labe niis.ogive YMEVAL which by application of an axiom produces n middle

expression labeled Mn: which is then recursively simplified producing an output expression labeled On:.
The key point, is that In: is logically equivalent in the given theory to the immediately following Mn: and
also to the immediately following On:. The n refers to the current level of tracing. By specifying what
symbols to trace, SYMEVAL can be asked to present its reasoning at different levels of detail. In the
following proof only a few key symbols have been traced, and 2 number of less important steps have been
eliminated by hand. Nothing however has been added except English text. This proof involves a number
basic deduction facilities including the nine listed below. The first use in this proof of each of these nine
facilities is marked by the same number.

{1} Methods for deciding when %o repace definitions including recursive

definitions by their body.

(2) Rules for the algebraic simplification of expressions about real numbers.

(3} A rule for Nostherian Induction over arbitrary recursively construced
data structures and recursive definitions.

(4) .Propositional Logic based on an IF_THEN ELSE construct.

(&) Rules of a Quantificational Logic based on the SYMMEIRIC LOGIC

of reducing the scope of gquantifiers.

(6).The ability to return useful information as answers to subgoals rather
than having bo return True or False.

(7) .The ability to solve equations for interesting expressions which
can be substituted intoc other expressions so as to help solve the
problem.

(8) Axioms about recursive data structures

(9) .Instantiation Rules for Quantificational Logic. Note that each
induction hypothesis is eliminated by noting that it is eguivalent
to true assuming the linear equation produced by the base case.

The proof is now given:

The expression to be recursively simplified is:
(ALL Ti (EQUAL (C.FRINGE T1)
(PLUS (TIMES X (NODEKNT Ti)
)

(1) SYMEVAL expands the definition of C.FRINGE and then changes its "mind®.

11:{C.FRINGE T1)
by use of: C.FRINGE
¥i:(IF (LISTP T1)
(PLUS (ADDOCT)
(PLUS {(C.FRINGE (CAR Ti})
(C.FRINGE (CDR T1)}})
(A0008))

01:(C.FRINGE T1)
(2)The Real algebra egquality rule is applied.
T1:{EQUAL (C.FRINGE T1J
S

(PLUS (TIME
Y))

¥ (NODEKNT T1})



by use of: (LISPLINK REQUAL)

Mi:(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS Y)))
0)

0i:(EQUAL (PLUS (C.FRINGE T1)

£ %{I. k¢ { sz I

o -8
(NINUS ¥)))
0)

The result of recursive simplification is:

{ALL Ti (FQUAL (PLUS (C.FRINGE Ti}
(PLUS (MINUS (TIMES X (WODEKHET T1)))
(MINUS Y3))
03

(3)Induction is now tried giving = new expression Lo simplify:

(AND
{ALL T1 {IMPLIES (NOT {(LISTP Ti)}
{EQUAL {(PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES ¥ (NODEKHNT T1)))
(MINUS 00
03
(ALL T1
(IMPLIES
(AND (LISTP T1)
(AND (FEQUAL (PLUS {(C.FRINGE (CAR Ti))
(PLUS (MINUS (TIMES X (NODEKNT {CAR Ti1}}))
(MINUS ¥3))
0)
{EQUAL (PLUS (C.FRINGE {CDR Ti))
{PLUS {(MINUS (TIMES ¥ (NODEKNT (CDR T1)3)})
(MIKUS YO0
0
{EQUAL (PLUS (C.FRINGE Ti)
(PLUS (MINUS (TIMES X (NODEKNT Ti)))
{HINUS )0
03333

The Base Case of the Induction is Evaluated

1i:{IMPLIES (IF (LISTP T1)
¥IL T)
(FQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES ¥ (NODEKNT T1)))
(MINUS 30
033
by use of : IMPLIES
Mi:(IF (IF {(LISTP T1)
NIL T)
{EQUAL {(PLUS (C.FRINGE Ti}
(PLUS (MINUS {(TIMES ¥ (NODEKNT T1)))
(MINUS O
)]
)

{43C FRINGE becomes (A0008) in the Base Case



13:(C.FRINGE T1}
by use of: C.FRINGE

M3: (IF (LISTP Ti)

{PLUS (A0007)

{PLUS (C.FRINGE {(CAR Ti}}
{C_FRINGE (CDR T1))3}

(A0008))

(A0008)

o
(9]

13: {HODEKNT T1)
by use of: NODEKHNT
M3 (IF (LISTP T1)
(PLUS 1 (PLUS (NODEKNT (CAR Ti})
{WODEKNT (CDR Ti}3J)
i
)

03:1
The Base Case evaluated
01:(IF (LISTP Ti)

(EQUAL {PLUS (20008}
{PLUS (MINUS X)
(MINUS 30}
a3

(5)The quantifier is eliminated on the Base Case

I1:(ALL Ti (IF (LISTP T1)
T
(EQUAL {(PLUS (A0008)
{(PLUS (MINUS )
(MINUS Y33
033}
by use of: (LISPLINK SYMALL)
Mi:(IF (EQUAL (PLUS (&0008)
(PLUS (MINUS X
(MINUS Y33)
8l

iy
{ALL Ti (IF {LISTP T1)
TOHILY))
01 (FQUAL (PLUS (A0008)
(PLUS (MINUS XJ
(MINUS Y3 1)
o)

(8)The Bemaining problem after evaluating the Base

11:(AND
(FQUAL {PLUS (AD0O8)
(PLUS (MINUS X
(MINUS ¥33)
03
(ALL
Ti
{IMPLIES
{AND
{LISTP T1)
(AND (EQUAL (PLUS (C.FRINGE (CAR Ti)}
(PLUS (MINUS {TI¥ES ¥ (NODEKNT {(CAR T13)))
(MINUS TO))



)
{EQUAL (PLUS (C.FRINGE (CDR T1})
(PLUS (MINUS (TIMES ¥ (NODEKNT (CDR T1))))
{(MIRUS VO
0333
{EQUAL (PLUS (C.FRINGE TiJ

(PLUS (MINUS (TIMES X (MODEKNT T1)))

(MINUS YO0

Evaluating the Induction Step
12: (IMPLIES
(1F (LISTP Ti}
(1F (EQUAL (PLUS (C.FRINGE {CAR T1})
{(PLUS (MINUS (TIMES ¥ (NODEKNT (CAR T1))))
(MINUS )
0)
(EQUAL {PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))}}
{MINUS )
0)
HIL)
HIL)
{EQUAL (PLUS (C.FRINGE T1}
(PLUS (MINUS {TIMES X (HODEKNT Ti))}
(MINUS YO
03y
by use of: IMPLIES

C.FRINGE includes (AQ007) on the Induction Step
14:{(C.FRINGE T1)
by use of: C.FRINGE
M&:{IF (LISTP T1)
(PLUS {(&0007)
{PLUS {C.FRINCE (CAR T1)}
(C.FRINGE (CDR TU))))
{A00083)
04: (PLUS (AD0OT)
{PLUS (C.FRINGE (CAR Ti})
{C.FRINGE (CDR T1))))

T4 (NODEKNT T1)
by use of: NODEKNT

M4 (IF (LISTP T1)

{PLUS 1 (PLUS (HODEKNT (CAR Ti)}
(NODEKNT (CDR T1))))

i)

04:(PLUS 1 (PLUS (MODEKNT (CAR T1})

(HODEKNT (CDR Ti))¥)

(7)The hypothesis is solved for (C.FRINGE(CDR T1))
and substituted into the conclusion.

M4 (IF
(EQUAL {PLUS {(C.FRIKGE (CDR
(PLUS (MINUS (T
{HINUS ¥}

Ti))
IMES ¥ (NODEXNT (CDR T1))))
3

o
(EQUAL
(PLUS
(40007}
{pPLUS



(C.FRINGE {(CAR Ti}J
{PLUS
(PLUS Y (TIMES ¥ (NODEKNT (CDR T1))})
{PLUS (MINUS X)
(PLUS (MINUS (TIMES ¥ (NODEKNT (CAR Ti13J)7)3
(PLUS (MINUS (TIMES ¥ (NCDEKNT {CDR T1)}))

(HINUS V)0
0)

e
7

which is then simplified
04: (IF
(FQUAL (PLUS (C.FRINGE (CDR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1)}))
{(MINUS ¥O))
)
(FQUAL (PLUS (A0007)
(PLUS (C.FRINGE (CAR T1)}
{PLUS {MINUS X

(MINUS (TIMES ¥ (MCDEKNT (CAR T1)))3}))
)]

T)

The Hypothesis is solved for (C.FRINGE(CAR T1))
and then substituted into the conclusion
M4: (IF
(FQUAL (PLUS (C.FRINGE (CAR Ti))
(PLUS (MINUS (TIMES ¥ (HODEKNT (CAR T13))3
(MINUS Y)))
o)
(IF
{EQUAL (PLUS {(C.FRINGE {(CDR T1})

(PLUS (MINUS (TINMES X (NODEKNT {CDR Ti))))
(MINUS 100D
0}

{EQUAL (PLUS {40007}
(PLUS (PLUS Y {TIMES ¥ (NODEKNT (CAR T1))))
(PLUS (MINUS X}
(MINUS (TIMES X (WODEXNT
0 {CAR T1)33000)

Iy

which is then simplified
04 (IF
(FQUAL (PLUS (C.FRINGE (CAR T1})
(PLUS (MINUS (TIMES ¥ (NODEKNT (CAR T1}1))
(MINUS Y3
o)
(1F (EQUAL {PLUS (C.FRINGE {(CDR T1}
(PLUS (MINUS (TIMES ¥ (NODEKNHT (CDR Ti)}))
(MINUS OO

)
PLUS {A00OT)
{(PLUS ¥ (MINUS 01

{EQUAL

Y]

The Result of Evaluating the Induction Step



02: (IF

(LISTP T1)

(IF (EQUAL (PLUS {(C.FRINGE (CAR T1})

(PLUS (MINUS (TIMES ¥ (NODEKNT (CAR T1))))
(MINUS 20D
o)
(IF (EQUAL (PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES ¥ (MODEKNT {(CDR Ti}}))

LW

HINUS 000

o)

(EQUAL (PLUS (AD007)

(PLUS Y (MINUS X))

0)

T

i9]
1)

(8)The (ALL T1) quantifier is reduced in scope

12: (ALL

o ey
S
Y

{LisTP TL)
(IF (EQUAL (PLUS (C.FRINGE (CAR Ti))
(PLUS (MINUS (TIMES ¥ (MODEKNT (CAR T1))))
{MINUS V33
0)
(IF (FEQUAL (PLUS {C.FRINGE (CDR Ti})
(PLUS (MINUS {TIMES X (NODEKNT (CDR T1})})
(MINUS V20
o)
(EQUAL (PLUS (A0007)
(PLUS ¥ (MINUS X))
a)
i
T
T3
by use of: (LISPLINK SYMALL)

resulting in
M2 {(IF
(EQUAL {PLUS (A0QOD7)
(PLUS T (MINUS X0
0}
T
{ALL
T
{IF
{LISTP T1)
(1IF
{FQUAL (PLUS (C.FRINGE (CAR Ti})
(PLUS (MINUS (TIMES X (NODEXNT (CAR Ti}))3
(MINUS VO 1)
o)
(IF (FQUAL (PLUS (C.FRINGE {(CDR Ti})
(PLUS (MINUS (TIMES X (NODEXNT {(CDR T1))})
(MINUS Y333
4}
HIL D)
T

T}g}



The Quantified sub expression is examined
13: (ALL
T1
(IF
(LISTP Ti
(IF
(EQUAL (PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEXNT (CAR T1))))
(MINUS Y %

o)
(IF (EQUAL (PLUS {C.FRINGE (CDR Ti}}
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1)})}
(MINUS Y33)
Q)
HIL T)

T)
™)
by use of: (LISPLINK SYMALL)

Ti is replaced by (CONS *1 #2)
M3:
{ALL
%1
(ALL
%2
{1F
{LISTP {(CONS =i %2)}
(IF
{EQUAL
(PLUS (C.FRINGE (CAR (CONS =1 #2)})
(PLUS (MINUS (TIMES X
(HODEKNT (CAR {(CONS =1 *2))3))
(MINUS Y333
)
(IF
{EQUAL
{PLUS {C.FRINGE (CDR {COHS =*1 =%2))}
(PLUS (MINUS {TIMES X
{KODEKHT
(CDR (CONS =1 %23))))
(YINUS V30
o)
NIL )
T}
™)

{9)Resulbing in 03 below because
15: (ALL *2
(IF (EQUAL (PLUS (C.FRINGE %2)
(PLUS (MINUS {TIMES X (NODEKNT =2)3)
(MINUS O
o)
HIL TH)
by use of: EX
05:HIL

T4 {ALL #1 {IF (EQUAL {(PLUS (C.FRINGE =1}
{PLUS (MINUS (TIMES ¥ (NODEKNT #1}))
(MINUS Y33
03
HIL T
by use of ! EX



D4:NIL
03:HIL

The Result of the Induction Step
02: (EQUAL (PLUS (A0007}
(PLUS ¥ (MINUS X0))
0)

i T 4 '

The regult ol 1 ; i E b
(IF (EQUAL (PLUS (A0008)
(PLUS (MIWUS X)
(MINUS O
03
{FQUAL (PLUS (AD0O7)
{PLUS ¥ (MIWUS X))}
0)
NIL)
end of deduction
83798 conses
174 .162 seconds
11.479 seconds, garbage collection time

EX1=0/EX2=0/EX3=0/EX4=0/EX5=0/EX6=0/EX7=0/EX8=0/EX9=0/EX10=0/
ALL1=0/ALL2=0/ALL3=0/ALL4=1/ALL5=1/ALL6=0/ALL7=2/ALL8=2/ALLI=1/ALL10=1/

4 CONCLUSION

A reasoning system: ANALYZE capable of analysing the complexity of some recursive LISP funciions
has been developed. This system uses a sophisticated automatic deduction system: SYMEVAL as its basic
reasoning mechanism. A description of SYMEVAL is given in[Brown50}.

5 REFERENCES

Boyerl,Robert §. and Moore J Strother, A& COMPUTATIOHAL LOGIC, Acadenric
Press 1878.

Brownb,F.¥., and Sten-Ake Tarnlund, ®Inductive Reasoning in Mathematics®,
Sth INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, MIT,
August 1877.

Browni0,F. M., and Sten-Ake Tarnlund, “Inductive Reasoning on Recursive
Equations® ARTIFICIAL INTELLIGENCE, Vol. 12 #3, Hovember 1976.

Brown24 ,F.M. A Deductive System for Real Algebra® TR 141, March 1980.

Brownb0,F.¥.. "Experimental Logic and the Automatic Analysis of Algorithms®
TUE ARMY CONFERENCE ON APPLICATION OF ARTIFICIAL INTELLIGENCE T0
BATTLEFIELD INFORMATION MABAGEMENT, April 20,1983 - April 23,1983,

To be published in Spring 1984,



