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1. INTRODUCTION

Experimental Logic can be viewed as a branch of logic dealing with the actual construction of useful
deductive systems and their application to various scientific diciplines. In a sense it is a reversion of the
study of logic back to its original purpose, before the study of logic became merely the metamathematical

study of artificial language systems.

In this paper we descibe an experimental logic called Quantified Computational Logic{ie QCL) and an
automatic theorem prover called the SYMbolic EVALuator(ie SYMEVAL) which automatically makes
deductions in the QCL language. This logic is being applied to solving problems in several areas of
computer science such as automatic complexity analysis of computer programs, automatic verification of
the correctness of computer programs, automatic natural languge analysis, and as a model for advanced
language design.
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2. SYMEVAL AND QUANTIFIED COMPUTATIONAL LOGIC

Quantified Computational Logic is an experimental theorem proving and programming language
interpreted by the SYMbolic EVALuator automatic theorem prover. This theorem prover is based on the
following fundamental principle about deduction:

The Fundamental Deduction Principle Almost all steps in an automatic deduction should be

viewed and usually take place by a method of replacement of expressions by equivalent expressions, and
that the smaller such expressions are, the better. A few important steps may involve generalization of the
theorem, but these are deliberate steps taken with due consideration - not the mindless application of
basic generalizing inference rules.

We have come to believe this principal for two basic reasons:

1. The first reason is our overall impression of the many automatic theorem provers we have
personally constructed in the last decade, that the closer we adhere to the above principle the
better is the resulting automatic theorem prover because of the lack of redundancy in
representing the same information throughout the proof process.

2. The second reason is that theorem provers have an important role to play in inductive
reasoning, and that this role takes the form of using the theorem prover to simplify complex
expressions containing unknown free variables into equivalent sentences which explicitly state
the values of those variables. Note that if the resulting sentence were not equivalent because
of a generalization step during the course of the deduction, then even if the resulting sentence
were a solution to the unknown, there would still be no assurance that that solution were the
only solution. Thus, a generalizing step would not produce all the the needed inductive

information.
SOME SIMPLE CONSEQUENCES

The consequences of this principle are startling, and frankly, at first we were loathe to accept them
because they seem to contradict much of the past and current research on automatic theorem
proving(including our own). For example, almost all past research on automatic theorem proving
including both resolution systems and sequent calculas(ie natural deduction) systems, has been based on
the Prawitz-Robinson Unification algorithm[Prawitz, Robinson] which does not generally satisfy our
principle. Consider the example where we have an axiom {F X 2}=(G X}, and a theorem {IMPLIES(F 1
Y)}P Y). Then by unifying (F X 2) with (F 1Y), binding X to 1 and Y to 2, and replacing (F 1 2} by (G
1) we can deduce the expression: (IMPLIES(G 1) (P 2)). But this expression is not generally equivalent in
the theory to the original theorem because, although ({F 1 2)==(G 1 2}, (IMPLIES(F 1 2){P 2}} is only an
instance of (IMPLIES(F 1 Y)(P Y)).

A second consequence is that Robinson's general resolution|Robinson| inference rule(even ignoring the
previously mentioned unification problem} does not gencrally satisfy this principle. For example, in the
case of propositional logic, the resolution inference rule says that {C OR D) may be inferred from {L. OR
C) and ((NOT L) OR D}. Since (C OR D) is not equivalent to ecither of the above expressions or their
conjunction, it cannot generally satisfy this principle. {Note however, that there are certain cases of the
resolution rule which do satisfy this principle. One such case is the in unit resolution of propositional logic
where L or rather L=T is an axiom of our theory, and {{NOT LJOR D) is the expression being simplified.
In this case, the resolvent is D, which is equivalent to the original expression being simplified. Unit
resolution, sometimes called *forward chaining® or "backward chaining® in natural deduction theorem
provers, has been found to be especially useful in certain theories[Bledsoel,2 Pastre|.}



From these example consequences, one can well imagin the difficulty of constructing a useful deductive
system satisfying this principle. However, after much perserverence we have constructed a useful{but
incomplete) deductive system for QCL which satisfies this principle. This deductive system is the
SYMMETRIC LOGIC whose rules are described later.

This principle also has consequences with respect to the richness of the logical language used by a
theorem prover. . In particular, richer logical longuages, such as those which include unrestricted
quantifiers seem to have an advantage in being able to express axioms in accordance with this principle.
One good example of this is the ELIM rule of the SYMMETRIC LOGIC which is stated schematically:

(EQUAL(h X 21...Zn)
(EX Ii...Im (AND(EQUAL(const Zi...Zn I1...Im)X)
(¢ Z1...Z0 IL...Im))) )

The closest one can write axioms of this form in a quantifier free language such as[Boyerl] seems to be:

(IMPLIES(h X Z1...Zn)
(AND(EQUAL(const Z1...Zn(d1 X Z1...Zn)...(dm X Z1...Zn))X)
(¢ Z1...Zn(d1 X 21...Zn).. . (dn X Z1...2Zn))) )

which can be obtained from ELIM by replacing the existential quaatifiers (EX Ii(p li})) by the skolem
function selectors {di Z1...Zn) and reducing the EQUAL to an IMPLY. The problem with the latter axiom
scheme is that its use may cause 3 generalizing step to be made in the course of the proof. Anocther
problem is that the introduction of the extra (di Z1..7n) expressions necessitates the use of a later
generalization to get rid of them, thus again causing another generalization. Finally, because the:

(¢ 23...Zn(d1l X Z1...Zn)...(dm X 21...Zn))

is logically implies: (¢ Z1...Zn I1...Im) it follows that it might be true without (¢ Z1..Zn I1...Im) being true.
In such 2 case the needed generalization expression ¢ would have to be explicitly given to the system.

CONSEQUENCES FOR ADVANCED PROGRAMMING LANGUAGE DESIGN We
helieve that our fundamental deduction principal applies also to deducing purely computational theorems
such as those which are deduced when an automatic theorem prover is used as an interpreter of programs
written in a logic such as QCL. Because linear Horn Clause Resolution theorem provers such
as[Kowalski,Chester,Colmerauer}, and SL Resolution theorem provers such as MOORE's Baroque[Moore]
contradict this principal both with respect to unification and the resolution rule, it follows that such
systems will not produce all the possible answers to a given problem.

2.1 LINGUISTIC CONVENTIONS OF SYMEVAL

The language of the SYMbolic EVALuator consists of constant symbols and variable symbols. There are
two types of constant symbols: FUNSYMs and ATOMSYMs. There are also two types of variable
symbols: variables and SCHEMATORs. Constant symbols are analogous to nouns and verbs in a natural
langﬁage, whereas variable symbols are analogous to pronouns.

VARIABLES A variable symbol is any literal atom LITATOM which in not an ATOMSYM not
occuring after a left parenthesis. For example X is not a variable, but Y is a variable in (X Y).

SCEMATOR A schemator is any list of the form: (schemator.symbol argl ... argN} whose schemator
symbol is on the SCHEMATOR list. The initial schemator symbols are: SCH1 SCH2 SCH3 SCI4.

Every constant symbol is either a function symbol or an atom symbol. Some function symbols are
quantifiers or modal symbols. The list of primitive, defined, and declared symbols of each type can be
obtained by typing the following global variables:



FUNSYM List of all currently defined functional symbols. A FUNSYM symbol { applied to N
arguments is written as (f argl...argN). We call this a function value of f. The number of arguments may
be zero in which case the function value is written {f}. Some example functions in QCL are:
IF EQUAL,ALL EX,LAMBDA APPLY,QUOTE,QCL.

ATOMSYM List of all currently defined atom symbols. An atom symbol x is always written as x
without parentheses. Some example ATOMSYMs in QCL are: NIL,T.

QUANTSYM List of all currently defined quantifier symbols. All quantifiers are of the form: (q v (f v)
x1..xn) . Quantifiers must contain their associated bound variable in their first argument position. This
variable is bound only in the first and second argument positions. Additional quantifiers may be defined,
declared, or axiomatized. All such additional quantifiers should be added to the QUANTSYM list: (SETQ
QUANTSYM(CONS new.quantifier QUANTSYM])). Some example primitive quantifiers in QCL are:
ALL EX LAMBDA.

MODALSYM List of all currently defined modal symbols. An example modalsym in QCL is: QCL.

2.2 SYMEVAL

The SYMbolic EVALuator is a general interpreter of the Frege's quantificational logic[Frege| (ie. first
order logic with schemators, but not higher order logic). Higher order logic is handled by axiomatizing it
within first order logic. The actual symbols and inference rules of the logic are arbitrary as far as
SYMEVAL is concerned. SYMEVAL evaluates a function value {f argl...argN) in one of two ways. If the
function { is not an FSUBRSYM then it applies the definitions, axioms, and rules about f to the result of
evaluating each argument. However if f is an FSUBRSYM then only the first argument is evaluated
before the f laws are applied. SYMEVAL's symbolic evaluation of expressions is thus somewhat analogous
to LISP’s[McCarthy] method of evaluating expression with the exception that SYMEVAL returns a
*normalform® expression equal to the input expression whereas LISP returns the meaning of that
*normalform® expression. Thus whereas (CONS(QUOTE A)(QUOTE B)) cvaluates to its meaning: (A.B)
in LISP, it SYMbolically EVALuates to the equal expression (QUOTE(A B}}. The evaluation to an equal
expression allows SYMEVAL to handle quantified variables in a graceful manner. For example, whereas
the evaluation of (CONS X Y) with unbound variables X and Y gives an error in LISP, its SYMbolic
EVALuation results in the equal expression (CONS X Y).

FSUBRSYM List of functions to be evaluated as FSUBRSYMs. For example, QCL has the primitive
FSUBRSYMs: IF and the defined FSUBRSYMs: AND,OR,LOR,IMPLIES IMPLY.

Specifically SYMEVAL works as follows given as input an expression E to evaluate, an association list A
of bindings to apply, an association list H of hypotheses, a list FL of recursive functions being tenatively
unraveled, a list of universal variables which may be solved for, and a list QE of existential variables
which may be solved for.

1.If E is a VARIABLE or a SCHEMATOR then if E is bound in the association list A then the
result of replaceing E by its binding in A is returned, and if it is not bound in A then E itsell is
returned.

3. Otherwise if E is an explicitly quoted name {cg. (QUOTE FOQ}} or an automatically quoted
name such as a pumber or string then E itself is returned.

3. Otherwise if E is an ATOMic SYMbol then the result of APPLYing axioms to that atomic
symbol is returned.



4. Otherwise if E is a QUANTIfier SYMbol then it is of the form: {quantifier.symbol bound.var
bound.arg unbound.argl ... umboundargN) In this case, the expressions in the unbound
argument positions are recursively SYMbolically EVALuated using the input values of A HFL
QA and QE. The expression in the bound argument position is recursively SYMbolically
EVALuated with A and H changed to the result of deleting any bindings containing the bound
variable, with the type of the bound variable also added to H, with FL unchanged, with QA
set to NIL unless the quantifier symbol is ALL in which case the bound variable is added to
QA, and with QE set to NIL unless the quantifier symbol is EX in which case the bound
variable is added to QE. Finally the axioms about that quantifier are SYMbollically APPLYed
to the expression resulting from evaluating the arguments as described.

5. Otherwise, if E is an FSUBR SYMbol then only the first argument of E is SYMbolically
EVALuated with QA and QE changed to NIL. The other arguments are merely replaced by
the result of substituting any free variables or schemators in E by their bindings in A. The
axioms - about that FSUBR SYMbol are then SYMbolically APPLYed to the expression
resulting from evaluating and substituting the arguments as described.

6. Otherwise, E is of the form (function.symbol argl ... argN) and every argument of E is
recursively SYMbolically EVALuated without changing AN FL,QA |, or QE. The axioms
about the symbol are then SYMbolically APPLYed to the expression resuliing from evaluating
the arguments as described.

The SYMbolic EVALuator function calls the SYMbolic EValuator APPLY function in order to apply the
axioms about a given symbol to an expression starting with that symbol. Specifically SYMEVADP-LY
works as follows given as input an expression E to apply, an association list H of hypotheses, a list FL of
recursive functions being tenatively unraveled, a list of universal variables which may be solved for. and a
list QE of existential variables which may be solved for.

1. If E is an explicitly quoted or automatically quoted name then E is returned.

2. Otherwise, if E has the form {function.symbol argl ... argN) and the function symbol is not on
the FUNSYM list or if E has an atomic symbol not on the ATOMSYM list, then E itself is

returned.

3. Otherwise, if E has the form (function.symbol argl ... argN), the function symbol is the name
of a function defined in INTERLISP and the arguments are all explicitly or automatically
quoted objects, then the result of KWOTEing the INTERLISP evaluation of E is returned.

4. Otherwise, if the type of E is NIL then NIL is returned, and if the type of E is T then T is
returned.

5. Otherwise, E 1s an ATOMic SYMbol, or begins with a FUNtion SYMbol. If that symbol has an
explicit definition, or a recursive definition such that some subset of the arguments in E form a
known measured subset for that recursive definition, then the result of recursively
SYMbolically EVALuating the result of using that definition is returned.

6. Otherwise, il any axioms or rules about this symbol can be used, then the result of recursively
SYMbolically EVALuating the result of using the first such usable axiom or rule is applied.

7. Otherwise, the FNORMALFORM axiom is used if it can be used.

8. Otherwise, if the symbol has a recursive definition and that function symbol is not already on
the list of function symbols FL being tenatively unraveled, then it is put on that list, and that
the result of SYMbolically EVALuating the result of using that definition is compared with E
itself, and the more useful of the two expressions is returned.

9. Otherwise, E itself is returned.



All axioms, including axioms which axiomatize the logical symbols such and AND, OR, NOT, ALL, and
EX, are essentially of the form:

(IMPLIES ¢(EQUAL p q))

In accordance with the Fundamental Deduction Principal such an axiom is used to replace an ¢xpression p
by an expression g which is logically equal to p given that ¢ is true in the given theory and context. For
example, because the ¢ expression of a definition is the true symbol T, a definition is used to simply

replace p by q generally.

Thus given an ATOMic SYMbol E or a list E consisting of a FUNction.SYMbol followed by zero or
more arguments SYMEVAPPLY tries to use axioms whose p expression either is or begins with that
symbol as follows:

1. I SYMEVAPPLY is trying to use a definition then the p expression of that definition is
MATCHed to the expression K. The result returned is the result of using the bindings obtained
from the MATCHing to substitute for the free occurances of variables and schemators in the q
expression of the definition.

[ )

. Otherwise if SYMEVAPPLY is trying to use an axiom then the p expression of that axiom is
MATCHed to the expression E. If no match is possible then this axiom is not usable on E and
that fact is returned and the next axiom is tried. If a MATCH is possible then the bindings
obtained from this MATCH are used to substitute for the free variables and schemators in
both the ¢ and q expressions of this axiom. If the result of repeatedly recursively SYMbolically
EVALuating the new ¢ expression is not a non NIL value then again the axiom is not useable
and the next one is tried. If the result is 3 non-NIL value the the axiom is usuable and the
new g expression is returned.

Although all axioms are essentially of the form:
(IMPLIES ¢(EQUAL p q))

and even though the use of schemators allows a numerous kinds of axiom schemes to be represented in
QCIL, there are still a number of useful schemes which cannot be represented directly within the QCL
language without assending to the meta level. For this reason, SYMEVAL allows such schemes to be
represented as INTERLISP functions. SYMEVAL will attempt to use any such axiom scheme represented
as an INTERLISP function in the same manner as it uses any other axiom. The interface to the
INTERLISP function is this: The arguments to the function are the current E, H, FL, QA, and QE. The
result returned by the function is either the instantiated g expression of the hypothetical usable axiom
represented by the function, or E itself if the hypothetical axiom was unusuable. In any case, the prime
requirement is that the expression returned from such a function must be logically equivalent in the given
theory and in the context H to the input expression E.In accordance with INTERLISP’s argument
conventions the function need not have formals for H, FL, QA, and QE. in which case they are ignored.
Such functions may obtain their result in any manner they wish, including calling the theorem prover
itself.

2.3 FUNCTION OBJECTIFICATION

Function symbols of a theory can be theoretically divided into two classes. Namely, the symbols of the
theory which appear essentially as arguments to the p expression in an axiom of the form: ¢ ==> p=q
and the symbols which do not. For example the CONS function is clearly an object because of the SHELL
axiom: {CAR{CONS X Y}j = X. However, the recursive function APPEND is not an object, at least until
we prove some theorems about it, because there is no axiom of the form: {f{APPEND X Y) = q. It is



important to determine which non-primitive symbols are objectified at a given point in an extensible
theory [Brownll] in order to avoid their evaluation in order to get the effect of a call by need

evaluation[Brown4,6].

2.4 PRIMITIVE SYMBOLS OF QCL

Quantified Computational Logic consists of both primitive symbols and nop-primitive symbols. The
primitive symbols of QCL listed below are axiomatized by the ADDRULE command described later.

NIL “falsity® ®"normal end of a list®

T "truth®

(IF plr) ®if p then 1 else r® FSUBERSYM

(EQUAL x y) ®"x equals y", or if x and y are sentences "x if and only if y*
(ALL v x) tfor all v x® QUANTSYM

(EX v x) *for some v x® QUANTSYM

(QUOTE x)  treats x as a name

(LAMBDA v x) "the function mappinp v to x® QUANTSYM
(AP £ a) *the application of function f to a®
(LAMBDAP f) "f is a2 good function ’
(BADLAMBDAP f *f is a bad function®

(QCL x) *yx is QCL-true® MODALSYM

2.5 TYPES

Every symbol in QCL has one or more types associated with its function value. In addition the bound
variable of each quantifier is also of one or more types. The initial types are: NIL, T, LAMBDAP,
BADLAMBDAP, OTHERN. The NIL type consists of the atom NIL. The T type consists of the atom
T. The LAMBDAP type consists of those functions which can be arguments to an application. The
BADLAMBDAP type are the other functions. The OTHERN type consists of those numbers which are
not recursively constructed by the shell principle. An expression is of type NIL or T iff it is EQUAL to
that value: (EQUAL X NIL) or (EQUAL X T) For any other type, an expression is recognized to be that
type by a recognizer symbol in QCL whose name is that type. For example (LAMBDAP X} iff X is of
type LAMBDAP, and (BADLAMBDAP X) iff X is of type BADLAMBDAP. Also types for lists, positive
integers, negative integers, decimal numbers, strings, and literal atoms are intially created types produced
by the SHELL principle described below. These types are called: LISTP, PNUMBERP, NNUMBERP,
DECIMALP, STRINGP, LITATOMP. NIL and T are not LITATOMPs because they have their own
type.

UNIVERSE The list of all currently defined types in the system. {LITATOMP STRINGP
DECIMALP NNUMBERP PNUMBERP LISTP NIL T LAMBDAP BADLAMBDAP OTHERN OTHER}

(SETQ XXX(PRINTTYPES)) (PP XXX) Pretty prints the type of the function value of every
symbol in the system.

The type of the function value of a brimitive symbol is already know. The type of the bound variable of
a primitive quantifier is already known. The type of the function vslue of a newly defined symbol is
automatically created when that symbol is defined. However, the type of the bound variable of a newly
defined quantifier must be explicitly declared by the following command.



(VASSUME quantifier.symbol types)

For example, a newly defined universal quantifier ALL.LISTS.AND.STRINGS ranging over only lists and
strings would need the command: ‘

(VASSUME °ALL.LISTS.AND.STRINGS '(LISTP STRINGP)).




3. THE SYMMETRIC LOGIC DEDUCTION SYSTEM

3.1 INTRODUCTION
The SYMEVAL theorem prover now runs with a new logical system called SYMMETRIC LOGIC which

treats universal and existential quantifiers in an analogous manner. For example as suggested by [Wang?]
several years ago, SYMMETRIC LOGIC rewrites both of the following sentences to (FOO A), after
evaluating their subexpressions, when trying to prove them:

(ALL X (IMPLIES (EQUAL X A) (FOO X)))
(EX X (AND (EQUAL X A) (FOO X)))

Thus the essence of the SYMMETRIC LOGIC technique is to push quantifiers to the lowest scope possible
in hopes of finding a way to eliminate them. Thus unlike the sequent calculus{Szabo,Brown1,3,4,6,12,25]
and other logic systems|Bledsoel,2,Bibel2] based on the Prawitz-Robinson Unification algorithm
[Robinson|, which essentially loses the scope of the existential quantifier during the skolemization process,
SYMMETRIC LOGIC handles equalities very well indeed. The power of a logic which handles equalities
like this is very convincing, in an application domain dealing essentially with equations such as real
algebra, logic programming, and language analysis. SYMMETRIC LOGIC is the synthesis of several
earlier logic systems including the initial symmetric logic used by the real algebra rule package[Brown24|,
and the bind logic used by the logic programming and natural language rule packages[Brown26|. Current
research is aimed mainly at synthesizing the SYMETRIC LOGIC method of handling quantifiers with the
method used by our sequent calculus system, into one general system. The purpose of synthesizing these
different logical systems is to eventually develop one simple, systematic, yet general logic system capable
of performing well in many application domains.

3.2 PROPOSITIONAL LOGIC
The syntax of SYMMETRIC LOGIC includes three propositional symbols:
NIL meaning: false
T meaning: true

(IF plr) meaning: if p then 1 else r FSUBR

IF treats all non-Boolean objects{eg. LISTPs NUMPERPs and OTHERS) as if they were T. An expression
x is Boolean iff x is T or NIL when evaluated in some world. Thus any non-NIL object is assumed to be a
true value. For example: {IF 44 1 2} is 1. The NIL and T atom symbols aer SUBRs, whereas the IF
symbol is an FSUBR. Thus only the first argument of IF is SYMbolically EVALuated before the IF
axioms are applied.

The SYMIF rule is used on an expression (IF p 1 r) in the following manner:

1. First the type of p determined. If it is NIL then r is returned and if it does
not include NIL then 1 is returned. These rules can be written schematically as:
1. if the type of p does not contain NIL then (IF p 1 r) = 1 2. if p=NIL then
{IFplm=r

2. Otherwise, if 1 is of type NIL and r is not, r is of type NIL and 1 is not, the
l-effects of p contribute significantly to binding the free variables in 1 ,or
the r-effects of p contribute significantly to binding the free variables of r
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then the IFNORMALFORM scheme is applied to (IF p 1 r). The effects of p consist
of the equality statements in p of the form (EQUAL v t) or (EQUAL t v}, hereafter
called bindings: 3. if certain conditions hold then IFNORMALFORM

1f neither of the. above cases hold, then p is assummed to be true with the

H list set accordingly, p is solved for a variable if possible and the A

list is set accordingly{ie that solution is added as an additional binding

and is also used to modify anyother bindings), and 1 is SYMbolically
EVALuated. Next, p is assumed to be false and the H list is set accordingly
and r is SYMbolically Evaluated.

SYMIF then tries to use the following rules in the given order:

if 1=t then (IFplr)=r1
5. if 1 differs from r only in bindings
contained in the context list A then (IFplrm =r
§. if p =» l=r then (IFplr)=r
7. if p=1, r=NIL then (IFp1lr) =p
8. if p is Bool, 1=T, r=NIL then (IF x1 r) = x
9. IFNORMALFORM

This rule is not the scheme:
(IF(IFpab)lr)=(0Fp (IFalr) (IFb1lr))
which is far too inefficient for effective deduction. Instead
the following more general scheme is used:
(IF(IFp ...a..) LR) = (IFp ...(IFa11)...)
for every largest subexpression not containing an IF symbol.
Furthermore, If a=NIL then (IF 2 1 r) becomes r, and if the type
of a does not include r then (IF a 1 r) becomes 1.
10. Equality Substitution
This rule applies the schema:
(IF(EQUAL x y) (p x y)) = (IF(EQUAL x y)(p xi yi})
after solving the equation (equal x y) for an interesting subexpression u.
IF applies the IFNORMALFORM axiom before evaluating | and r whenever:
(1) 1 and r occur nc more than once in the resulting expression
(ie. if the truth values are known we getb:
(IF (IF p NIL NIL) 1 r) = by above axioms: (IF NIL 1 1) = r
(IF(IFpNILTor) 1 1) = (IFpr 1)
(IF (IF p Tor NIL) 1 r) = (IFp 1 1)
(IF (IFpTor Tor) 1 r) = {(IFp1l1) =1

Tor means T or any non boolean exp. )

i

1]

(2) the bindings in x contribute significantly to the evaluaticn of
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1 or they contribute significantly to the evaluation of r.
(3) the type restrictions in x contribute significantly to lortor
(not yet implemented).

The SYMMETRIC propositional logic also includes the functional normal form rule which eliminates
embedded occurences the IF symbol. The FNORMALFORM axiom embodies:

(£ xt...xn(IF p 1 o)yi...ym) = (IF p(f xi. .xn 1 yi...ym)
(£ xi...xn ¢ yi...ym))

3.3 EQUALITY LOGIC
The syntax of SYMMETRIC LOGIC includes four an equality symbol:
(EQUAL 1r)  meaning: 1 equals r

The EQUAL symbol is a SUBR. Thus all arguments to EQUAL are SYMbolically EVALuated before the
EQUAL axioms are applied. Generally speaking, equality has four fundamental properties:

1. Equality is reflexive: X=X

2. Equality is symmetric: x=y implies y=z

3. Equality is transitive: x=y implies (y=z implies x=z)
4. Equality is extentional: x=y implies (Px implies Py)

x=y implies (y=z) = (x=z)
*=y implies fx = fy
The EQUAL axioms are given below.
The first two equality laws deal with the refexitivity of equality and the
inequality of distinct data objects.
1. (EQUAL X X) = T
2. if 1 and r are different data objects then (EQUAL 1 r) = NIL

The next six axioms reduce EQUAL to IF vwhenever possible.

it

(IF(EQUAL x y) (EQUAL 1 T) (EQUAL 1 NIL))
(IF{EQUAL x y) (EQUAL r T) (EQUAL r NIL))

(EQUAL 1(EQUAL x y))
(EQUAL (EQUAL x y)r)

it

3 (EQUAL NIL r) = (IF r NIL T)

4 (EQUAL 1 NIL) = (IF 1 NIL T)

5 if 1 is boolean in a world then (EQUAL 1 T) =1
8. if r is boolean in a world then (EQUAL T r) =r
7

8

This law reduces the equality of functions (ie. Frege’s Werthverlauf) to
the equality of their function values on equal arguments.
9. (EQUAL (LAMBDA x(p x)) (LAMBDA y(p y)) )
= (ALL V(EQUAL (APPLY(LAMBDA x{p x))V) (APPLY(LAMBDA y(p ¥))V} )



3.4 QUANTIFICATIONAL LOGIC
SYMMETRIC LOGIC also has two quantifiers:

(ALL v p) meaning: for all v, p
(EX v p) meaning: for some v, P
The ALL axioms are:
JALLY type p is not NIL ==> (ALL v p) =T
JALL™Y (ALL v p) = p
JALLvvy (ALL v v} = NIL
JALL= " (ALL v{(not(EQUAL v t))...or...{p ¥))) = (p t)

.ALLrecog  (ALL v(recog v)) = NiL
.QUANTIF (ALL v(IF p (1 ) (r x))) = (IF p (ALL v(1 v)) (ALL v(r v)))
.ALLand (ALL v(...or...{and (x v) (y ¥))...))

= (and(ALL v{...or...{x v).. ))(ALL v{(...or...{y vJ...2) )

3o b N e O

7.ALLor
8.ALLnot (ALL v(IF p NIL T))
9 ALLident (ALL v(IF p T NIL))
10 .ELIM

H

(IF(EX v p) NIL T)
(IF(ALL v p) T NIL)

i

The EX axioms are:

EXt type p is not NIL ==> (EX v p) =T

0

1.EX"v (EX vp)=p

2.EXvv (B vv) =T

3.EX= (EX v((EQUAL v t)...and...{p vJ)) = (p ®)

4 EXrecog (EX v(recog v)} =T

5.QUANTIF (EX v(IF p (1 ®)(r x))) = (IF p (EX v(1 v)) (EX v{(r v)))
6.EXor (EX v(...and...{or (x v) (y ¥J)...0)

= (or(EX v{...and...(x v).. . ))(EX v(...and... (y vJ...}) )
7. .EXand
8.EXnot (EX v(IF p NIL T))
9.EXident (EX v(IF p T NIL))

1t

(IF(ALL v p) NIL T)
(IF(EX v p) T NIL)

i

10.ELIM
EX-OR does:

1. (IF a (IF p 1 r) NIL) = (IF p (IF a 1 NIL) (IF a r NIL))
9. if 1 is Boolean then (IF é 1r) = (IF (IF p 1 NILY T (IF p NIL 1))

3. (EX v(IF(a VTG v)) = (IF (&X v(a ») (EX v(b v)) T
ALL-AND does:

1. (IFa (IFplr) TV =(IFp (IF2a1T (IFar 1)

2. if 1 is Boolean then (IF p 1 r) = (IF (IF p 1 T) (IF p T r) NIL)



3. (ALL v(IF(a v) (b ¥)NIL)) = (IF(ALL v(a x))(ALL v(b v))NIL)
The Elimination axioms have the forms:
(EQUAL(h X Z1...Zn)
(EX I1...In (AND(EQUAL(comst Z1...Zn I1...Im}X)
(¢ Z1...2n I1...1m))) )

They have the effect of the rewrite schemmas:
(EQUAL(ALL X(s X))
(AND(ALL Z1...(ALL Zn(ALL I1...(ALL In
(IMPLIES(c 21...Zn I1...Im)
(s{comst Z1...Zn I1...Im)) ) D)D)
(ALL Z1i...(ALL Zn(ALL X(IMPLIES(NOT(h X Z1...Zn))
(s X203 )
(EQUAL (EX X(s X))
(OR(EX Z1...(EX Zo(EX I1...(EX Im
(AND(c Z1...Zn I1...Im)
(s(const Z1...Zn I1...Im}) ) 1))
(EX Z1i...(EX Zn(EX X(AND(NOT(h Zi...Zn})
(XN N

3.5 ABSTRACTION LOGIC
The SYMMETRIC LOGIC has a primitive symbol: LAMBDA for functional abstraction,(ie. for forming

the werthverlauf of a function value) and a primitive symbol: AP for function application: AP.
(LAMBDA v(p v))
(AP g a)

Five Axioms and theorems similar to the set theory abstraction axioms used in [Brown4,6] are assumed for

lambda conversion:

T1.(BADLAMBDAP X}  ==> (AP S X) = NIL
T2, (NOT(BADLAMBDAP X)) ==> (AP(LAMBDA X{(p X))X) = (p X
A3. (AP(LAMBDA X(p X))X) = (IF(BADLAMBDAP X)NIL(p X))

T4. (AND (NOT (BADLAMEDAP X))
(NOT (BADLAMBDAP S))
(NOT (LAMBDAP S))) ==> (AP S X) = (EQUAL S X)
A5 . (AND(NOT (BADLAMBDAP S))
(NOT (LAMBDAP S))) ==> (AP § X) = (IF(BADLAMBDAP X)NIL(EQUAL S X))

One axiom for determining the equality of functions is assumed:
A6 . (EQUAL (LAMBDA v{(p v)J(LAMBDA v(q v)}) =
(ALL X(EQUAL(AP(LAMBDA v(p v))X) (AP(LAMBDA v(p v))X) ))

One theorem {similar to T1 above) is assumed for use by the type system:
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T7.(AP F X) ==> (NOT(BADLAMBDAF X))

Set theoretic abstaction: SET and ELEmenthood are defined as follows:
(SET v(p v)) = (LAMBDA v(p v))
(ELE x s) = (APPLY s x)

Thus every function is 2 set and every set is a function. Functional equality is of course EQUAL, whereas
set equality is:
(SETEQUAL x y) = (ALL V(IFF(ELE V x)(ELE V »)))

The set theory axioms are neutral with respect to a classical or Lesniewskian set theory. For example, at
least the following axiom should be added for Lesniewskian set theory: (EQUAL (SET v(EQUAL v X)) X)

3.6 MODAL LOGIC

The SYMMETRIC LOGIC also includes two modal operators: {QCL p) meaning: p is QCL-logically
true (POS p) meaning: p is QCL-logically possible

The QCL axioms are:
1. if x is NIL-or-CONTINGENT then  (QCL x)
2. if x is not CONTINGENT then  (QCL x)

i

NIL

X (ie x=T,NIL,or non-bool)

The POS axioms are:
i. if x=NIL then (POS x) = NIL
2. if x is not NIL then (POS x) =T

Other facilities for Modal Logic are described in Brown[17,18,21]



15

4. AXIOMATIZING THE THEORY

The (QCL language may be augmented with new data structures, new function definitions, and other
axioms. The function bodies of definitions may include quantifiers.

1.1 DATASTRUCTURES: THE SHELL PRINCIPLE

The shell principle allows QCL to create functions for dealing with new data stuctures after the user
specifies a minimum of information. The Shell Principal produces axioms about datastructures which
obey the Fundamental Deduction Principle discussed in section 2. Although many of the axioms are
similar to those described in [Boyerl], some of the axioms are, in order to preserve the property of
replacing expressions by equal expressions, necessarily quite differcnt. Shells are added via

(SHELLCREATE const btm recog ac-list type-list default-list)

with
cons’ The name of the new function which constucts objects of
the new type.
recog The name of the new function which recognizes objects of
the new type.
btm Bottom object. Use T if there is no bottom object.
ac-list List of the functions which are accessors of the data structure.
type-list List of the type restrictions on the shell.

Each restriction is an arbitrary formula in QCL consisting of
symbols defined at that time.

default-list List of the default values for the shell.

Shells may be tested for validity via:

(SHELLTEST const recog arity ac-list type-list default-list)

The function SHELL, combines the functions of SHELLTEST and SHELLCREATE. (To save
computation time, it is recommended that SHELLCREATE be used instead, with the user calling
SHELLTEST only when the shell is first introduced.)

Shells for the basic INTERLISP data structures of lists, positive integers negative integers, decimal
numbers,strings, and atoms are initially automatically created when QCL is entered by the commands:

(SHELLCREATE *CONS 'T 'LISTP (CAR CDR) (T T) '(NIL NIL))
(SHELLCREATE 'PADDI '(ZERO) 'PNUMBERP '(PSUB1)
‘((PNUMBERP X1)) '((ZERO)))
(SHELLCREATE 'NMINUS 'T "NNUMBERP '(POSPART)
(IF{(EQUAL X1 0)NIL(PNUMBERP X1))) '(0))
(SHELLCREATE 'TENDIV 'T 'DECIMALP '(SIG MANTISSA)
"((AND(NOT(EQUAL X1 0))(OR(PNUMBERP X1)(NNUMBERF X1)))
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'(AND(PNUMBERP X2)(NOT(EQUAL X2 0))))
"(11)
(SHELLCREATE 'CONCATPNUM ’(NULLSTRING) 'STRINGP
'(FIRST REST) '((PNUMBERP X1)(STRINGP X2))
'(0 (NULLSTRING)))

(SHELLCREATE "MAKEATOM 'T 'LITATOMP (MAKESTRING)
'((AND(STRINGP X1)(NOT(MEMB X1 '(*NIL®,*T*,**)))})) *(*0*))

The shell axioms are gcl-true.

4.2 THEORY OF QUOTATION

Expressions concerning these six initial shells can be abreviated by a theory of quotation based on
normal INTERLISP conventions. - The following are examples of the special shorthand equivalents for lists,
strings and numbers which can save the user time and effort.

(QUOTE(THIS IS A LIST))=(CONS(QUOTE THIS)
(CONS(QUOTE IS)
(CONS(QUOTE A)
(CONS(QUOTE LISTIKIL))))
4= (ADD1 (ADD1 (ADD1 (ADD1(ZER0)})))

“ ABC*=(CONCATPNUM(QUOTE 65)
(CONCATPNUM(QUOTE 66)
{CONCATPNUM (QUOTE 67)
(QUOTE **))))
(QUOTE ABC)=(MAKEATOM ®ABC®)

Note that numbers, strings, NIL{the normal end of a list}, and T are automatically quoted. Sometimes
C-LISP conventions will also work.

4.3 DEFINITIONS

Definitions are of the form:

(EQUAL (function-name-being-defined argl...argN)definition-body)

The body of a definition may invlove both recursive calls to themselves and quantifiers such as ALL,
EX, LAMBDA. The symbol being defined may itself be a quantifier. Schemators may also appear in boih
the argument list and body of the function being defined. For example a recursive definition for the
summation function: SIGMA is:

(EQUAL (SIGMA K(SCHI K)M N)
(IF (PNUMBERP M)
(IF (PNUMBERP N)
(IF(EQUAL ¥ N)
(8CHL W)
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(IF(LESSP M W)
(PLUS(SIGMA K(SCH1 K)M(PSUBL N)) (SCH1 N))
0))
0)0) )

Recursive definitions for CLISP iteration operators can also be defined
using schemators. Such definitions for COLLECT and JOIN are given below:
(EQUAL(COLLECT K(SCH1 K)M N)
(IF {PNUMBERP M)
(IF (PNUMBERP W)
(IF(EQUAL ¥ N)
(LIST1(SCHL N))
(IF(PLESSF ¥ M)
(APPEND (COLLECT K(SCH1 K)M(PSUB1 N)) (LIST1(SCH1 N)))
NIL))
NIL)NIL) )
(EQUAL (JOIN K(SCH1 K)M M)
(IF (PNUMBERP M)
(IF (PNUMBERP N)
(IF(EQUAL ¥ N)
(SCH1 N)
(IF(PLESSP ¥ N)
(APPEND (JOIN K(SCH1 K)M(PSUB1 N)) (SCHL N))
NIL))
NIL)NIL) )

Note that SCHi is a schemator.

The commands which create definitions are:

(DEF definition) Adds a definition to those already in existence after ensuring that it is either an
explicit or recursive definition. Induction templates are created and declared if the definition is recursive,
and the type of the function value of the defined symbol is declared.

(DEFL list-of-definitions) Adds a list of definitions to those already existing using DEF.
(DEFLQ definitionl...definitionN) FSUBR (FSUBR version of DEFL)

SYMEVALDEF Switch, when set to T causes the DEFinition commands to SYMbolically IV ALuate
the bodies of the definitions before the definitions are actually asserted. The Default is T. ‘

The following declaration commands can be used to assert definitions that the system is currently unable
to define automatically.
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(DCL definition) Declares a definiton, and assumes that the definition is recursive on its first
argument position. In fact it assumes that the COUNT measure is decreasing on the measured unit set
consisting of the formal variable in that position. It does not first prove this fact and thus does not guard
against infinite recursion. This command is useful for defining things the theorem prover can not yet
handle. It is especially useful for asserting definitions which are recursive but which are to difficult for
this theorem prover to prove. Psuedo functions(ie functions which are executed for their side effects)
should be declared so.as to force their type calculation to occur at run time instead of at definition time.

(DCLL list.of.definitions) Declares a list of definitions using DCL.
(DCLLQ definitionl...definitionN) FSUBR (FSUBR version of DCLL)

SYMEVALDCL Switch, when set to T causes the DeCLaration commands to SYMbolically EV ALuate
the bodies of the definitions before the definitions are actually asserted. The Default is T.

Definition schemes are INTERLISP functions which when given an expression beginning with the symbol
being defined returns another expression with that symbol replaced by its definition. These schemes are
useful for defining new quantifiers including recursive quantifiers such as SIGMA, and infinite numbers of
definitions. Definition schemes are implemented by use of the following command:

(DCLSCHEME symbol.being.defined interlisp.function.name)

The system does not automatically produce induction templates and type information for declared
symbols. Such information can be given to the system by the following commands.

(DCLTEMPLATE symbol (measure.expression machine axioms-justifying the template)).
For example the template for SIGMA is: '((COUNT M) (((LESSP M N) ({(M(PSUB1 N}))}) PSUB1.LESSP)

(ADDTYPE symbol (list.of.types . list.of.argument.positions)). For example, the type of
SIGMA is: ((PNUMBERP NNUMBERP DECIMALP OTHERN). NIL}

The following definitions are initially made when QCL is entered:
(DEFLQ
(EQUAL (LET V(SCHi V)X) (SCH1 X))
(EQUAL (NOT P) (IF P NIL T))
(EQUAL (AND P Q) (IF P Q NIL))
(EQUAL (R P @ (IF P P Q))
(EQUAL (LOR P @) (IF P T Q))
(EQUAL (IMPLIES P Q) (IFP QT))
(EQUAL (IMPLY P Q) (IF P @ T))
(EQUAL (IFF P @) (IF P(IF Q T NIL)(IF Q NIL T)))
(EQUAL (OBJECT X) (IF(BADLAMBDAP X)NIL X))
(EQUAL (LITATOM X) (LOR(LITATOMP X) (LOR(EQUAL X NIL) (EQUAL X T))))
(EQUAL (INUMBERP X) (OR{PNUMBERP X} (NNUMBERP X)))
(EQUAL (NUMBERP X) (OR(OTHERN X) (OR(DECIMALP X) (INUMBERP X))))
(EQUAL (LISP.DATA.STRUCTURE X)
(LOR(LISTP X) (LOR(STRINGP X) (LOR(NUMBERP X) (LITATOM X)))))
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)

The (LET V(SCH1 V)X) function is used to assign a variable V to the result of SYMbolically EVALuating
the value X only once and then substituting it into the (SCH1 v} expression as many times as v occurs
there. It is somewhat like (APPLY(LAMBDA V(SCH1 V))X) but without any commitment to X not being
a BADLAMBDAP. This construct is also analogous to the: *Let V=X and__return{SCH1 v}}* construct

found is some programming languages.

Note that AND and OR are the normal INTERLISP AND and OR functions where AND returns the
last true value or NIL, and OR returns the first true value or NIL. LOR is a more logical OR function
returning T or the third argument. AND, OR}, and LOR have the following properties:

These laws hold:
(AND(AND P Q)R)=(AND P(AND @ R)}
(0R (OR P QR)=(0R P(OR Q R))
(LOR(LOR P @R)=(LOR P(LOR Q R))
(IF P X Y)=(OR(AND P X) (AND(HOT P)Y))

These laws do not hold:
(IF P X Y)=(AND(OR P Y) (OR(NOT P}X))
(IF P X Y)=(LOR(AND P X) (AND(NOT P)Y))
(IF P X Y)=(AND(LOR(NOT P) X)(LOR P 1))

4.4 REDUCTION AXIOMS

Reduction axioms are of one of the following forms
P replaces p by T
(EQUAL p q) replaces p by q
(IMPLIES ¢(EQUAL p q)) replaces p by q, whenever ¢ holds
(IF ¢ (EQUAL p q) T) replaces p by q. whenever ¢ holds

Unlike definitions, reduction axioms should not involve infinite looping. In particular, the q expression
should be simpler than p. For example g should not contain an alphbetic varient of p.

(ADDAXIOM axiom name-of-axiom}

Adds axiom as a new rewrite rule to the system.

(ADDAXIOMS list-of-axioms) FSUBR
Calls ADDAXIOM on each axiom in the list. It uses the first

symbol in the ®p® sub-expression as the default name.

(ADDELIM elimination-axiom)

A special kind of reduction axiom schema called an Elimination axiom
may be added by this command. Elimination axioms have the form:

(EQUAL(h X Zi...Zn)
(EX Ii...Im (AND{EQUAL{const Z1...Zn Ii...Im)X){c Zi...Zn Ii...Im)}) )

For example: )
(EQUAL(h X Z1...ZN) (EX I1...Im (EQUAL(const Zi...Zn I1...Im)X)) J
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They have the effect of the rewrite schemmas attached to the ALL and EX
quantifiers:
(EQUAL(ALL X(s X))
{AND(ALL Z1...(ALL 2Zn(ALL I1...(ALL In

(IMPLIES(c Z1...Zn I1...Im)
(s{const Z1...Zn I1...Im}) ) ))))
(ALL Z1...{(ALL Zn(ALL X(IMPLIES(NOT(h X Z1...Zn))(s XON))) ) )
(EQUAL(EX X(s X))
(OR(EX Z21...(EX Zn(EX I1...(EX Im(AND(c Z1...Zn Ii...Im)
(s(const Z1...Zn I1...Im)) ) NN
(EX Z1...(EX Zn(EX X(AND(NOT(h Z1...Zn))(s X0)))) ))

The ELAXL list determines the use of such lemmas. It has the form:
{ (elaxname ({selector }oo..

{(selector position)} ... )) ...}

(ADDRULE symbol lisp-function-name) The lisp-function-name is a lisp function which has the
effect of one or more rewrite axioms associated with the formal symbol. This command is useful for
axiomatizing quantifiers and other schematic symbols. It is also useful for asserting complex axiom
schemes. ’

4.5 EQUATION SOLVING

SYMEVAL will try to solve equations at the appropriate time, and use those solutions at the
appropriate time provided the user defines an INTERLISP function called RSOLVE which will solve
equations for 0 or more solutions. The system will attempt to solve equations for variables whenever the
quantifier binding that variable is being applied, or whenever that variable is free in the theorem being
proven.(ie. whenever the variable is an unknown.} The system will also attempt to solve for an
appropriate variable of lowest scope in an equation occurring as the first argument of an IF function value
or for a latest defined function value in an equation occurrings as the first argument of an IF function
value provided that the function value also occur in the second argument position of the IF statement.

4.6 INDUCTION AXIOMS

The Induction scheme was adopted from [Boyerl] and has since been extented to handling recursive
definitions containing quantifiers, bound variables and schemators. Induction axioms have the form:

"(IMPLIES(test X1...Xn)
(LESSP(measure(selector X1...Xn)){(measure X1...Xn)) )

Many induction axioms arc automatically created when the SHELL command is used to create 2
datastructure. For example:

"(IMPLIES(LISTP X)
(LESSP(COUNT(CDR X))(COUNT X)) )
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is created when the list datastructure is asserted. Additional induction lemmas may be asserted with the
following command:

(MKINAXIOM induction.axiom.name induction.axiom)

4.7 LINK TO INTERLISP INTERPRETER

The theorem prover automatically links to the INTERLISP interpreter whenever all the evaluated
arguments of a function are explicit values or quoted objects provided that the function name appear on
the FUNSYM list. This is done because INTERLISP is much faster than SYMEVAL. The SHELL.DEF,
and DCL commands automatically place the function names they deal with onto the FUNSYM list. Thus
the user should be careful to define any logical functions having the same name as some INTERLISP
function, to exactly correspond in effect to that INTERLISP function. However, it is not required that
logical definitions exist for a link to interlisp to be made. For example, if the name of every INTERLISP
subr function were CONSed onto FUNSYM then QCL would be a superset of INTERLISP subrs.
INTERLISP psuedo-functions (ie. functions which are being executed for there side effects should be
DeCLared {DCL) not DEFined, because DEF creates type info at definition time, which can cause the
defined not to be executed at run time. For examply if the type of a DEFined print function were NIL it
would never be executed at run time because the system would know that the function valued equaled
NIL. ‘
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5. USING THE SYSTEM

Anyone who uses this system for programing as opposed to more general deductive tasks should bear in
mind that this is a general theorem proving system which lias not been engineered especially for
computation. Thus, the system will appear to be somewhat slow in comparison to systems engineered
specifically for computational tasks. This slowness is in no way a reflection on how well an interpreter for
this Tanguage could be engineered for computational tasks.

5.1 INITIALIZING THE SYSTEM

getting started on thevResearch DEC20.
.LISP
*LOAD(AUX:<CS.BROWN>ATP.COM)

restarting the system:
*{SYSINIT)

The systemn version may be obtained by typing
ATP.VERSION
This paper corresponds to version 3.

5.2 EXECUTING PROGRAMS AND PROVING THEOREMS

(PV theorem) FSUBR (but if theorem is a variable it is evaluated like a SUBR) Attempts to prove a
theorem using PV and collects statistics on the process. More useful than PROVE because theorern could
be a variable containing the theorem.

(PROVE theorem) Attempts to prove a theorem using recursive SYMbolic EVALuation: SYMEVALOQ,
and Noetherian induction.

(SYMEVALQ theorem) Attempts to prove a theorem using only recursive SYMbolic EVALuation.

5.3 DEBUGGING PROGRAMS

As SYMEVALOD recursively evaluates expressions tracing information is produced whenever a
definition, axiom, or rule is applied. This information consists of three parts: 1. An input expression to
which the axiom is being applied, called 1. 2. The midterm expression produced by the application of the
axiom, called M. 3. The output expression obtained by recursively evaluating the M expression, called
O. Thus, a trace will generally be of the form:

Ii:exp

Mi:exp
I2:exp
M2:exp

02:exp
I2:exp
MZ2:exp



02:exp
01:exp

where the numbers immediately following I,M,or O are the level at which that application takes place. At
a given level number i, Oi and Mi are always associated with the preceeding Ii.

DEBUGGING PRINCIPLE The basic method of debugging is this: if some li expression is not
logically equal to the coresponding Oi in the given theory and in the specific context, then either i does
not equal Mi or Mi does not equal Oi. If Ii does not equal Mi then the definition, axiom or rule used in
that application is incorrect. If Mi does not equal Oi then one must recursively examine the i+1 level (ie
li+1, Mi+1, Oi+1) to find the error.

TRACELIST List of currently defined symbols to be traced. Each time one of these symbols is used,
tracing information will be printed in the trace file. (Note: if there is no trace file, the tracing information
defaults to the screen.) When a trace of all function symbols is desired, TRACELIST can be set to
FUNSYM.

OPENTR( trace-file ) FSUBR Sets up a file for tracing information.
CLOSETR() Closes the current trace file.

TRACEM Switch, when set to T, causes the mid term (the term after an expression has been replaced
by its definition, but before it has been evaluated) to be printed as well as the imput and output
expressions on the trace. The default is T.

TRACEN Switch, when set to T, causes the name of each axiom or rule to be printed when it is used.
The default is T.

TRACEH Switch, when set to T, causes the evaluation of any hypothesis to an axiom, which the
system is trying to use, to be traced. The default is NIL.

TRACESYS Switch, when set to T, causes the a-list and type set a-list to be printed along with each
tracing line. The default is NIL.

5.4 EXAMPLE OF USING THE SYSTEM

Here is a simple example of using SYMEVAL-QCL as a programming language for natural language
processing. We define functions for recognizing an adjective list and translating it into logic. For our
purposes, an adjective list is either NIL, or an adjective followed by an adjective list.

8lisp

INTERLISP-10 27-MOV-79 ...

Hello, Handsomse.

2 _LOAD(ATP.COM)

compiled on 7-Jun~-82 10:13:24
(ADDRULE redefined)

Transoring of<CS.BROWN>NATP. .17
done on 13-Feb-81 12:50:41
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<CS.BROWN>ATP.COM. 1
3 LOAD(ATP.DEFS)

<CS.BROWN>ATP.DEFS.1

After loading the theorem prover and the ATP.DEFS environment, we
define SASSUCP for locking up words in the lexicon.

4 (DEFLQ
(EQUAL (SASSOCP X L V)
(EX U
(IF (EQUAL U (SASSOC X L))
(IF U (EQUAL V U) NIL)
NIL))))
NIL

Next, we define the lexicon.

5 (DEFLQ
(EQUAL (ADJW)
{QUOTE((RED RED)
(BIG BIG)
(SMALL SMALL))) 2
NIL

Now, we define ADJ for processing a2 single adjective.

6 _(DEFLQ
(EQUAL (ADJ X Y A Z).
(EX U
(IF (SASSOCP (CAR X) (ADJW)U)
(IF(EQUAL Y (CDR X))
(EQUAL Z (LIST2 (CAR(CDR U)) A)}
NIL)
NILYID)
NIL

Finally, we define ADJL to process an adjective lisb.

7_(DCLLQ
(EQUAL(ADJL X0 X2 4 2)
(IF(EX X1
(EX 21
(IF(ADJ X0 X1 A Z1)
(EX 22
(IF(ADJL X1 X2 A 722)
(EQUAL Z(LIST3 (QUOTE AND) Zi Z2))
NIL))
HIL)))
T
(IF(EQUAL Z T) (EQUAL X2 X0) NILM))
NIL

Having defined ADJL, we can now test it.

8 (Pv (ADJL (QUOTE ()) WIL (QUOTE A) 7))
(EQUAL Z T)



9 (PV (ADJL (QUOTE (BIG RED)) NIL (QUOTE A) Z))
(EQUAL: Z (QUOTE (AND- (BIG A) (AND (RED A) T))))

10_(PV (ADJL (QUOTE (BIG BOY)) (QUOTE (BOY)) (QUOTE A) Z))
(EQUAL Z (QUOTE (AND (BIG A) T)))
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6. RULE PACKAGES

These libraries of rules may be acceses from account AUX:<CSBROWN>. For example:
AUX: < CS. BROWN>ATP.DEFS accesses the rule package ATP.DEFS described below.

ATP.COM This is the basic theorem prover code. It automatically sets up an initial environment for

QCL programming:

6.1 REAL ALGEBRA

ATP.REAL This file contains a theory for simplifying expressions of real algebra. The primitive
symbols are:

PLUS n m)
MINUS n)
TIMES n m)
EXP n i)
LESSP n m)

This file contains rules axiomatizing each of these primitive symbols. A description of these rules®pis”
given in [Brown24]. These rules include rewrite rules dealing with algebraic simplification and basis
argument rule for eliminating ALL before an EQUAL expression. It also includes the equation solving
system: RSOLVE linked to via SYMEVALS equation solving link. The defined symbols of the theory are:

ADD1 n)

SUB1 n)

DIFFERENCE n m)
QUOTIENT n m)

MINUSP n)

GREATERP n m)

LEQ n m)

GEQ n m)

MIN n m)

MAX n m)

ABS n)

SQRT n)

FAC n) factorial

CO xy) combinations
SIGMA :k(f k)m n) sigma

6.2 MISCELLANEOUS DEFINITIONS

ATP.DEFS Defines some basic recursive functions for QCL programming along the lines described in
[Brown20,Kowalskil.

1. Defines more functions for manipulating lists:
CADR CDDR CAAR CDAR CADDR CDDDR CADDDR LISTI LISTZ
LIST3 NLISTP PLISTP APPEND SASSOC REVERSE MEMBER OCCUR

2. Defines functions for positive integers:
PFIX PZEROP PPLUS PTIMES PDIFFERENCE PHALF PLESSP GCD
INUMBERP

ATP.SORT Contains various sorting functions including a merge sort and two quicksorts.
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7. SCHWIND’S THEORY OF LANGUAGE ANALYSIS

ATP.NATL A fragment of Schwind’s theory of language analysiS[Schwind,Brownl3,14,1-5]. This
fragment of Schwind’s theory specifies how a small subset of English may be translated into the QCL
Logic. The most important function in ATP.NATL is TEXT. TEXT takes a piece of text (one or more
sentences) and returns its representation in logic. There are a number of lower level fuctions for
translating nouns, verbs, prepostional phrases, relative clauses and so on. Consult ATP.NATL itself for

these functions.
TEXT is invoked in the following manner.

(TEXT i-eng o-eng i-nlist o-nlist i-vlist o-vlist o-logic)

with

i-eng The entire English input.

o-eng The remainder of the English input after the first
sentence or piece of text has been processed.

i-nlist Input list of previously seen nouns for noun/pronoun
substitution.

o-nlist Output list of previously seen nouns including any found
during processing.

i-vlist Input list of object language variables.

o-vlist Output list of unused object language variables.

o-logic Dutput translation of the sentence or text into logic.

NATL A list of all the gramatical functions in NATL. Usually used to trace the parsing of a sentence,
without tracing every FUNSYM.

We believe that other logically based natural language theories such as {Simmons1,2] would be naturally
expressed in QCL and executed by SYMEVAL.

7.1 EXAMPLE DEFINITIONS

A few example definitions from Schwinds Natural Language Theory are given below. The first definition
is a "backtracking® definition which involves a search through these 4 alternative non-exclusive cases.
This definition states that a piece of text is a Noun Phrase iff it is a Noun Phrase of type 0, 2, 3. or 4.

(EQUAL (NP X0 X1 N1 N2 V1 V2 A STAR Z FR)

(IF (NPO X0 X1 N1 N2 V1 V2 A STAR Z FR) T

(IF (NP2 X0 Xt NL N2 V1 V2 A STARZ FR) T

(IF (NP3 X0 X1 N1 N2 V1 V2 A STAR Z FR) T
(NP4 X0 X1 N1 N2 Vi V2 A STAR Z FR) ))) )

The next definition is a recursive definition that stntes that a Noun Phrase List is either a Noun Phrase
followed by a Noun Phrase List or null.

{(EQUAL(NPL X0 X2 N1 N3 V1 V3 AL STAR Z FRL)
(IF(IF(LISTP X0)
(EX X1(EX N2(EX V2(EX A{EX Z2(EX FR
(IF(NP X0 X1 N1 N2 Vi V2 A Z2 Z FR)



28

(EX AL2(EX FRL2(IF(NPL ¥Xi X2 N2 N3 V2 V3 AL2 STAR Z2 FRL2)
(IF (EQUAL AL(CONS A AL2))
(EQUAL FRL(CONS FR FRL2))
NIL)
NIL) »)
NIL) DN
NIL)
T
(IF(EQUAL N3 N1)

(IF(EQUAL Z STAR)
(IF(EQUAL AL NIL)
(IF(EQUAL X0 X2)
(IF(EQUAL V1 V3) »
(EQUAL FRL NIL)
NIL)NIL)NIL)NIL)NIL) ))

This definition states that the only verb groups according to this grammar are verbs.

(EQUAL(VG X Y V Z FR)
(VERB X Y V Z FR))

This last definition states that a piece of text is a DCLaritive SENTence TRANSsitive iff it is 2 Noun
Phrase followed by a Verb Group followed by a Noun Phrase List.

(EQUAL (DCLSENTTRAN X0 X3 NO N2 VO V2 2)
(EX X1(EX X2(EX N1(EX V1(EX A(EX AL(EX FRS(EX STAR(EX STAR2
(IF (NP X0 X1 NO N1 VO Vi A STAR2 Z FRS)
(EX FRV
(IF (VG X1 X2 (CONS A AL) STAR FRY)
(EX FRL2
(NPL X2 X3 N1 N2 Vi V2 AL STAR STAR2 FRL2))
NILDNILDIMINININ

7.2 EXAMPLE EXECUTION

The English sentence *SOME BOY THROWS THE BIG RED BALL IN TEXAS® is proven to be a
DeCLarative SENTence TRANSsitive. In the course of this proof SYMEVAL deduces that there is exactly
one possible trasslation of this sentemce into QCL augumented with a special THE function. This
translation is the expression equal to 7 in the result of the evaluation given below.

It is worth while noting that this proof involves at least 201 existentially quantified variables, and that
SYMEVAL systematically eliminates each one of these quantifiers. The final result contains no quantifiers
or defined symbols, but is logically equivalent in Schwind’s theory to the original input expression.

The expression to be recursively simplified is:
(DCLSERTTRAN (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))
NIL NIL N2 (QUOTE (X2 X3))
V3 Z)
I1:(DCLSENTTRAN (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))
NIL NIL N2 (QUOTE (X2 X3))

V3 Z)
by use of: DCLSENTTRAN
ML (EX
®1
(EX
*2
(EX
*3
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*4
(EX

*5

(EX %6

(EX =27
(EX =8
(EX =9 \
(IF (NP (QUOTE (SOME BOY THROWS THE BIG RED BALL IN
TEXAS))

#1 NIL =3 (QUOTE (X2 X3))
%4 %5 %9 Z *7)
{EX =10
(IF (VG =1 *2 (CONS =5 %6)
*8 *10)
(EX =11
(NPL %2 NIL %3 N2 %4 V3 %5 #8 =9
*11))
NIL))
NILD)VDINN
12: (NP (QUOTE (SOME BOY THROWS THE BIG RED BALL IHN TEXAS))
1 NIL *3 {(QUOTE (X2 ¥3))
x4 x5 %9 Z #7)
by use of: NP
M2: (IF (NPO (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))

*1 NIL *3 (QUOTE (X2 X3))
x4 %5 9 Z %7)

T

(IF (¥P2 (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))
1 NIL *3 (QUOTE (X2 X3))
#4 x5 %9 Z %7)

T
(IF (NP3 (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))

*1 NIL =3 (QUOTE (X2 X3))
x4 5 %9 Z *7)

T
(NP4 (QUOTE (SOME BOY THROWS THE BIG RED BALL IN TEXAS))

1 NIL =3 (QUOTE (X2 X3))
x4 *5 %9 Z *7))))

82: (IF :
(EQUAL *7 (QUOTE (M THIRD)))
(IF
(EQUAL *1 (QUOTE (THROWS THE BIG RED BALL IN TEXAS)))
(IF
(EQUAL =4 (QUOTE (X3)))
(IF
*3 NIL
(IF (EQUAL =5 (QUOTE X2))
(EQUAL Z
(CONS (QUOTE EX)
(CONS (QUOTE X2)
(CONS (CONS (QUUTE AND)
(CONS (QUOTE (BOY X2))
(CONS =9 NIL)))
NILIDY)
NIL))
NIL)
NIL)
NIL) ‘
12 (VG (QUOTE (THROWS THE BIG RED BALL IN TEXAS))
*2

(CONS {(QUOTE X2)
%8)
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8 ¥10)
by use of: VG
M2:(VERB (QUOTE (THROWS THE BIG RED BALL IN TEXAS))
*2
(CONS (QUOTE X2)
%8)
*8 %10)
02:(IF (EQUAL *2 (QUOTE (THE BIG RED BALL IN TEXAS)))
(IF -(EQUAL-+8--(CONS- (QUOTE-THROW1)
(CONS (QUOTE X2)
*6)))
(EQUAL =10 (QUOTE (AGENT DO DEST}))
NIL)
NIL) ,
12:(NPL (QUOTE (THE BIG RED BALL IN TEXAS))
NIL NIL N2 (QUOTE (X3))
V3 *6 (CONS (QUOTE THROW1)
(CONS (QUOTE X2)

*6))
#9 #11)
by use of: NPL
M2: (IF
(IF
(LISTP (QUOTE (THE BIG RED BALL IN TEXAS)))
(EX
*63
(EX
*64
(EX
*65
(EX
*68
(EX
*57
(EX
%68
(IF (NP (QUOTE (THE BIG RED BALL IN TEXAS))
*63 NIL %64 (QUOTE (X3))
#65 %66 %67 *9 268)
(EX %69
(EX *70
(IF (NPL %63 NIL %64 N2 %65 V3 %69
-~ (CONS (QUOTE THROW1)
(CONS (QUOTE X2)
*6))
*67 *70)
(IF (EQUAL =6 (CONS *66 #69))
(EQUAL =11 (CONS #68 #70))
NIL)
NIL)))
NILIIIDIN
NIL)
T

(IF (EQUAL N2 NIL)
(IF (EQUAL *9 (CONS (QUOTE THROW1)
(CONS (QUOTE X2)

%6)))
(IF (EQUAL =6 NIL)
(IF (EQUAL (QUOTE (THE BIG RED BALL IN TEXAS))
NIL)
(IF (EQUAL (QUOTE (X3))
v3)
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{EQUAL *11 NIL)
NIL)
NIL)
HIL)
NIL)
NIL))

02:(IF
(EQUAL N2 (QUOTE {((N THIRD) . TEXAS))))

[
(EQUAL *9 (CONS (QUOTE THROW1)
(CONS (QUOTE X2)
*8)))
(IF V3 NIL
(IF (EQUAL =6
(QUOTE ((THE X3 ((SING-PLURAL)
(AND (AND (BIG X3)
(AND (RED X3)
™)
(AND (BALL X3)
(AND (IN X3 TEXAS)

HDNINN
(EQUAL #11 (QUOTE ((¥ THIRD))))
NIL))
NIL)
NIL)
01: (IF
(EQUAL
Z
(QUOTE (EX X2
(AKD (BOY X2)

(THROW1 X2
(THE X3 ({SING-PLURAL)
(AND (AND (BIG X3)

(AND (RED X3)

™)
(AND (BALL X3)

(AND (IN X3 TEXAS)

™I

(IF (EQUAL N2 (QUOTE (((N THIRD) . TEXAS))))
(IF V3 NIL T)
NIL)

NIL)

The result of recursive simplification is:
(IF
(EQUAL
Z
(QUOTE (EX X2 (AND (BOY X2)
(THROWL X2
{THE X3 ((SING-PLURAL)
(AND (AND (BIG X3)
(AWD (RED X3)
™
(AND (BALL X3)
(AND (IN X3 TEXAS)
N
(IF (EQUAL N2 (QUOTE (((§ THIRD) . TEXAS))))
(IF ¥v3 NIL T)
NIL)
NIL)
end of deduction
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EX1=1iO/EX2=O/EX3=71/EX4=O/EXS=6/EX6=0/EX7=O/EX8=O/EX9=0/EX10=0/
ALL1=0/ALL2=0/ALL3=0/ALL4=0/ALL5=0/ALL6=0/ALL7=0/ALL8=0/ALLY=0/ALL10=0/
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8. SET THEORY

Axioms for LAMBDA abstraction are part of the SYMEVAL-QCL system and are described in section
3.5. Set Theory is developed in terms of LAMBDA abstraction by first defineing set theoretic abstraction
and elementhood in terms of LAMBDA abstraction and APPLYcation, and then by asserting which sets
are good sets in the sense that they may be members of other sets.

ATP.SETDEF This file contains definitions and theorems for the set theory described in Quine’s book:
SET THEORY AND ITS LOGIC.

ATP.SET Extra code for implementing set theory. Not currently used.

EXAMPLE

SYMEVAL can prove that the Weiner-Kurtowski set theoretic definition of an ordered pair is in fact an
ordered pair. This proof is obtaind without the use of any lemmas whatsoever, and in fact in the course
of the proof SYMEVAL proves a number of interesting lemmas about the equality of unordered pairs and
unit sets. The only other automatic proof of this theorem that we are aware of in the literature is the
sequent calculas based proof in [Brown6| which assumed several lemmas aboui unordered pairs and
unitsets. (That sequent calculas theorem prover could prove the lemmas that were assumed if they were
explicitly given to it.)

In order to state the ordered pair theorem, quantifiers whose bound variables range over anything but
bad sets are declared

(SETQ QUANTSYM(APPEND ’(QALL QEX SET) QUANTSYM))
(VASSUME °SET (REMOVE ’BADLAMBDAP UNIVERSE))
(VASSUME °'QALL (BEMOVE °*BADLAMBDAP UNIVERSE))
(VASSUME 'QEX (REMOVE °®BADLAMBDAP UNIVERSE))

and then the following definitions are made:

(DCLLQ(EQUAL (ELE X Y) (AP Y X))
(EQUAL (SET X(SCH1 X)) (LAMBDA X(SCH1 X)))
(EQUAL (QALL X(SCH1 X)) (ALL X(IF (BADLAMBDAP X) T (SCH! X)}))
(EQUAL (QEX X(SCH2 X)) (EX X(AND (NOT(BADLAMBDAP X}) (SCH2Z X))))
(EQUAL (EQUALSETS A B) (QALL X(IFF(ELE X A) (ELE X B))) )
(EQUAL (UNITSET A) (SET X(EQUAL X A)) )
(EQUAL (PAIRSET A B) (SET X (LOR(EQUAL X A) (EQUAL X B))) )
(EQUAL (ORDPAIRSET A B) (PAIRSET(UNITSET A) (PAIRSET A B)) )

Two axioms of set theory are assumed, namely that unit sets and unordered pairsets are not
BADLAMBDAPs:

AXS: (FQUAL(BADLAMBDAP(LAMBDA X(EQUAL X A))} NIL)
AX6: (EQUAL (BADLAMBDAP(LAMBDA X(IF(EQUAL X A)T(EQUAL X B)))) NIL)

The ordered pair theorem: that two ordered pairs are equalsets iff their components are equal is now
proven.

The expression to be recursively simplified is:
(QALL X (QALL Y (QALL U (QALL V (IFF (EQUALSETS (ORDPAIRSET X Y)
(ORDPAIRSET U V))
(AND (EQUAL X U)
(EQUAL Y V)))3)))
11:(ORDPAIRSET X Y)
by use of: ORDPAIRSET
M1:(PAIRSET (UNITSET X}
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(PAIRSET X Y))

: (UNITSET X)

by use of: UNITSET

:(SET =1 (EQUAL =1 X))
: (LAMBDA =*1 (EQUAL #*1 X))
:(PAIRSET X Y)

by use of: PAIRSET

:(SET *2 (LOR (EQUAL #2 X}

LIameyas

I12:

M2:

02:

(EQUAL =2 Y)))

:(LAMBDA #2 (IF (EQUAL »2 X)

T
(EQUAL *2 Y)))
(PAIRSET (LAMBDA *1 (EQUAL #1 X))
(LAMBDA *2 (IF (EQUAL *2 X)
T
(EQUAL *2 Y))))
by use of: PAIRSET
(SET *3 (LOR (EQUAL #3 (LAMBDA *1 (EQUAL *1 X)))
(EQUAL *3 (LAMBDA *2 (IF (EQUAL *2 X)
T
(EQUAL *2 Y))))))
(LAMBDA %3 (IF (EQUAL %3 (LAMBDA =1 (EQUAL #*1 X)))
T
(EQUAL #3 (LAMBDA *2 (IF (EQUAL %2 X)
T

(EQUAL *2 Y2000

01:(LAMBDA #3 (IF (EQUAL #*3 (LAMBDA #*1 (EQUAL *1 X)))

T
(EQUAL =3 (LAMBDA *2 (IF (EQUAL *2 X)
T

(EQUAL *2 Y22))))

I1:(ORDPAIRSET U V)
by use of: ORDPAIRSET
M1:(PAIRSET (UNITSET U)

I12:
M2:
02:
12:
M2:

02:

12:

M2:

02:

(PAIRSET U V))
(UNITSET W)
by use of: UNITSET
(SET =4 (EQUAL *4 U))
(LAMBDA *4 (EQUAL *4 1))
(PAIRSET U V)
by use of: PAIRSET
(SET *5 (LOR (EQUAL *5 U)
(EQUAL =5 V)))
(LAMBDA #5 (IF (EQUAL %5 U)
T
(EQUAL =5 V)))
(PAIRSET (LAMBDA #4 (EQUAL %4 U))
(LAMBDA *b5 (IF (EQUAL x5 U)
T

(EQUAL *5 V))))
by use of: PAIRSET
(SET #6 (LOR (EQUAL =6 (LAMBDA =4 (EQUAL #4 U)))
(EQUAL #6 (LAMBDA =5 (IF (EQUAL =5 U)
T
(EQUAL %5 V))))))
(LAMBDA »8 (IF (EQUAL =6 (LAMBDA =4 (EQUAL %4 U)})
T
(EQUAL *6 (LAMBDA *5 (IF (EQUAL =5 U)
T
(EQUAL =5 ¥))))))

01:(LAMBDA *6 (IF (EQUAL %6 (LAMBDA #4 (EQUAL %4 U)))
T
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(FQUAL =6 (LAMBDA *5 (IF (EQUAL #5 U)
T
(EQUAL =5 Y))1 N
11: (EQUALSETS (LAMBDA *3 (IF (EQUAL #3 (LAMBDA *1 (EQUAL *1 X)))
T
(EQUAL =3 (LAMBDA %2 (IF (EQUAL *2 ¥}
T

(EQUAL *2 V))))))
(LAMBDA #6 (IF (EQUAL #6 (LAMBDA =4 (EQUAL +4 U)))
T
(EQUAL #6 (LAMBDA *5 (IF (EQUAL #5 U)

T
(EQUAL *5 V)M
by use of: EQUALSETS
Mi:(QALL #7 (IFF (ELE *7 (LAMBDA #3 (IF (EQUAL #3 (LAMBDA =1
(EQUAL =1 X)))
T
(EQUAL *3 (LAMBDA
%2
(IF (EQUAL *2 X)

T
(EQUAL *2 )N
(ELE *#7 (LAMBDA #6 (IF (EQUAL #*6 (LAMBDA *4
: (EQUAL =4 U)))
T
(EQUAL *6 (LAMBDA
*5
(IF (EQUAL 5 U)

T
(EQUAL =5 W)))))10
12: (IFF (IF (EQUAL »7 (LAMBDA *1 (EQUAL =1 X)))
T

(EQUAL *7 (LAMBDA =2 (IF (EQUAL #*2 X)
T

(EQUAL =2 T))3))
(IF (EQUAL %7 (LAMBDA *4 (EQUAL #4 U)})
T

(EQUAL =7 (LAMBDA #*5 (IF (EQUAL *5 U)
T
(EQUAL *5 V))))))
by use of: IFF
M2: (IF (IF (EQUAL *7 (LAMBDA *1 (EQUAL *1 X)))
T
(EQUAL *7 (LAMBDA %2 (IF (EQUAL *2 X)
T
(EQUAL *2 Y)))))
(IF (IF (EQUAL =7 (LAMBDA #*4 (EQUAL %4 U)))

T
(EQUAL #7 (LAMBDA %5 (IF (EQUAL %5 U)
T
(EQUAL %5 V) )1)
T NIL)

(IF (IF (EQUAL %7 (LAMBDA *4 (LQUAL =4 U)))
T
(EQUAL #7 (LAMBDA *5 (IF (EQUAL =5 U)

T
(EQUAL *5 V)))))
NIL T))
13: (EQUAL (LAMBDA =1 (EQUAL *1 X))
(LAMBDA =*4 (EQUAL =*4 U)))
by use of: (LISPLINK SYMEQUAL)
M3:(ALL *8 (EQUAL (AP (LAMBDA =1 (EQUAL #1 X3)
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%*8)
(AP (LAMBDA *4 (EQUAL %4 U))
*8)))
03: (EQUAL U X)
13: (EQUAL (LAMBDA *1 (EQUAL =1 X))
(LAMBDA *5 (IF (EQUAL *5 1)
T
(EQUAL =5 V))))
by use of: (LISPLINK SYMEQUAL)
M3: (ALL *9 (EQUAL (AP (LAMBDA =1 (EQUAL =1 X))
*9)
(AP (LAMBDA *5 (IF (EQUAL =25 U)
T
(EQUAL =5 ¥)))
#9)))
03:NIL
13: (EQUAL (LAMBDA #*2 (IF (EQUAL %2 X)
T
(EQUAL *2 )))
(LAMBDA =4 (EQUAL #4 U)))
by use of: (LISPLINK SYMEQUAL)
M3: (ALL *10 (EQUAL (AP (LAMBDA *2 (IF (EQUAL *2 X)
T
(EQUAL #2 Y)))
%10)
(AP (LAMBDA =4 (EQUAL =4 U))
*10)))
03: (IF (EQUAL U X)
(EQUAL Y X)
NIL)
13: (EQUAL (LAMBDA =2 (IF (EQUAL *2 X)
T
(EQUAL *2 Y)))
(LAMBDA *5 (IF (EQUAL =5 U)
T
(EQUAL #5 V))))
by use of: (LISPLINK SYMEQUAL)
M3:(ALL %11 (EQUAL (AP (LAMBDA %2 (IF (EQUAL *2 X)
T
(EQUAL *2 V)))
#11)
(AP (LAMBDA %5 (IF (EQUAL #5 U)
T
(EQUAL =5 V)))
#11)))
03: (IF (EQUAL X U)

(IF (EQUAL Y U)
(EQUAL ¥V U)
(EQUAL Y V)

(IF (EQUAL X V)

{IF (EQUAL Y V)
NIL
(EQUAL Y U))
NIL))

02: (IF (EQUAL #7 (LAMBDA *1 (EQUAL *1 X)))

(EQUAL U X)
(IF (EQUAL »7 (LAMBDA =2 (IF (EQUAL *2 X)
T
(EQUAL *2 Y3)))
(IF (EQUAL U X)
(IF (EQUAL Y X
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T
(EQUAL Y V)
(IF (EQUAL X V)
(IF (EQUAL Y V)
NIL
(EQUAL Y U))
NIL))
(IF (EQUAL =7 (LAMBDA *4 (EQUAL *4 U)))
NIL
(IF (EQUAL =7 (LAMBDA =& (IF (EQUAL *5 U}
T

{EQUAL %5 V))))
NIL T))))
12:(QALL #*7 (IF (EQUAL *7 (LAMBDA *1 (EQUAL *1 X)))
(EQUAL U X)
(IF (EQUAL #7 (LAMBDA #2 (IF (EQUAL *2 X}

T
(EQUAL *2 Y))))
(IF (EQUAL U X)
(IF (EQUAL Y X)

T
(EQUAL Y V))
(IF (EQUAL X V)
(IF (EQUAL Y V)
NIL
(EQUAL Y U))
NIL))
(IF (EQUAL *7 (LAMBDA =4 (EQUAL *4 U}))
NIL
(IF (EQUAL =7 (LAMBDA *5 (IF (EQUAL *5 U)

T
(EQUAL 5 V))))
NIL )0
by use of: QALL
M2: (ALL #12
(IF (BADLAMBDAP =#12)
T
(IF (EQUAL =12 (LAMBDA *1 (EQUAL *1 X)))
(EQUAL U X0
(IF (EQUAL =12 (LAMBDA *2 (IF (EQUAL #2 X}
T
(EQUAL *2 Y))})
(IF (EQUAL U X)
(IF (EQUAL Y X)

T
(EQUAL Y V))
(IF (EQUAL X V)
(IF (EQUAL Y V)
NIL
(EQUAL Y U))
NILY)
(IF (EQUAL *12 (LAMBDA =4 (EQUAL #*4 U}))
NIL
(IF (EQUAL *12 (LAMBDA *5 (IF (EQUAL *5 U}

T
(EQUAL *5 ¥))))
¥IL THNN
I3 (BADLAMBDAP (LAMBDA =1 (EQUAL *1 X))
by use of: AXE

M3:NIL

03:NIL

13: (BADLAMBDAP (LAMBDA =2 (IF (EQUAL =2 X)



by use of: AX6
M3:NIL
G3:NIL
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T
(EQUAL *2 Y))))

13: (BADLAMBDAP (LAMBDA *4 (EQUAL *4 X)))

by use of: AXS
M3:NIL

83:NIL

13: (BADLAMBDAP (LAMBDA *5 (IF (EQUAL =5 X
T

by use of: AX6
M3:NIL
03:NIL

(EQUAL #5 V))))

13: (BADLAMBDAP (LAMBDA #4 (EQUAL =4 X)))

by use of: AXb
M3:NIL
03:NIL

13: (BADLAMBDAP (LAMBDA *5 (IF (EQUAL *5 XO

by use of: AX6
M3:NIL
03:NIL
02:(IF (EQUAL U X)
(IF (EQUAL Y X0
(EQUAL ¥ X0
(EQUAL Y V))
NIL)
01:(IF (EQUAL U X)
(IF (EQUAL Y X)
(EQUAL V XD
(EQUAL Y ))
NIL)
11:(IFF (IF (EQUAL U X0
(IF (EQUAL Y X0
(EQUAL V X)
(EQUAL Y V))
NIL)
(IF (EQUAL X U)
(EQUAL Y V)
NIL))
by use of: IFF
Mi:(IF (IF (EQUAL U X)
(IF (EQUAL Y X)
(EQUAL V X)
(EQUAL Y V))
NIL)
(IF (IF (EQUAL X U)
(EQUAL Y V)
NIL)
T HIL)
(IF (IF (EQUAL X W)
(EQUAL Y V)
NIL)
NIL T))
01:T
I1:(QALL V T)
by use of: QALL
M1:(ALL %21 (IF (BADLAMBDAP #21)
T

T
(EQUAL =5 V))))
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01:T
11:(QALL U T
by use of: QALL
Mi:(ALL %22 (IF (BADLAMBDAP %22)
TT)) -
01:7T
I1:(QALL Y T)
by use of: GQALL
Mi:(ALL *23 (IF (UADLAMBDAFR #23)
T
g1:T
I1:(QALL X T)
by use of: QALL
M1:(ALL #24 (IF (BADLAMBDAP %24)
T T
01:T

The result of recursive simplification is:
T
vhich is true. QED.

EX1=0/EX2=0/EX3=0/EX4=0/EX5=0/EX6=0/EX7=0/EX8=0/EX9=0/EX10=0/
ALL1=0/ALL2=0/ALL3=22/ALL4=0/ALLE=0/ALL6=10/ALL7=0/ALL8=0/ALLY=0/ALL10=0/
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9. ONTOLOGY

Lesniewski’s Ontology[Luschei,Henry] is a set theory which grew out of the traditions of Medieval logic.
Its "sets® closely correspond to noun phrases, including names, fictitious names{eg. Pegasus) and more
general nouns. Its ®elementhood® predicate corresponds to to the intransitive verb IS in English, and
more closely to the Latin EST.

ATP.LES This file contains some definitions for Lesniewski's theory of Ontology.

EXAMPLE SYMEVAL can prove that '(Z X Y) is a permutation of (X Y Z). In order to do this, we
first define recursive ontological definitions of of the notion of a permutation:

{DCLLQ
(FEQUAL (PERMSET L) (IF (EQUAL L (NILSET))
NIL
(INSERTSET (CAR L) (PERMSET (CDR L)))))
(EQUAL (NILSET) (LAMBDA X (EQUAL X NIL)))
(EQUAL (CONSET A B)
(LAMBDA X(EX Y(EX Z(AND(IS Y A) (AND(IS Z B) (EQUAL X(CONS Y 23)))))3)
(EQUAL (INSERTSET X L)
(IF(EQUAL L (NILSET))
(CONS X NIL)
(NOMINAL.OR(CONSET X L)
(LAMBDA Y(EX Z(AND(IS Z L)
(IS Y(CONSET(CAR Z)
. (INSERTSET X(CDR Z))))))1)))
(EQUAL (NOMINAL.OR A B)
(LAMBDA X (LOR(IS X A)Y(IS X B)))))

(SETQ TRACELIST ’(NOMINAL.OR CONSET PERMSET INSERTSET))

A proof of the Ontological theorem:

(IS (QUOTE(Z Y X)) (PERMSET(QUOTE(X Y Z))))
is given below. The proof was edited by deleting most traces
less than level 2.

The expression tc be recursively simplified is:
(IS (QUOTE (Z Y X))
(PERMSET (QUOTE (X Y Z))))
I1:(PERMSET (QUOTE (X Y 2)))
by use of: PERMSET
Mi:(IF (EQUAL (QUOTE (X Y Z))
(NILSET))
NIL
(INSERTSET (CAR (QUOTE (X Y 2)))
(PERMSET (CDR (QUOTE (X Y Z))))))
12: (PERMSET (QUOTE (Y Z)))
by use of: PERMSET
M2: (IF (EQUAL (QUOTE (Y Z))
(NILSET))
NIL
(INSERTSET (CAR (QUOTE (Y 2)))
(PERMSET (CDR (QUOTE (Y Z))))))
13: (PERMSET (QUOTE (2)))
by use of: PERMSET
M3:(IF (EQUAL (QUOTE (Z))
{NILSED))
NIL
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(INSERTSET (CAR (QUOTE (Z)))
(PERMSET (CDR (QUOTE (Z)33)))
14: (PERMSET NIL)
by use of: PERMSET

M4: (IF (EQUAL NIL (NILSET))

NIL

(INSERTSET (CAR NIL)

(PERMSET (CDR NIL))))

04:NIL
03: (QUOTE (Z))
13: (INSERTSET (QUGTE Y)
(QUOTE (2)))
by use of: INSERTSET
M3: (IF (EQUAL (QUOTE (Z))
(NILSET))
(CONS (QUOTE Y)
NIL)
(NGMINAL.OR (CONSET (QUOTE Y)
(QUOTE (Z)))
(LAMEDA
*8
(EX %9 (AND (IS *9 (QUGTE (2)))
(IS *8 (CONSET (CAR =9)
(INSERTSET (QUOTE Y)
(CDR %9))))33))

)
03: (LAMBDA #20 (IF (EQUAL (QUOTE (Y Z))

*20)

T

(EQUAL (QUOTE (Z 1))
*20)))

02: (LAMBDA %20 (IF (EQUAL (QUOTE (Y 2))
*20)

T
(EQUAL (QUOTE (Z 7))
%20)))

12: (INSERTSET (QUOTE X)
(LAMBDA *20 (IF (EQUAL (QUOTE (Y 23)

*20)

T

{EQUAL (QUOTE (Z Y))
*20)3))

by use of: INSERTSET
M2:(IF (EQUAL (LAMBDA *20 {(IF (EQUAL (QUOTE (Y Z))

*20)
T
(EQUAL (QUOTE (Z Y))
*20)))
{NILSET))
(CONS (QUOTE X
NIL)

{NOMINAL .OR
(CONSET (QUOTE X)
(LAMBDA =20 (IF (EQUAL (QUOTE (Y Z))

%20)
T
(EQUAL (QUOTE (Z 1))
x20313))
(LAMBDA =21
(EX %22 (AND (IS =22 (LAMBDA
*20

(IF (EQUAL (QUOTE (Y Z))



*20)

T

(EQUAL (QUOTE (Z Y))
*20))))

(15 *21 (CONSET (CAR #22)
(INSERTSET (QUOTE X)
(CDR %22))))31)0

02: (LAMBDA =61

(IF (EQUAL #81 (QUOTE (LY Z)))
T
(IF (EQUAL *61 (QUOTE (X 2 ¥OJ)
T
(IF (EQUAL #*61 (QUOTE (Y X 2)))
T

(IF (EQUAL %61 (QUOTE (Y Z X))
T
(IF (EQUAL =61 (QUOTE (Z X VO))
T
(EQUAL *61 (QUOTE (Z Y X001 N
01: (LAMBDA =*61
(IF (EQUAL %61 (QUOTE (X Y 2)))

{IF (EQUAL #61 (QUOTE (X 2 VD))
EIF (EQUAL *61 (QUOTE (Y X Z)))
%IF (EQUAL *61 (QUOTE (Y Z X)))
EIF (EQUAL #61 (QUOTE (Z X Y)))

T
(EQUAL %61 (QUOTE (Z Y X22)))))))

The result of recursive simplification is:

T
which is true. QED.

EX0=0/EX1=6/EX2=0/EX3=26/FX4=0/EX5=6/EX6=4/EX7=0/EX8=0/EX9=0/EX10=0/
ALL0O=0/ALL1=0/ALL2=0/ALL3=1/ALL4=0/ALL5=0/ALL6=1/ALL7=0/ALL8=0/ALL9=0/ALL10=0/
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10. COMPLEXITY PROJECT

ATP.COMPLEXITY contains four functions listed below:

(ANALYZE function.definition.being.analyzed basis.function.definition) ANALYZE tries to
determine if the complexity of function definition being analyzed is linearly related to the given basis

function. Later versions will handle multiple basis functions and non linear relationships. ANALYZE calis
the routines COMFUN SIMFUN and the automatic theorem prover.

(COMFUN definition) Computes the complexity function definition of a given function definition.

(SIMFUN definition) Computes the simplified version of a function definition by deleting extraneous
argument positions.

(BASISFUNS definition) Computes the immediate basis function definitions of a given complexity
function definition.

The Complexity Analysis Project is concerned with the development of a reasoning system (o
automatically analyze and determine the complexity of computer programs. This research is important
not only for theoretical computer science in providing a method for automating the process of analysing
the complexity of algorithms, but also for the practical problem of verifying time dependent properties of
computer programs used in such real time areas as flight control systems. The current complexity
analysis system called ANALYZE is capable of for automatically analysing the complexity of simple
recursive LISP functions ANALYZE calls on our automatic deduction system SYMEVAL in a number of
places in order to achieve its results. ANALYZE is described in section 1, and the use it makes of
SYMEVAL is exemplified in section 2. *

10.1 COMPLEXITY ANALYSIS SYSTEM: ANALYZE

We have developed a prototype system called ANALYZE for analyzing the complexity of recursive LISP
functions. The basic approach to automatic program analysis used by ANALYZE is this: The user
specifies a recursive LISP function F of which he wishes to analyze the complexity. The user may also
specify that the analysis is to be performed in terms of certain basis functions which essentially compute
the size of the input data of the original function. The system then does the following:

{(STEP 1) First, the COMplexity FUNction subsystem, called COMFUN automatically produces a new
LISP function C.F which computes the complexity of F. This function is created by mimicking the
recursive structure of F indicating the complexity of each branch.

(STEP 2) Second, the SIMplification FUNction subsystem, called SIMFUN tries to simplify the C.F
function by deleting irrelevant argument positions and by SYMbolically EVALuating the function body.

(STEP 3) If they are not already specified, then the BASis FUNction subsystem, called BASFUN
automatically produces the possible appropriate basis functions. A basis function is a function which
measures the size of some data object such as, for example, a tree.

(STEP 4) Fourth, the system tries to guess a closed form solution to C.F in terms of the basis functions.

(STEP 5) Finally, using existential variables for coefficients, the system tries to prove that the recursive
complexity function C.F equals the conjectured closed form solution. In the course of the proof, the
system may automatically determine explicit values for those existential variables.
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The result of steps (1)-(5) is an algebraic formula expressing the complexity of F in terms of (a) the size
of the data object to which F is applied, and (b) the complexity of its subroutines. If the complexity of
each subroutine and any subroutines called by such subroutines is determined by repeating steps {1)-{5),
the complexity of F is then expressed as an algebraic formula containing only the complexity of primitive
instructions and the size of the input data objects. The deductive parts of the system are based on the
SYMEVAL theorem prover, the SYMMETRIC LOGIC, and the Real Algebra rule package. One novel
aspect of this deduction system is that it integrates general structural inductive capabilities over arbitrary
data objects along the lines of [Boyerl] with quantifier elimination techniques of the SYMMETRIC
LOGIC and equation solving techniques of the real algebra theorem prover|Brown24]. Some inductive
parts of the system have been studied earlier in collaboration with Prof. Sten-Ake Tarnlund of Upsalla
University [Brown5,10].

A SIMPLE EXAMPLE We suppose that the user of our proposed system wishes to analyze the
complexity of the function FRINGE which computes the fringe of a binary tree T1 when L=NIL in terms
of the number of nodes in the tree T1. The (FRINGE L NIL) of a binary tree is a list of its leaves. The
definition of FRINGE is:

(EQUAL (FRINGE T1 L)
(IF (LISTP T1)
(FRINGE (CAR T1) (FRINGE (CDR T1) L))
(CONS T1 L))
The definition of the function NODEXNT which counts nodes in a tree
is: :
(EQUAL (NODEKNT T1)
(IF (LISTP T1)
(PLUS 1 (PLUS (NODEKNT (CAR T1)) (NODEKNT (CDR T1})))
)
The binary tree is assumed to be constructed from LISP CONSes. For
example (CONS(CONS A B)C) represents the tree:
% .

/A
/

The LISP functions are all written in the SYMEVAL’s logical language, which
includes logical expressions, real numbers and recursive functions of pure
LISP. We write (IF p x y) instead of the usual LISP conditional

(CoOND{(p x)(T ¥)).

We ask the system to try to analyze the complexity of FRINGE in terms
of the function NODEKNT. The following is a trace of the complexity
systems reasoning:

7_(ANALYZE FRINGE NODEKNT)

We are trying to determine whether the complexity of:
(EQUAL (FRINGE T! L)
(IF (LISTP T1)
(FRINGE (CAR T1)
(FRINGE (CDR T1}
L)
(CONS T1 L))}
is related to the basis function:
(EQUAL (NODEKNT T1)
(IF {(LISTP Ti)



(PLUS 1 (PLUS (NODEKNT (CAR T1))
(NODEKNT {(CDR Ti))))

1))

(STEP 1) After the system states the problem, the subsystem COMFUN creates a
recursive function which computes the abstract complexity of FRINGE:

The local constant (A0007) is the complexity of taking the true branch of the
LISTP test except for the complexity of the recursive calls to FRINGE which are
mentioned explicitly. The local constant (A0008) is the complexity of taking
the false branch of the test.

The complexity function of FRINGE is:
(EQUAL (C.FRINGE Ti L)
(IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1)
(FRINGE (CDR T1)
L)
(C.FRINGE (CDR T1)
L»n
(A0008)))
where the local constants are defined as follows in terms of the complexities
of the primitive operations of LISP. For example (C.LISTP) is the complexity
of executing the LISTP function and (C-VAR) is the complexity of looking
up the value of a variable in a shallow binding environment.
((EQUAL (A0COT7)
(PLUS (C.IF.T)
(PLUS (C.LISTP)
(PLUS (C-VAR)
© (PLUS (TIMES 2 (C-BIND})
(PLUS (C.CAR)
(PLUS (C-VAR)
(PLUS (C.CDR)
(PLUS (C-VAR)
(C-VAR)})33)31))

(EQUAL (A0008)
(PLUS (C.IF.NIL)
- (PLUS {(C.LISTP}
(PLUS (C-VAR)
(PLUS (TIMES 2 (C-BIND))
(PLUS (C.CONS)
(PLUS (C-VAR)
(C-VAR))}33333)
(STEP 2) The subsystem SIMFUN now tries to simplify the complexity
function definition just produced:

Observing that the variable L is
not used in the body of the definition, it follows
that the complexity function simplifies to the new complexity funciion:
(EQUAL (C.FRINGE T1)
(IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1))
(C.FRINGE (CDR T1))))

(A0008)))
(STEP 3) Step three is omitted in this example because we already suggested
to the system that NODEKNT was an appropriate basis function.

(STEP 4) An appropriate complexity conjecture relating C.FRINGE to NODEKNT
is now produced:

You hinted that the complexity of FRINGE
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wag related to the basis function: NODEKNT.

We will now try to see if its linearly related to that basis
by first forming an expression stating that fact:

(ALL T1 (EQUAL (C.FRINGE T1)
(PLUS (TIMES X (NODEKNT T1))

)
and then simplifying this expression as much as possible using
our automatic theorem prover. The result returned by our theorem
prover will be logically equivalent to this original expression.

(STEP 5) The conjectured relation between the complexity function and the
basis is now proven:

The first SYMbolic EVALuation

The expression to be recursively simplified is:
(ALL T1 (EQUAL (C.FRINGE T1)
(PLUS (TIMES X (NODEKNT T1))
)
The result of recursive simplification is:
(ALL Ti1 (EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS Y)3)
0))

Induction is now tried giving a new expression to simplify.

The expression to be recursively simplified is:
(AND
(ALL T1 (IMPLIES (NOT (LISTP T1))
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEXNT T1)))
(MINUS ¥)))
ey
{ALL
Ti
(IMPLIES
(AND (LISTP T1)
(AND (EQUAL (PLUS (C.FRINGE (CAR Ti))
(PLUS (MINUS (TIMES X (NODEXNT (CAR T1))))
(MINUS V)))
0)
(EQUAL (PLUS (C.FRINGE (CDR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS Y)))
0N
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1}))
(MINUS Y)))
0333
The result of recursive simplification is:
(IF (EQUAL (PLUS (A0008)
R (PLUS (MINUS XD
(MINUS )))
0)
(EQUAL (PLUS (A0007)
(PLUS Y (MINUS X))
0)
NiL)
end of deduction



47

63798 conses
174.162 seconds :
11.479 seconds, garbage collection time

We call the theorem prover again, this time letting
it solve for the unknowns

The expression to be recursively simplified is:
(IF (EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0)
(EQUAL (PLUS (A0007)
(PLUS Y (MINUS X)))
0)
NIL)

The result of recursive simplification is:
(IF (EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0)
(EQUAL (PLUS (A0007)
(PLUS (TIMES -2 X)
(A0008)))
0
NIL)
end of deduction
1412 conses
2.685 seconds
1.836 seconds, garbage collection time

Observing that (IF p x NIL) means (AND p x) we see that the Automatic theorenm
prover has simplified the original closed form expression to an equivalent
expression which is essentialy a conjuction of linear equations which when
solved give explicit values for the unknowns X and Y. By solving these

two linear equations we see thatb:

((A0007) + (A0008)) /2
((a0008) - (AD0O7)) /2

X
Y

o

where (A0007) and (A0008) are defined by the local definitionms
which in turn are defined in terms of the complexities of the primitive
LISP operations.

Thus not only has the system proven the theorem:
(EX X(EX Y
(ALL T1(EQUAL(C.FRINGE T1)

(PLUS (TIMES X (NODEKNT T1)) Y)))

)

where the unknowns X and Y are interpreted as being existentially quantified
but in the course of proving this theorem, it has computed the only possible
values for X and Y which make the expression true. Thus, in fact it proves the
stronger theorenm:
(ALL T1(EQUAL(C.FRINGE T1)

(PLUS(TIMES ((A0007)+(AC008))/2 (NODEKNT T1))

({A0008)-(A0007))/2 (NODEKNT T1) )))

Since the deductive system itself can handle existential variables, this
greatly eases the burden on the inductive step (4) of the proposed system
since that step will not have to worry about guessing the exact coefficients
of a conjecture of a2 closed form solution.
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10.2 USING THE SYMBOLIC EVALUATOR: SYMEVAL

Although SYMEVAL is used by ANALYZE in a number of places, for example to simplify the bodies of
function definitions, its major use is in step 5 where it is used to prove the equivlence between the closed
form solution and the original complexity function. It is therefore worthwhile looking at this reasoning
step in more detail in order to describe SYMEVAL’s current abilities. The outline of the proof given

- below is presented in the manner as one might trace the execution of a LISP program. Essentially an
mput expression labeled In: is given to SYMEVAL which by application of an axiom produces a middle
expression labeled Mn: which is then recursively simplified producing an output expressicn labeled On:.
The key point, is that In: is logically equivalent in the given theory to the immediately following Mn: and
also to the immediately following On:. The n refers to the current level of tracing. By specifying what
symbols to trace, SYMEVAL can be asked to present its reasoning at different levels of detail. In the
following proof only a few key symbols have been traced, and a number of less important steps have been
eliminated by hand. Nothing however has been added except English text. This proof involves a number
basic deduction facilities including the nine listed below. The first use in this proof of each of these nine
facilities is marked by the same number.

(1) .Methods for deciding when to repace definitions including recursive
definitions by their body.

(2) .Rules for the algebraic simplification of expressions about real numbers.

(3) .A rule for Noetherian Induction over arbitrary recursively construced
data structures and recursive definitions.

(4) .Propositional Logic based on an IF_THEN ELSE construct.

(5) .Rules of a Quantificational Logic ‘based on the SYMMETRIC LOGIC
of reducing the scope of quantifiers.

(6) .The ability to return useful information as answers to subgoals rather
than having to return True or False.

(7) .The ability to solve equations for interesting expressions which
can be substituted into other expressions soc as to help solve the
problem.

(8) .Axioms about recursive data structures

{9) .Instantiation Rules for Quantificational Logic. Note that each
induction hypothesis is eliminated by noting that it is equivalent
to true assuming the linear equation produced by the base case.

The proof is now given:

The expression to be recursively simplified is:
(ALL T1 (EQUAL (C.FRINGE T1)
(PLUS (TIMES X (NODEKNT T1))
)

{1)SYMEVAL expands the definition of C.FRINGE and then changes its "mind®.

I1:(C.FRINGE T1)
by use of: C.FRINGE
Mi:(IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1)}
(C.FRINGE (CDR Ti})))
(A0008))

01:(C.FRINGE T1}
(2)The Real algebra equality rule is applied.
I1:(EQUAL (C.FRINGE T1)

(PLUS (TIMES X (HODEKNT T1))
Y))
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by use of: (LISPLINK REQUAL)

M1:(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS Y)))
0)

01 (EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS Y)))
0)

The result of recursive simplification is:

(ALL T1 (EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS Y)))
0))

{3)Induction is now tried giving a new expression to simplify:

(AND
(ALL T1 (IMPLIES (NOT (LISTP Ti))
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS T)))
03))
(ALL Ti
(IMPLIES
(AND (LISTP T1)
(AND (EQUAL (PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CAR T1)}))
(MINUS YO ))
0)
{EQUAL (PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEKKT (CDR Ti))))
(MINUS T)))
0
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEXNT T1)))
(MINUS Y)))
03))

The Base Case of the Induction is Evaluated

11: (IMPLIES (IF (LISTP T1)
NIL T)
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS IO
o
by use of: IMPLIES
Mi:(IF (IF (LISTP T1)
NIL T)
(EQUAL (PLUS (C.FRINGE Ti)
(PLUS (MINUS (TIMES X (NODEKNT T1)))
(MINUS V)
0)
T}

{4)C.FRINGE becomes (A0008) in the Base Case



13: (C.FRINGE T1)
by use of: C.FRINGE
M3: (IF (LISTP T1)
(PLUS (A0007)
(PLUS (C.FRINGE (CAR T1))
(C.FRINGE (CDR T1)}))

A0008))

8)

[s0]
(&
—~
S
[od
[

13: (NODEKNT T1)
by use of: NODEKNT
M3:(IF (LISTP T1)
(PLUS 1 (PLUS (NODEKNT (CAR Ti))
{NODEXNT (CDR T1))))
1)
03:1

The Base Case evaluated

01:(IF (LISTP T1)
T
(EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0))

(5)The quantifier is eliminated on the Base Case

I1:(ALL T1 (IF (LISTP T1)
T
(EQUAL (PLUS (40008)
(PLUS (MINUS X)
(MINUS IO))
0

by use of: (LISPLINK SYMALL)
M1i:(IF (EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0)

T
(ALL T1 (IF (LISTP T1)
T NIL))
01:{EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0)

(6)The Remaining problem after evaluating the Base

11:(AND
(EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
o) v
(ALL
T1
(IMPLIES
(AND
(LISTP T1)
(AND {EQUAL (PLUS (C.FRINGE (CAR Ti})
(PLUS (MINUS (TIMES X {NODEKNT (CAR T1))))
(MINUS VO
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0)
(EQUAL (PLUS (C.FRINGE (CDR T1)}
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS Y)))
0)))
(EQUAL (PLUS (C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEKNT T1)}))
(MINUS Y)))
013

Evaluating the Inductiom Step
12: (IMPLIES
(IF (LISTP T1)
(IF (EQUAL (PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CAR T1))))
{MINUS Y)))
0)
(EQUAL (PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEXNT (CDR Ti))))
(MINUS T)))
0)
NIL)
NIL)
(EQUAL (PLUS {C.FRINGE T1)
(PLUS (MINUS (TIMES X (NODEXNT T1)))
(MINUS Y)))
o))
by use of: IMPLIES

C.FRINGE includes (A0007) on the Induction Step
14:(C.FRINGE T1)
by use of: C.FRINGE
M4: {IF (LISTP TL)
(PLUS (A0007)
(PLUS (C.FRINGE {(CAR Ti})
(C.FRINGE (CDR Ti))))
(40008))
04: (PLUS (A0007)
(7LUS (C.FRINGE (CAR Ti))
(C.FRINGE (CDR T1))3})

14: (NODEKNT T1)
by use of: NODEKNT
M4: (IF (LISTP T1)
(PLUS 1 (PLUS (NODEKNT (CAR T1))
) (NODEKNT (CDR T1))))
1

04:(PLUS 1 (PLUS (NODEKNT (CAR T1))
(NODEKNT (CDR T1))))

(7)The hypothesis is solved for (C.FRINGE(CCR T1))
and substituted into the conclusion.

M4: (IF
(EQUAL (PLUS (C.FRINGE (CDR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CDR Ti))))
' (MINUS )
o)
{EQUAL
(PLUS
(A0007)
(PLUS
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(C.FRINGE (CAR T1}))
(PLUS
(PLUS Y (TIMES X (NCDEKNT (CDR T1))))
*(PLUS (MINUS X)
(PLUS (MINUS (TIMES X (NODEKWT (CAR Ti}))})
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS OO0

ny
N7

™

which is then simplified
04: (IF
(EQUAL {PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEXNT (CDR T1))))
(MINUS Y)))
0)
(EQUAL (PLUS (A0007)
(PLUS (C.FRIKGE (CAR T1))
(PLUS (MINUS X)
(MINUS (TIMES X (NODEKNT (CAR T1)))))))
o)
)

The Hypothesis is solved for (C.FRINGE(CAR T1))
and then substituted into the conclusion
M4: (IF
(EQUAL {PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CAR Ti1))))
(MINUS Y)))
0)
(IF
(EQUAL (PLUS (C.FRINGE (CDR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CDR Ti})))
(MINUS Y)))
o)
(EQUAL (PLUS (A0007)
(PLUS (PLUS Y (TIMES X (NODEKNT (CAR T1})))

(PLUS (MINUS X)
(MINUS (TIMES X (NODEKNT
(CAR T1))7))0)
0)
™
)

which is then simplified
04: (IF
(EQUAL (PLUS (C.FRINGE (CAR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CAR T1))))
(MINUS )
0)
(IF (EQUAL (PLUS (C.FRINGE (CDR Ti})
(PLUS (MINUS (TIMES X (NODEKNT (CDR Ti})))
(MINUS Y)))
o)
(EQUAL (PLUS (A0007)
(PLUS Y (MINUS X))
0)
™
™

The Result of Evaluating the Induction Step



02: (IF
(LISTP Ti)
(IF (EQUAL (PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CAR T1}}))
(MINUS V) ))
0)
(IF (EQUAL (PLUS (C.FRINGE (CDR Ti})
(PLUS (MINUS (TIMES X (NODEKNT {CDR T1)}))
(MINUS YO ))
0)
(EQUAL (PLUS (A0007)
{PLUS Y (MINUS X))
0)
k9]
™
™

(8)The (ALL Ti) quantifier is reduced in scope

12: (ALL

T1
(IF

(LISTP T1)

(IF (EQUAL (PLUS (C.FRINGE (CAR T1))

(PLUS (MINUS (TIMES X (NODEKNT (CAR Ti})))
(MINUS T)))
)]
(IF (EQUAL (PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS T)))

0)
(EQUAL (PLUS (AG007)
(PLUS Y (MINUS XO))
0)
T
kY]

™)
by use of: (LISPLINK SYMALL)

resulting in
M2: (IF
(EQUAL (PLUS (A0007)
(PLUS Y (MINUS X))
0)
T
(ALL
T
(IF
(LISTP T1)
(IF
{EQUAL (PLUS (C.FRINGE (CAR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CAR Ti))))
(MINUS )0
o)
(IF (EQUAL (PLUS (C.FRINGE (CDR T1))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS 00
0)
NIL T)
T3
T3))
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The Quantified sub expression is examined
13: (ALL
T1
(IF
(LISTP T1)
(IF
(EQUAL (PLUS (C_FRINGE (CAR Ti))

(PLUS (MINUS (TIMES X (NODEKNT (CAR T1))))
(MINUS Y)))
o)
(IF (EQUAL (PLUS (C.FRINGE (CDR Ti))
(PLUS (MINUS (TIMES X (NODEKNT (CDR T1))))
(MINUS Y3))
0)
NIL T)
T)
™)
by use of: (LISPLINK SYMALL)

Ti is replaced by (CONS 1 *2)
M3:

(IF
(LISTP (CONS #1 *2))
(IF
(EQUAL
(PLUS {(C.FRINGE (CAR (CONS #1 %2)))
(PLUS (MINUS (TIMES X
(NODEKNT (CAR (CONS =1 #2)))))
(MINUS T)))
0)
(IF
{EQUAL
(PLUS (C.FRINGE (CDR (CONS =*1 %2}))
(PLUS (MINUS (TIMES X
(NODEKNT
(CDR (CONS *1 #2)))))
(MINUS T)))
o)
NIL T)
9]
)

(9)Resulting in 03 below because
I15: (ALL %2
(IF (EQUAL (PLUS {(C.FRINGE =2)
(PLUS (MINUS (TIMES X (NODEXNT %2)))
(MINUS T)))
0)

NIL T))

by use of: EX
05:NIL

I4:(ALL *1 (IF (EQUAL (PLUS (C.FRINGE *1i)
(PLUS (MINUS (TIMES X (NODEKNT *1)))
(MINUS YO0
0)
NIL T3
by use of: EX
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04:NIL
03:NIL

The Result of the Induction Step
02: (EQUAL (PLUS (A0007)
(PLUS Y (MINUS X)))
0)

The result of recursive simplification is:
(IF (EQUAL (PLUS (A0008)
(PLUS (MINUS X)
(MINUS Y)))
0)
(EQUAL (PLUS (A0007)
(PLUS Y (MINUS X)))
0)
NIL)
end of deduction
63798 conses
174.162 seconds
11.479 seconds, garbage collection time

EXl=0/EX2=O/EX3=O/EX4=O/EX5=0/EX6=O/EX7=0/EX8=O/EX9=0/EX10=0/
ALLl=0/ALL2=0/ALL3=0/ALL4=1/ALLS=1/ALL6=O/ALL7=2/ALL8=2/ALL9=1/ALL10=1/



11. CONCLUSION

We have constructed an entire automatic deduction and induction system based on a single principle
which we call The Fundamental Deduction Principle. Unlike most other automatic deduction systems,
this system does no-unification whatsoever. -Instead; it is-based on the SYMMETRIC LOGIC technigue of
reducing the scope of quantifiers. We have used this sytem both as a programming language interpreter
to make deductions in natural language theory and Ontology and as a more general deduction system to
prove theorems and analysize the complexity of LISP functions. This research has not been done in a
vacume. Indeed, Bledsoe|Bledsoe2] argued over a decade ago that automatic deduction systems must
INCLUDE ideas akin to our Fundamental Deduction Principle as opposed to the then prevailing
Resolution viewpoint of deduction as being a problem of exploring a search space. However, the thesis of
this research is incredibly stronger, for we are argueing that for many interesting theories in mathematics
and computer science, that the Fundamental Deduction Principle is the ONLY idea that needs to be
included. We were lead to this principle partly by trial and error in constructing deduction systems and
suffering the effects of redundand expessions whenever we departed from this principle, and partly by
Meltzer’s contention that induction must in some way be related to deduction|{Meltzer]. The research of
Boyer and Moore[Boyer] has also influenced us, in fact we have applied their techniques for Noetherian
Induction in quantifier free logic to our Quantified logic. This research has also been influenced by the
idea that computation is a very special case of deduction, and that a deductive system must be capable of
computation. This is related to Kowalski's[Kowalski] thesis that deducive systems are capable of
computation. For logical languages based on quantifier free functional repersentation, such as pure LISP
it is easy to achieve computational ability while obeying the fundamental deduction principal. However,
for logical languages which include quantifiers and relational notation, achieving computational ability
while obeying this principal would seem to_be rather difficult since neither resolution nor unification
generaily obey this principal. Never-the-less we have succeeded in constructing a new deductive method
called the SYMMETRIC LOGIC which has significant computational ability and which satisfies the
fundamental deduction principal. This deductive method was first degugged in collaboration with
Schwind[Brown14,15,17] by hand simulation of part of her theory[Schwind] for translating natural
language into logic.

I wish to thank my students who have worked on this project, particularly Nelson Bishop who tested
much of Schwind's grammer and Song Park who worked on the set theory examples.
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