PRESBURGER ARITHMETIC WITH ARRAY
PERMUTATION AMD EQUALITY

[SEGMENTS,

Louis E. Rosier
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR=83~17 September 1983

1This research was supported in part by the University Research Imstitute,
the University of Texas at Austin and the IBM Corporation.

@

Table of Contents

1. Introduction
2. The Logical Assertion Language
3. The Undecidability Result

B A B

References

ABSTRACT

In this paper we examine the validity {satisfiability) problem for a language
containing Presburger arithmetic, fixed length array segments and soume fixed
second order predicates. In particular we consider the predicates PERM, which
an be used to assert that two array segments contain the ssme multiset of

elements and = (equality) which is used to assert that two array segments are
identical (i.e. contain the same sequence of elements and have equivalent up-
per and lower array bounds). It dis known that the aforementioned
(unquantified) language has a decidable validity problem. (In fact, the satis-
fiablility problem 1s NP-complete.) We consider the case when equality is
defined in a seemingly weaker fashion. Let A ¥ B be true if and only 1if array
segments A and B contain the same sequence of elements. This definition of
equality is more useful in the verification conditioms of programs that
manipulate queues and/or strings. However we show that when this form of
equality replaces the earlier variety in the previously mentioned language,
the validity problem becomes undecidable.

1. Imtroduction

Recently work has been done that augments the (logical) language of un-
quantified Presburger arithmetic with array segments, as well as some fixed
second order predicates [5, 7-9, 13]. This work is motivated primarily by work
in program verification and 1is concerned with deciding the wvalidity
(satisfiability) of such logi formilas. (The guantified theory is known to

<&

be undecidable [6].) The idea is to develop algorithms that will take as input
annotated programs, complete with pre~ and post—conditions and loop invariant
assertions and check whether the program is correct. Since this problem, in
general, is undecidable, recent research has focused on restricted classes of
programs and assertions where the problem is decidable [5, 7-9, 13]. In this
context, classes of programs that sort arrays have received a 1ot of attention
[5, 7-9, 13].

In [13], formulas involving three data types were studied: boolean, in-
teger and vector (of integer). Integer terms were constructed from the opera-
tions + and -, integer constants, integer variables and array access terms of
the form X[i] where X is an array expression (a la [11]) and 1 is an integer
expression. It was shown in [13] that the validity problem for unquantified
formulas involving these terms, the relations = and Sh{alaﬁg with the usual
logical connectives) was decidable. Restricted use of the predicate PERM(A,B)
(which asserts that array expressions A and B define arrays which contain ex-
actly the same elements, although perhaps not in the same sequence) in such
formulas was also studied. The validity problem for the resulting class of
formulas was also shown to be decidable. The satisfiability problem was, in
fact, shown to be NP-complete.

to

In [7,9] (see also {8]) a decision procedure is described for a very
restricted language that is capable of expressing the verification conditions
for the ordering properties of certain sorting programs. In this language
there were four data types: boolean, integer, array and an ordered type {the
arrays contain only elements from the ordered type). Consequently array in-
dices and array elements were not comparable. The formulas also involved array
segments X[1..3j], where X is an array variable and i and j are integer vari-
ables. Some restricted sorting programs can be verified using these tech~
niques. Related results also appear in [3].

In [5] formulas involving five data types were considered: boolean, in~
teger, an ordered type, finite multisets (myltisets with possibly negative
multiplicities were actually considered in [5], however the usual multiset was
represented in the language hence we ignore the extension), and finite length
arrays {both multisets and arrays were over the ordered type). Many predicates
and/or operators inveolving the various data types were allowed in this lan-
guage inciuding predicates to assert that an array is ordered and that the
mul tisets represented by two distinct arrays were the same, as well as the
usual integer operations and relations. Consequently the decision procedure
given for this language yields a technique that can be used to verify many
sorting problems, as well as programs concerning other data structures (e.g.
stacks). The satisfiability problem was again shown to be NP-complete [4]. AL~
though the aforementioned languages are not always comparable the most com~
prehensive language is the latter one. .

&

In [12] an interesting language or notation was described that is
suitable for reasoning about arrays. Although decision procedures were not of
interest in [12], many useful concepts were illustrated with respect to
reasoning about arrays. Thus many predicates about arrays and their contents
were introduced. Not surprisingly then is the fact that there is a great deal
of overlap between the predicates studied in [12] and those mechanized in {51,
As a comparison vehicle this work can be used to point out some of the
restrictions of the language in [5] and suggest additional types and/or predi-
cates that perhaps can also be mechanized along with those which already are.
(In fact two such extensions are suggested in [5].) The first such extension
ig that of "sets.” While the language in [5] can reason about the multiset of
clements in an array it appears unable to reason about the set of elements in
an array. It does not seem unreasonable to believe that finite sets (along
with some appropriate operators and predicates) could be added to this lan-
guage and that a suitable decision procedure found to decide the validity of
such formulas. This seems plausible when one considers other decidable
theories that are in some sense able to reason about sets [1]. The sscond ex-
rension concerns the vector concatenation operator or the shift equivalence
relation. In [5] two arrays are equal 1if and only if their contents (in
order) are equsl and they have the same lower and upper bounds. This con-
strains the formulas in such a way that most programs that use queues and/or
strings cannot be verified (using those techniques anyway). In order to extend
this work to such programs it seems necessary Lo require a wealker predicate
for array equality—~-one that merely asserts that the respective sequences of
elements are the same.

In this paper we consider the latter problem. We start with a restricted
form of the language in [5] and add the predicate that asserts that Two arrays
are "equal as sequences” (but asserts nothing about the respective array
bounds), and show that the validity problem 1is undecidable for the resulting
language. In our proof we show a somewhat more restricted result which does
not need many of the operators and predicates available in the language. The
proof illustrates that integer division can be encoded in such formulas and
hence the undecidability of the validity problem for this language follows
from the well known results in [10].

2. The Logical Assertion Language

The language we consider has four types: booclean, integer, an ordered
type and array (over the ordered type). The specifics of the ordered type are
not important except that there must be at least two distinct elements. The
logical operators are the usual — {(not), /\ (and) and \/ (or). The integer
operators are +, —, < and =. The formal language includes the Integer constant
symbols «..,"2,~1,0,1,2,..., integer variables (which we will denocte as 1,],
k etc. and array variables (denoted by A, B,...). An array segment is of the
form Ali..j] (i(3j) is called the lower (upper) bound of the segment), where A
is an array variable and i and j are integer terms (defined from integer con—
stants and integer variables in the usual manner). in addition we consider the
following predicates on array segments. Let M and N denote array segments.

1. PERM(M,N)

29 }é. = N
3. ORD{M)
The predicate PERM(M,N) is true if and only 1if the two array segmenis M and N

contain the same multiset of elements (and thus are the same length). The
sredicate M=N is true if and only if the two array segments M and N contaln

identical sequences of elements and have identical lower and upp array
bounds. The predicate ORD(M) is true if and only if the elements in the array
segment M appear in order (as defined by the ordered type).

The aforementioned language is a subset of the much richer language
described in [5] (i.e. each formula in this language 1is expressible iu the
language of [5]). No attempt has been made here to illustrate all the
operators, types, and/or predicates that are considered in [53}1. {In fact we
only consider a very small number of them.) Howewver the ones mentioned here
seem crucial in terms of asserting the lmportant properties about programs
over these types of variables. For instance the introduction of multisets in
[5] was basically dome in order to express the PERM predicate. The equality
and order predicates are important in that they seem necessary Lo reason about
array segments in the types of verification conditions that arise in sorting
programs.

and N

=
£

To this list of predicates we add a single predicate. Again, let !
denote array segments.

1. M =N -

The predicate M®N is true if and only if the two array segments M and N con-
tain identical sequences of elements (and thus are the same length)., Nete that
M=N if and only if M®N and the lower and upper array bounds of M are equal to
the lower and upper array bounds of N. Denote the aforementioned language by
L.

3. The Undecidability Result

In this section we show that the language L summarized in the previous
section has an undecidable satisfiability (validity) problem. The proof uses
the = predicate to force an array segment to be composed of repeated patterns
of elements. Then other predicates are used to force a variable to express the
integer division of two integer terms.

Theorem. The language L has an undecidable validity (satisfiability) problem.

Proof. Since any formula of Presburger arithmetic can essentially be expressed
in L, it is well known that if in addition the "/" operator (integer division)
were expressed that the problem in gquestion would be undecidable [2]. (This
follows from the undecidability of Hilbert’s tenth problem [10], the problem
of deciding for any given polynomial with integer coefficlents whether it has
a nonnegative integral solution.) Consequently it is sufficient to show that
the addition of the = predicate allows integer division to be expressible.
Consider the following clauses definable in L3

i

(1< 3A L <uNG <)

Cy = PERM{A[L..w], Bll..w])

Cy = All..31-2] = Al2..i-1]
Cy = B[l..j=1] = B[2..1]

C, = Bl{i+l.ow=1] = B[j+2..w]
Cg = Blw] = a[1]

Cg = Bl1] = Al1]

¢, =~ (81] = Blw])

Cg = A[Lle.i] = A[l+..wH]

8

Now consider what happens when (= dﬁb Ci is true. Fer Cl to be true,
A[l..w] and B[l..w] must contain exactly the same multiset of elements. C, 1is
true 1f and only if A[l]=A[2]...=Al1-1]. Cy 1is true if and only 1f
Bl1]=B{2l=...=B[i] and Cé is true if and only if B[j+11=Blj+2]=...=Blw]. Thus
clauses Cy~C; imply that array segments All..w] and Bll..w] each contain only
two distinet elements (the elements B[1] and Blw]). Furthermore the integer
term j must contain exactly the number of times the element B[1] (or equiv-
aléntly A[1]) appears in the array segment A[l..w], since by Cq and C, the ar-
ray segment B[l..w] has all occurrences of the first element preceding all oc-
currences of the second element. Now (g is the important clause and shows the
real power of the = predicate. For Cg to be true it must be the case that the
sequence of elements in All..wri] is pericdic with a period of i. Thus the se~
guence of elements in All..w] 1s the sequence of elements in All..i] repeated
w/j times {(with perhaps another partial repetition left over). Counsequently
since the number of occurrences of this element A[1] appearing in A[l..1] is
one, we have that the number of occurrences of A[i] appearing in All..w] is
w/i. Hence whenever C is true j=w/i. Since w/i can be expressed by a FPres-
burger formula whenever C; is false we are finished. The theorem now follows
from [10]. [l

The reader should note that the above proof only used predicates PERM and
=, Although a shorter proof of this result can be shown using other predicates
available in the language presented in [5], this proof serves to show the
limitation of even a restricted form of such a language when the weaker form
of equality is expressible. Thus reasoning about arrays with the weak form of
equality is much more difficult than before. Also it seems difficult to im~
agine a weaker language containing the predicate ¥, that is capable of making
interesting and useful assertions. Since the ® predicate seems to be necessary
for reasoning about most programs that manipulate queues and/er strings, any
decidable language considered for this purpose will not be able to express the
permutation predicate. (However some programs that manipul ate queues do so by
adding to the right (removing from the left) of an array, but never shift the
array contents. These can be handled without the = predicate.)

&

Acknowl edgement

I would like to thapnk David Jefferson for helpful discussions.

References

l.

16,

1l.

126

13.

Buchi, J., On a decision method in restricted second order arith-—
metic, Proc. Internat. Cong. Logic, Methodology and Philos. Sci.
1960 (E. Nagel, P. Suppes, and A. Tarski, eds.}), pp. 1=11, Stanford
Univ. Press, Stanford, California, 196Z.

Enderton, H., A Mathematical Introduction to Logic, Academic Fress,
NY, NY, 1972.

Jaffar, J., Presburger arithmetic with array segments, Information
Processing Letters, Vol. 12, No. 2, April 1981, pp. 79-82.

Jefferson, D., Personal communication, 1983,

Jefferson, D., Type reduction and program verification, Ph.D. Dis-
sertation, Carnegie-Mellon University, April 1980.

Lifshits, V., Some reduction classes and undecidable theories, in
"Studies in Constructive Mathematics and Mathematical Logie,” Pt.
I, A. Slisenko, Ed., "Seminars in Mathematics,” Vol. 4, V. A. Stek—
lov Mathematical Institute, Leningrad, 1969, pp. 24-25. -

Mateti, P., A decision procedure for a class of sorting programs,
Technical Report 78/1, Dept. of Computer Science, University of
Melbourne, Australia (1978).

Mateti, P., A decision procedure for the correctness of a class of
programs, J. ACM, Vol. 28, No. 2, April 1981, pp. 215232,

Mateti, P., An automatic verifier for a class of sorting programs,
Ph.D. Thesis, Dept. of Computer Science, University of Illinois,
Urbana, IL, 1976, Tech. Rep. UILUCDCS-R-~76-832.

Matijasevic, Y., Enumerable sets are Diophantine, Dodl. Akad.
Nauk. SSSR 191 (1970}, pp. 279-282.

McCarthy, J., Towards a mathematical science of computation, FProc.
IFIP Congress 1962 (North~Holland, Amsterdam, 1972), pp. 21-28.

Reynolds, J., Reasoning about arrays, Commun. ACM, Vol. 22, No. 5,
M,ay 1979, ?pa 29{}"2990

Suzuki, N. and Jefferson, D., Verification decidability of Pres-—
burger array programs, J. ACM, Vol. 27, No. 1, January 1980, pp-
191-205.

