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ABSTRACT

Let M and N be two communicating finite-state machines which exchange one type of message. We
discuss an algorithm to decide whether or not the communication between M and N is bounded. The
algorithm is based om constructing 2 finite representation of the reachability tree of M and N assuming

that M and N progress in equal speeds.



I. INTRODUCTION

Let M and N be two commuricating finite state machines which exchange one type of message over
two unbounded, one-directional, FIFO channels. Informally, the communication between M and N is said
to be bounded iff there is 2 nonnegative integer K such that at each ®reachable state® of M and N, the
number of messages in each channel is less than K. (Formal definitions are given later.) Cunha and
Maibaum [3] have discussed an algorithm to decide whether the communication between M and N is
bounded. Their algorithm consists of (i) constructing a finite representation U of the ®reachability tree® of
M and N, then (ii) scanning U to detect unboundedness, if any. To ensure that all reachable states are
represented in U, the algorithm takes into account all possible relative progress speeds of M and N. In this
paper, we present a more efficient algorithm to solve the problem. In particular, our algorithm constructs
a finite representation T of the reachability tree assuming that M and N progress in equal speeds. Thus,
the total number of states generated by our algorithm is, in most instances, less than those generated by

the Cunha-Maibaum algorithm.

There are two practical reasons to consider this problem:

i. Many self-timing VLSI arrays can be modeled as arrays of communicating machines where
each two machines exchange, at most, one type of message. As shown in [4], if the com-
munication between each pair of machines in such an array is bounded, then the communica-
tion within the array is bounded. Thus, our algorithm can be used to prove efficiently that
the communication within a VLSI array is bounded.

ii. Many communication protocols can be modelled as two communicating finite state machines
which exchange many types of messages [1, 25,6, 7). Let M and N be two such machines. As

shown in [8], if M and N are abstracted by two machines M and N which exchange one type of
message and if the communication between M and N is shown to be bounded, then the com-

munication between M and [¥ is also bounded. Thus, our algorithm can be used to prove ef-
ficiently that the communication in a protocol is bounded.



Il. COMMUNICATING MACHINES

A communicating machine M is a directed labelled graph with two types of edges, namely sending

and receiving edges. A sending (or receiving) edge is labelled "send® {or "receive® respectively). One of
the nodes in M is identified as its initial node; and each node in M is reachable by a directed path from its

initial node. For convenience, we assume that each node has at least one output edge.

Let M and N be two communicating finite state machines. A state of M and N is a four-tuple
[v,wx,y] where v and w are two nodes in M and N respectively and x and y are two non-negative integers.
Informally, 2 state [v,w,x,y| means that the execution of M has reached node v, the execution of N has

reached node w, and the input channels of M and N have x and y messages respectively.

The initial state of M and N is [v,,w,,0,0] where v, and wg are the initial nodes of M and N respec-

tively.

Let s=[v,w,x,y] be a state of M and N, and e be an output edge of node v or w. A state s’ is said to

follow s over e, denoted s—e—>>s’, iff the following four conditions are satisfied:
i. If e is a sending edge from v to v’ in M, then s'=[v’,w,x,y+1].
ii. If ¢ is a sending edge from w to w' in N, then s'=[v,w’ x+1,y].

iii. If e is a receiving edge from v to v’ in M, then x > 1 and s’=[v’,w,x-1,y],

iv. If e is a receiving edge from w to w’ in N, then y >1 and s'=[v,w’x,y-1].
If s—e—->>5' for some edge e in M or N then s’ is s_aid to follow s.

Let s and 8’ be two states of M and N; and let <e,,....e.> be a sequence of edges in M or N. s’ is

reachable from s over <e,.e,,...,e > iff there are states 5,5,...,5, of M and N such that s;=s, s =s’, and

By—€; =P8y for i=0,...,r-1.

Let s and s’ be two states of M and N. &' is reachable from s iff either s==s’ or there is a sequence

<ey,...,.e.> of edges in M or N such that s’ is reachable from s over <e,,....e.>.
A state s of M and N is reachable iff it is reachable from the initial state of M and N.

The communication between M and N is bounded iff there is a positive integer K such that for each
reachable state {v,w,x,y] of M and N, x<K and y <K. Otherwise, the communication between M and N is

unbounded. A proof for the following lemma is in the appendix.

Lemma 1: The communication between M and N is unbounded iff there are two reachable states
sg=[v,w,x,y] and s,=[v,w,x+i,y+j] of M and N such that s, is reachable from s; and either {(i>0 and
j>0) or (i>0 and j>0). ]



Based on this lemma, an efficient algorithm to detect unboundedness for two communicating
machines is presented in Section IV. This algorithm is also based on the concept of fair reachability

discussed next.



. FAIR REACHABILITY

A state [v,w,x,y] of M and N is fair iff x==y. Obviously, the initial global state of M and N is fair.

Let s and s’ be two fair states of M and N; and let e and { be two edges in M and N respectively. s’

fairly follows s over e and f iff there  exists a state s" such that either

(s~e—>s® and s®—~f->s') or (s—f~>s" and §%--e—>s'). s’ fairly follows s iff s’ fairly follows s over some

edges e and f in M and N respectively.

Let s and s’ be two fair states of M and N; and let P be a directed path of edges ey,....e_in M, and Q
be a directed path of edges f,,...T in N. s’ is fairly reachable from s over the edges of P and Q iff there

. . _ - . . ,
exist fair states sy,5,,...,8, such that s=s;, s'=s, and s, fairly follows s; over e;,, and fipy i=0,.1-1. 8

is fairly reachable from s iff s’ is fairly reachable from s over the edges of some two directed paths P and

Q in M and N respectively.

A fair state of M and N is fairly reachable iff it is fairly reachable from the initial state of M and

Earlier, lemma 1 has stated a necessary and sufficient condition for unbounded communication bet-
ween two machines. In the next lemma, whose proof is in the Appendix, we show that this condition can

be equivalently stated in terms of two other conditions A and B.

Lemma 2. There are two reachable states so==[v,w,x,y] and slz[v,w,x+i,y+j] of M and N such that s, is
reachable from s, and either (i>0 and j>0) or (i>0 and j>0) iff one of the following two conditions is
satisfied:

A. There is a reachable state s'=[v’,w’,x",y’] of M and N such that either node v’ is in a directed
cycle of all sending nodes in M or node w’ is in a directed cycle of all sending nodes in N.

B. There are two [airly reachable siates s’0=[v’,w’,x’,x’] and s’lz[v’,w’,x’+k,x’+k} of M and N
such that ', is fairly reachable from s’y and k>0. ]

From Lemmas 1 acd 2, the commaunication between M and N is unbounded iff either condition A or
condition B is satisfied. Condition B is stated in terms of fair states and fair reachability; but condition A
is not. In the next lemma, whose proof is in the Appendix, we show that condition A can be also stated in

terms of fair states and fair reachability.

Lemma 3. A state s=[v,w,x,y] of M and N is reachable iff a fair state s'=[v,w' x"y’] of M and N where
x'=y’ is fairly reachable. (Similarly, a state s=[v,wxy] of M and N is reachable iff a fair state

s'=[v’,w,x"y’] of M and N where x'=y’ is fairly reachable.) I



The next theorem follows immediately from lemmas 1,2, and 3.
Theorem 1: The communication between M and N is unbounded iff one of the following two

conditions is satisfied:

A. There is a fairly reachable state s=|v,w,x,x] of M and N such that either node v is in a
directed cycle of all sending nodes in M or node w is in a directed cycle of all sending
nodes in N,

B. There are two fairly reachable states sy==[v,w,x,x] and s,=[v,wx+ix+i] of M and N
such that s, is fairly reachable from s and i>0. 0



IV. UNBOUNDEDNESS DETECTION
ALGORITHM

Based on Theorem 1, the following algorithm can be used to decide whether the communication

between two machines is bounded.

Algorithm 1:
Inputs Two communicating machines M and N which exchange one type of message.
QOutput: A decision of whether or not the communication between M and N is bounded.

Variable: A directed rooted tree T whose nodes are labelled with fair states of M and N, and whose
directed edges correspond to the fairly-follow relation. Imitially, T has exactly one node
Iabelled with the initial state of M and N.

steps: 1. while T has a leaf node n labslled with a state s such
that thers is at least one state which falrly follovs s,
and no non-leaf node in T is labelled with the same state s

do if s=[v,w,x,x] is such that one of the

following two conditions is satisfied:

a. Either node v is in 2 directed cycle of all
sending nodes in M, or node w is in a directed
cycle of all sending nodes in N.

b. Node n in T has an ancestor node labelled with &
state [v,v,y.y] where y<x
then stop: The communication between M and N

is unbounded

else find all the states s,,...,s, which

fairly follovw s;
add an equal number of nodes n,....,N,

to T; label each new node n, Wwith the state
§,, i=1..r; add a directed edge from node
n to each new node ng, i=t..r

ii. stop: The communication between M and N is bounded.
{1

Example 1: Consider the two communicating machines M and N in Figures 1a and 1b respectively. The
tree T in Figure lc is constructed by applying Algorithm 1 to M and N. From T, the communication
between M and N is bounded. This same result can be obtained from the tree U in figure 1d, constructed

by the Cunha-Maibaum Algorithm [3]. Clearly, T with 4 nodes is better than U with 27 nodes. i



Initial node

receive s send send | receive

(c) T constructed by
Algorithm 1.

(d) U constructed by the Cunha-Maibaum Algorithm.

Figure 1. An example.
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APPENDIX: PROOFS OF LEMMAS

Proof of Lemma 1:

If Part: Assume that there are two reachable states so--:{v,w,x,y] and sl=[v,w,x+i,y+j} of M and N such
that s, is reachable from s, and i>0 and j>0. (The proof for the other case where i>0 and j>0 is
similar.) Assume that s; is reachable from sy over a sequence of edges e e,,...e; these edges form a
directed cycle which starts and ends at node v in M, and possibly a directed cycle which starts and ends at
node w in N. Therefore, the state 52=[v,w,x+2i,y+2i] of M and N is reachable from s, over the same
sequence of edges e,.e,,....¢.. In general, the state sk=[v,w,x+ki,y+kj], k=234,..., is reachable (from sl).
Since i>0, then x+ki can be made larger than any given positive integer by selecting k large emough.

Therefore, the communication between M and N is unbounded.

Only If Part: (Proof is by contradiction.) Assume that the communication between M and N is unbounded,
and that for every two reachable states sy=[v,w,x,y] and s;=[v,w,x+iy+j] of M and N, if s, is reachable
from s, then either i<<0 or j<O. Then, the number of reachable states is finite, contradicting the assump-

tion of unbounded communication. I

Proof of Lemma 2:

If Part: There are two cases to consider.

i. Condition A is satisfied: Assume that there is a reachable state s’=[vw x"y’] of M and N
where node v’ is in some directed cycle of all sending nodes in M. Assume that this cycle has }
sending edges; then the state s’1=1v’,w’,x’+0,y’+j] is reachable from s’;. The two reachable
states s’ and s’; satisly the required condition. (A similar argument can prove the case where
pode w’ is in some directed cycle of all sending nodes in N.)

ii. Condition B is satisfied: The two (fairly) reachable states s’y and s’; satisfy the required con-
dition.

Only If Part: Assume that there are two reachable states sy=[v,wx,y] and s,=[v,wx+iy+j] of Mand N
such that s, is reachable from sy and i>0 and j>0. (The proof for the case where i>0 and j>0 is
similar.} Assume also that s, is reachable from s; over a sequence of edges e,,e,,...,e.. These edges form a
directed cycle C,; which starts and ends with node v in M and possibly a directed cycle Cy which starts
and ends with node w in N. There are two cases to consider.

i. If Cy is a cycle of all sending nodes in M or Cy is a cycle of all sending nodes in N, then
condition A is satisfied.

ii. Otherwise, each of Cy; and Cy is a directed cycle which contains at least one receiving edge.
Let sy, and ry; be the numbers of sending and receiving edges (respectively) in Cyg- Similarly,
let sp; and ryy be the numbers of sending and receiving edges (respectively) in Cy- Since i>0
and j>0, we have sy>ry, and sy >ry. Also, let s'y=[v’,w’,2,z] be a fairly reachable state of
M and N where nodes v’ and w’ are in cycles Cyg and Cy respectively. Define the directed



cycle Dy, which starts and ends with node v’ in M and which consists of cycle C,; repeated
(sN+rN) times; similarly define the directed cycle Dy which starts and ends with node node w’
in N and which consists of cycle Cy repeated (sy+ry,) times. Each of Dy, and Dy has
(sp+Ea)(sn+Tyy) directed edges; Dy, has sp{sn TN sending edges and Dy has ry(sye+ryy)
receiving edges. Therefore, there is a fairly reachable state s’lr-[v’,w’,z+k,z+k] of M and N
which is fairly reachable from s’y over the edges in Dy and Dy where
k=sy(s+n Iyt Ta) =Sun-Tmfn >0 Thus, the two states s’y and s’y satisfy condition
B. f

Proof of Lemma 3:

If Part: Since s’ is fairly reachable, then it is reachable.

Only If Part: Assume that s=[v,w,x,y] is reachable; ie., s is reachable from the initial state
soz[vo,wo,E,E} of M and N over a sequence of edges e ,e,,....e,. These edges form a directed path P from
v to v in M and a directed path Q from wgy to w in N. Let [P| and |Q] denote the numbers of edges in

paths P and Q respectively. There are three cases to consider.

i. |P|=1Q]: In this case,
x = number of sending edges in Q
-number of receiving edges in P
= |Q@] - number of receiving edges in @
- |P| + number of sending edges in P
= number of sending edges in P
- number of receiving edges in Q

=7

Thus, s is a fair state; the lemma is true.

ii. [P|<|Q|: Consider the proper prefix Q' of Q such that [P|=|Q’]. The state s'=[v,w’ x"y’l,
reachable from the initial state of M and N over the edges of P and Q’, is fair (i.e, x'=y’);
and the lemma is true.

iii. [P|>1Q|: Extend the directed path Q in any possible way in N until the extended path Q’ is
such that |P|=|Q’|. The state s'=[v,w’x’y’], reachable from the initial state of M and N over
the edges of P and Q, is fair {(i.e., x’=y’}); and the lemma is true. ]






