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Abstract The spread of a symmetric matrix is the difference between its largest and smallest
- eigenvalues. The Gerschgorin circle theorem can be used to bound the extreme eigenvalues of the matrix
and hence its spread. This paper investigates how inaccurate this bound can be. It is shown that the
ratio between the bound and the spread is bounded by sqrt{p+1), where p is the maximum number of
offdiagonal nonzeroes in any row of the matrix. For full matrices this is just sqrt{n). This bound is not
quite sharp for m greater than 2 but examples with ratios of sqrt(n-1) for all n are given. For banded
matrices with m nonzero bands the maximum ratio is bounded by sqrt{m) independent of the size of
n. This bound is sharp provided only that n is at least 2m. For sparse matrices, p may be quite small and
the Cerschgorin bound may be surprisingly accurate.




1. Introduction
Let A be a symmetric matrix with eigenvalues
M <A< LN
The spread of A is defined as A - );. The Gerschgorin circle theorem (see Varga [1] p. 16) gives bounds
on the eigenvalues of A which in turn leads to a bound on the spread of A. Consider the matrix of
" dimension n:

0111 ... 1
1000 ...0
1000 ...0

A, = 1000 ...0
L1000 ...0

P

The Gerschgorin circle theorem bounds X, to be bigger than -(n-1) and X to be smaller than n-1. Thus
the Gerschgorin bound is 2(n-1). In fact A has +sqrt(n-1} as its only monzero eigenvalues and so the
spread of A is actually 2sqrt(n-1). Thus the ratio of the Gerschgorin bound to the spread is sqrt(n-1).
This paper examines how large this ratio can be and shows that the matrix A given above is essentially
the worst possible example. Section 2 investigates the case of n = 2, section 3 looks at the general full
case, section 4 examines banded and sparse matrices, and section 5 gives some conclusions.

2. n == 2

Let g{A) denote the ratio of the Gerschgorin bound to the spread of A. If the spread is zero then A is
just 2 scalar multiple of the identity matrix, the Gerschgorin bound is also zero and g(A) will be taken to
be one, which is the minimum value over all other matrices. Let g be the maximum of g(A) over all
symmetric matrices of dimension n. In general g{A), for a symmetric matrix of dimension n, is a very
complicated function of n(n+1)/2 variables. Even for n = 2 this is three variables and finding the
maximum g, would appear to be difficult. Fortunately for any real numbers § and ¢,

g{A) = g(oA + €I),
and so two of the variables can be eliminated. If A has zero offdiagonal elements then g(A) is one.
Therefore for suitable choices of § and ¢ the maximum value of g{A) is obtained by a matrix of the form

Ala) =

Since g(A(a)) = g{A(-a)) it can be assumed that g(a) is positive. The Gerschgorin bound on the spread is
24@. The characteristic polynomial of A{a) is p(x) = x® - ax - 1 and the eigenvalues of A(a) are
(o + sqrt{a® + 4))/2. Thus the spread of A(ac] is sqrt{a® + 4). The maximum value of g(A), which can
be found by differentiating, is g,=sqrt(2), obtained when « = 2. This is larger {by a factor of sqrt(2})
than the ratio obtained using the matrix A, defined in the introduction.
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3, The General Case

Let A be an nxn matrix which maximizes g{A). Let ¢; and R, be the center and radius of the
Gerschgorin circle that gives the left endpoint of the bound on the spread. Let ¢, and R, be the center
and radius of the corresponding righthand circle. Then Gerschgorin ratio of A is

g(A) = (cg- ¢y + Ry +R,) (N - M) (1)

By Rayleigh’s Principle A, must be less than ¢, and A must be greater than c,. Even so it appears that
g(A) might be made arbitrarily large when ¢ equals ¢, by making A, and A, arbitrarily close together.
This is false. The key observation is that the spread of A is bounded away from zero provided R, and R,
are not both zero. (If they are both zero then r(A) is 1 which is the minimum possible value.) This can be
shown as follows.

Symmetrically permute the rows and columns of A so that ¢, is in the upper left hand corner. Apply an
orthogonal similarity (Householder reflection) to A which zeroes out all but the first two elements of the
first tow and column of the matrix. The transformed matrix will have a 2x2 leading principal minor of
the form

§ -
gé;cl Tyl

- é
Hy =
| ;

where c, is the same 2as before, r; is the two norm of the vector whose one norm is R,, and e, is some real
number. By the Cauchy interlace theorem the eigenvalues of H, are inner bounds on the eigenvalues of
A. Thus the largest eigenvalue of H, is bounded above by A and hence the smallest eigenvalue of H,
cannot be larger than
e, + 1,2 ey - 2)

This approaches ¢; only as A approaches infinity. The same argument works for bounding A away from
Cy

Let p; and v be the largest and smallest eigenvalues (respectively) of H;, for i = 1 and 2. Then the
spread of A is bounded below by

~ = max(p,,#,) - min{v,,v,)
which is a function of the six parameters ¢, 1, ¢,, Ty, &y, and Q. Four of the parameters {the ¢’s and r's)
are determined by the rows of the matrix which yield the Gerschgorin bound. For fixed r's and ¢'s it is
clear that g(A) is maximized when the o’s are chosen to minimize 7. 7 as a function of the a’s is not
smooth everywhere. The minimum cannot be found just by finding the zeroes of the partial derivatives.
The minimum occurs at one of the singular points, when p, = p, and v, = v,. Provided that ¢, is not
equal to c,, this leads to a value of 7 of
v = sqrt{ {92":1 + (r22-r12)f(c2-cl))2 + 4712}~

If ¢; and ¢, are equal then r; and r, must also be equal and

y=1; +1, (= 2r).

The numerator of eqn 1 depends on the R’s while the denominator depends on the r’s. For fixed r's it is
clearly best to choose the R’s as large as possible. The one norm of a vector cannot be more than sqrt{p}
times the two norm of a vector where p is the number of nonzero entries in the vector. For full matrices
this factor is sqrt(n-1). Furthermore g(A) is invariant under translations and scalar multiplications so,
provided ¢, and ¢, are not equal, it may be assumed that ¢; = 0 and ¢, = 2. The bound, now just a



function of r, and r,, is
g(A) < (1 + lr+rp))/sart((14r,%r %) + 4r,?),
where 8 = sqrt{n-1). This is maximized by
o =r1,=4
with maximum

g, < sqrt(f% + 1) = sqrt(n).

This is the value obtained in the previous section for n = 2. When ¢, and c, are equal then the bound to
be maximized is just

g, < B
This bound is achieved for all n by the matrix A_ given in the introduction.

The bound sqrt(n) does not seem to be achievable for n greater than 2 since it is not possible to
independently prescribe H, and H, in an optimal manner. On the other hand the achieved value of
sqrt(n-1) is not a bound for n = 3 since g(A) = 1.5426 > sqrt(2) for the matrix
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Further improvements can be made but all must lie between the achievable value of sqrt(n-1) and the
bound sqrt{n). The value of the sharp bound will not be pursued further here.

4. Banded and Sparse Matrices
The analysis in the preceding section applies to band matrices as well with the exception of the value of
the bound 8. For band matrices with m nonzero bands, the row which generates R, has at most m-1
nonzeroes and so 4 = sqrt{m-1). This in turn leads to the bound
g{A} < sqrt{m).
This bound is achievable for all n and m provided only that n > 2m as shown by the following example.

Let m = 2k - 1 and let W be an mxm matrix which is zero except in the kth row and column. The kth
row and eolumn are all ones except the diagonal element which is two. Let X = 21 - W and let A be the
direct sum of X, W, and 2 zero matrix of dimension n - 2m. Then A is an nxn matrix with m nonzero
bands. The eigenvalues of A are just zeros and the eigenvalues of W and X. The extreme eigenvalues of
both W and X are the same by construction and are 1 + sqrt{m). Thus the spread of A is 2sqrt(m). The
Gerschgorin bound of A is

2+ (m-1)-{0-(m-1))=2m.
Thus g{A) = sqrt(m) as desired. The matrix A for m = 5 and n = 11 is shown below.



o 1 o 0 0o 0 0 0 00|
o 06 Lt o6 0 0 0 0 0 00
1 1 2 1 1 0 0 0 0 0 0
o 0 1 0 0 0 0 0 0 0 0
6 ¢ 1 0 0 0 0 0 0 0 0
A= 0 0 0 0 0 2 0 -1 0 0 0
60 0 0 0 0 0 2 -1 0 0 0
6 0 0 0 0 -1 -1 0 -1 -1 .0
6o 0 0 0 0 0 0 -1 2 0 0
©o 0 0 0 0 0 0 -1 0 2 0
0 0 o o 0 0o 0 0 0 0

There is nothing special about being a band matrix. The key quantity is the maximum number of
offdiagonal nonzeroes in a row. If A is any sparse matrix which has at most p offdiagonal nonzeroes of in
any row then g{A) < sqrt{p-+1).

5. Conclusions

This paper has shown that the ratio between the Gerschgorin bound and the spread of the spectrum of a
symmetric matrix A is bounded by sqrt{p+1) where p is the maximum number of offdiagonal nonzeroes in
any row of the matrix. For full matrices of dimension bigger than 2 this bound is not quite sharp but the
sharp bound must be at least sqrt{p}. For banded and sparse matrices the bound is sharp. Furthermore p
will be small and the Gerschgorin estimate will be adequate for most applications.
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