Modeling the th

understanding and op

nas

heen difficult 6@

Functional equiv

MODELING THE PHYSICAL STRUCTURES

COMMERCIAL DATABASE SYSTEMS

D. 5. Batory
Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712

TR-83-71 September 1983
Abstract

sical structures of a DBMS 45 a

timizing database performance.

prerequisite to

cause some fundamental principles of physical database

[e R}

same concept - 15 int
Juruct ires {and opera

, evels of
Lransi

formations whi

ower, more concret

storage structures of

systematic, and comprenendible way,

and

SYSTEM 2000 physi

roduced in this paper. It enabl

ules for mapping from one

design and implementation have not been well understood,
datence - the idea that different structures impl ement

T s
Loye

4

roduc j the nhysical
Lions performed on them) to be modeled at different

]

r

evels. Functional equivalence enable:
commercial databases to he modeled in a
Models of the INQUIRE, ADABAS
cal architectures are presented,

of

2

The basic techniques of the approach are elementary
abstraction t.

the complex

S

in

np

5l e

e, preci

iﬁaRESa

Previously such f)de%%ﬂg

the

1. Introduction

Improving the performance of commercial database systems is a significant
and very difficult problem. Progress toward its solution has come from the
development of models of physical databases. Such models have been used to
study the performance and optimization of hash-based files, indexed-sequential
files, B+ trees, inverted files, transposed files, hierarchical and network
databases, and query processing, among others.

Since 1970 there have been significant advances in modeling physical

databases, These advances, as a general rule, have been encorporated intc the

so-called general models of physical databases. Hsiao and Harary ([Hsi707)
were among the first to propose a general model which described a spectrum of

file structures by means of a small collection of parameters. Severance

pointer vs,

“:M
fev}
Ok
]
ok
s
o
%]
j«5)

e
T
b=
o
o)
o
o
<

S,
s

i
ot
s
]
[

‘;“‘
3
o
o
ev]
el
o
el
<
s

(LSev72]
sequential linkages in modeling file implementations. Senko, Altman,

Astrahan, and Fehder ([Sen73]) advanced similar but more general ideas in

their data independent accessing model {DIAM). Strings and basic encoding
units were seen as primitive components of database implementation, VYao
([Yao77]) extended Severance's work by identifying file structures with

directed trees. More recently, March, Severance, and Wilens ([Mar317])

demonstrated the frame to be a basic unit of physical database construction,
and Ratory and Gotlieb ([Bat82]) showed that complex physical database

ould be modeled simply by decomposition.

L
Fiae s
3
jous
3
o
o
g
w
W
[e¥)
e}
[
=]
T
D
e
&%)
o
p—
o
3
%]
]

£

nite of recent advances, there still are no models of physical
P pny

ot
pou)
[V

databases that can account for the diversity and complexity of structures {(and

%

p
their associated alaorithms) found in commercial DBMSs in a comprehendible
g) I

way. Although existing models have been used as starting points, considerable

effort is needed to adapt and extend them just to describe the structures and
operations of a single DBMS ([Cas81]). In view of these shortcomings, it is
easy to understand why there are so Tew design and ge?forééﬂce aids for
commercial database systems.

The difficulties in using current models clearly suggests that some
fundamental principles of physical database design and implementation are not
well understood and are inadequately represented. A closer lock at these
models reveals that they geﬁe?aéiy exhibit two distinct components: a

descriptive component, which models the physical structures and operations

that underly a DBMS, and a quantitative component, which predicts the

]

performance of the DBMS under projected workloads., The difficulfies that we
have noted in applying current models can be traced to inadequate descriptive
modeling techniques. Unfortunately, to improve the descriptive power of
existing models does not simply involve enlarging the spectrum of structures
and operations that they describe. 1t reguires much more,

The thrust of our research is to demonstirate some new descriptive

modeling techniques which we feel will help bridge the gap between physical

el

4

of our work is intended to be quite

[\

’XA

database theory and practice. The scope
broad. The goal is to develop techniques which are capable of accurately
modeling the underlying structures and operations of a wide spectrum of
commercial and specialized DBMSs., As evidence of the generality of the

3

techniques developed sofar, we will show how the div

{] K\'

and complex physical

Lf)
3’:‘{,)

ﬁ?t

7S

s

structures that underly four DBMSs - namely, INQUIRE, ADABAS, SYSTEM 2000, and

INGRES - can be modeled in a systematic, precise, and simple way. Our

o

approach is based on a new modeling concept called functional equivalence., 1

allows the physical structures and operations of a DBMS to be modeled at

different levels of abstraction,

)

We believe this research provides an essential step toward the

e

development of practical design and tuning aids for commercial NBMSs., We also
believe that it reveals a way to extend and simplify current methodologies for
DBMS 1implementation ([Ts1770]1,[8ar817) and shows how disparate implementation
“tricks” can be related in a formal and comprehensive setting., These and
other contributions will be discussed in Section 5,

In the following section, we present an example which underscores the
disparity between current theory and practice. It will also help to motivate

and explain the concept of functional equivalence,

1.1 The Concept of Functional Equivalence

f

Consider how index records of inverted files are described in theory and
how they are realized in practice. Database texts and research papers define
the contents of an index record as a data value and an inverted 1ist
[Bat8?

containing a variable number of pointers ([And76], [Kro771,

%

A~}

b

%

[Dat82]). The implicit structure of an index record 1s shown in Figure 1.

data value o v .
i
PAI|
| n
Figure 1, An Abstract Index Record

"o

{

Commercial and specialized database systems rarely implement index

records directly as in Figure 1. The reason is that the underiying file

structures of most databases require records to have a fixed and uniform
length; index records of Figure 1 have variable lengths. What Figure 1 really
represents is an abstraction of an index record. That is, at some level of

abstraction all index records of inverted files have the format of Figure 1.

Henceforth, we will refer to such records as abstract index records. Actual

database systems materialize abstract index records in a variety of different
ways., Here are some examples.

IMS ([18M81]) and RAPID ([Sta81]) materialize an abstract index record by
pairing the data value with each pointer in the inverted list. Each (data
value, pointer) pair defines a "concrete" index record, i.e., a record that is

actually stored (Fig. 2).

[« 1)
ik

{
value ,% cos | data value

| data value dat

Figure 2. IMS and RAPID Realization of an Abstract Index Record

System 2000 ([Kro77], [CasB81]) materializes an abstract index record by
storing the data value in a separate record and the inverted list in one or

dditional records. A Tinear list chains these records together (Fig. 3).

=3
<o
¥
O
o8

data value % N T ——— ey
5 , T R : . g
f g T
1 2z B B g gf s%% =

Figure 3. System 2000 Realization of an Abstract Index Record

MRS {[Kor79]) materializes an abstract index record similar to System
20000, except that the first pointer of the inverted 1ist is stored in the
record containing the data value (Fig. 4). This was done so that if the data

value was an identifier (i.e., a primary key), no inverted list records would

need Lo be accessed,

data value i ,,.wmmM% .5 W~Mw%” 0w, ;“j}m

&’?a,é 4 4 o ==

-

tgure 4. MRS Realization of an Abstract Index Record

ribe each of the above material-

Li)

It would be quite difficult to dese
jzations accurately using existing models of physical databases without

actually altering the models themselves. Moreover, current models would not

reveal that each of the above materializations are functionally equivalen
That is, they all realize the same concept: an abstract index record,

Functional equivalence - the idea that different structures implement the

] , , , . . . -
same concept * - has a much broader application than this simple example

suggests. Specifically, the general modeling approach is to start with the

e

generic logical record type that is supported by a DBMS. This generic logical

tization is to be determined, The

C:g

type is an abstract record whose materi
materialization is specified as a multistep derivation where each step involves

one or more elementary transformations., An elementary transformation

L Keep in mind that performance considerations play Eg‘reéé in functional
equivalence. As can be seen in Figures 2-4, several structures can be
functionally equivalent and yet have very different performance
characteristics,

maps abstract records to "less" abstract records or concrete records., The
result of applying a well-defined sequence of transformations to the generic
logical record type is the set of concrete record types and their
interconnections that underly the structures of the DBMS. As will become clear
shortly, our approach models physical databases at multiple levels of
abstraction. It also provides a firm solution to the problem of logical to
physical {i.e., conceptual to internal) mappings,

The transformation techniques that we will introduce in this paper are
unlike any techniques presently used to model physical databases.? Not onty
will we demonstrate that they provide a necessary means to model actual DRMSs

asily, they will also help to make explicit certain fundamental principles of

physical database design and implementation which previously were not well
understood. A formal model is presented in the following section.

The starting point of our research is the unifying model (UM) of Batory

b

{”

and Gotlieb ([Bat82]). The UM is the only model of physical databases that

expressly based on decomposition, a concept that is essential to modeling

operational DBMSs. Physical databases can be decomposed into a collection of
simple files and linksets, A simple file is a structure that organizes records
of one or more files. Classical simple files include hash-based, indexed-
sequential, B+ trees, and unordered structures. A linkset is a structure that
relates records of one or more files. Classical linksets include pointer

Tists, and cellular multilists, B8y decomposing a

e

arrays, inverted lists, rin
physical database and specifying the implementation of each of its constituent
simple files and linksets, the implementation of the physical database is

efined. These ideas and terms are used extensively in the following sections,

2 The proposed techniques are similar, but not identical, to transformation
taﬁhﬂzﬁuﬁs used in database and program conversion (see [Fry747], [Hou77],
[Nav76], [Su8l], [Shns2]).

6

2. FElementary Transformations

The basic modeling techniques of functional equivalence are elementary
transformations., They are essentially rules for mapping structures from one

T
i

(higher) level of abstraction to another (lower, more concrete) level. The
elementary transfor ons presented here were discovered as a natural
consequence of modeling the physical architectures of SPIRES ([Sta731), TOTAL

([Cin791), MRS ([Kor791), IDMS ([Cul811), IMS ([IBM81]), ADABAS ([Ges761),

o

[Bur81]), CREATABASE ([NDX811), and

o,

INQUIRE ([Inf79al), RAPID {[Tur79]), ALDS {
SYSTEM 2000 ([Cas&11). Ten different elementary transformations are known,
Nine are defined and illustrated in this paper; a tenth will be mentioned,

Although there is ample evidence that these are the most common

set. MWe shall address the completeness issue later in Section 4.

To define and illustrate the effects of elementary transformations and to
model physical database architectures graphically, diagrammatic notations will

be needed. As the nature of our work deals with Togical to physical mappings,

i

the problem arises as to which logical data model (E-R, hierarchical, s

)
...3
Y]
=
o
il
-

%
ok
)
o]
D
j¢H]
2
I
e
o1y
[}
(o
¢
[4¥]
o
g
-
b
o

network, relational, etc.) should be used, sin

diagrammatic notations, It turns out that the choice of logical data model is
not critical to our work. We will be dealing with entities {(record types),
attributes {fields), and relationships (linksets), concepts that are common to

11 mejor logical models {[Navi6l). We will use simple data structure, field

¢4
p—

definition, and illustration diagrams. If necessary, all of these diagrams
can be adjusted to fit the notation of a particular logical model,

Data structure diagrams {dsd) are used to show record types and their

relationships. Record types will be denoted by boxes and linksets by

7

arrows. Abstract record types and linksets will be indicated by dashed
outlines; concrete record types and linksets will have solid ones, Figure
5.dsd shows that an abstract record type W is materialized by the record types
F and G and linkset L. The direction of the arrow shows F is the parent of G,
Pointers to abstract records naturally arise in most derivations. These
pointers, however, must ultimately reference concrete records. 7o indicate
how pointer references are transformed, we rely on the orientation of record
types within a dsd. The orientation of F and G in Figure 5, for example,
shows that F dominates G. This will mean that a pointer to an abstract record
of type W will actually reference its corresponding concrete record of type
F. (For almost all transformations, there is a 1:1 correspondence between
abstract records and their dominant concrete records; the only known exception

is full transposition). The dominant concept is

E—

(to be discussed later
recursive; that is, if F records are abstract, a pointer to an F record will
reference its dominant concrete record, and so on. 1In this way, pointers to

stract records are mapped to concrete records.

o3}
or

Field definition diagrams (fdd) are used to define the fields of

-~

records. Figure 5.fdd shows that record type F consists of fields Fi-ee Fy

[

and P, ;. G
fe

onsists of fields ai e 5o Sm and Qé’

2
i ' Iy
i ! ! g

1 i ¥

F i ; i . ?
f ; P | z§ I oo i
£ { i H H j sl i
H 1 : S e e
; I ;
i L ! /j
@ ! e
; i G
{ ! [o 1o é [
] AN IR B g RN GE TR s B Bop = Uy S s ¥
. : - SO " | B E4
: H
i j
b e e o o o o 4

Tsdd fdd ic

Figure 5. Dilagrammatic Notations

As a general rule, whenever a linkset relates two or more record types,
some physical structure that implements the Tinkset is present in the parent
record type, the child record types, or both. Such structures {i.e.,
pointers, counters, etc.) are stored in fields that are specifically allocated
for this purpoase. In Figure 5,.fdd, record F has field ?L (called the parent
field of Tinkset L) which contains the parent record structures of linkset
L. Child record structures are stored in field CL (called the child field of
Tinkset L) in record G. Depending on L's implementation, ?L or Ci need not be
present. Both fields are present if L is a multilist. C is absent if L is
an inverted list. P, s absent if L is implemented only by parent pointers.
(RAPID, ALDS, and CREATABASE use such lTinksets,)

ITlustrations of record and linkset occurrences will be shown in in tance

diagrams (id). Figure 5.id shows an occurrence of linkset L which consists of

le F record and three G records. Although L could be implemented by one

ot
Wy
i s

of any number of linkset implementations (e.qg., pointer array, ring list,
etc.), in this particular Figure L is a multilist. Note that the pointer from

l

the r record to the Tirst G record is stored in field P, (of Fig. 5.fdd) and
Lot g J

L7
&

the pointer that Tinks one G record to the next is stored in field £i.
that instance diagrams are readable, records are not labeled with their
types. Instead the types can be inferred by their positions or contents
relative to the associated fdd or dsd.

and the generic Tinkset structures of the

(./)

With the aid of these notation
UM serving as a basis, nine of the ten known elementary transformations are
defined in the following paragraphs. The tenth transformation - horizontal

partitioning - will be dealt with in Section 5. Examples are given to

s

C

£
[t

In

te the utility of each transformation. It should be kept in mind,

however, that these examples are not their only possible uses,

Augmentation (of metadata). Metadata can be added to an abstract

record. 1t can be a delete byte, a delete bit, or a record type identifier.

1t may be stored in a separate field or added to an existing field. In any

case, the metadata must be well-defined and have an obvious value, A metadata
field is given a name so that it may be referenced later,
Figure 6 shows the data structure diagram and field definitions of an

abstract record. Figure 7 shows the result of augmenting metadata field M to

o

this record. RAPID, INQUIRE, ADABAS, and SYSTEM 2000 use augmentation.

ABSTRACT
H
KBSTRACT [B ro i -
| 1 : a | L R A
ded Fad id

L e wm e e e owe e am

e,
i

oot
[

fncoding. Abstract records or selected fields thereof can be encoded.
The motivation for encoding might be for data compression - to reduce file
storage requirements - or data encryption - to protect confidential
information. Common data compression algorithms include the elimination of
trailing blanks and leading zeros, storing numeric character strings as binary
integers, digraph encoding schemes (where commonly occurring character pairs
are encoded into single bytes ([Wel72])), and Huffman encoding ([HufS2]).
Well-known encryption algorithms are block ciphers ([Sha77]) and the NBS data
encryption standard ([Nat77]).

Figure 8 suggests the result of encoding the abstract record of Figure
6. ADABAS, IDMS, INGRES, and SHRINK/2 ([Inf78]) use encoding. All four

employ compression algorithms; SHRINK/Z additionally supports data encryption,

et
ot

Extraction. Indexing a field of an abstract record is an example of
extraction. The general idea is to extract the set of all distinct data
values that appear in specified fields of abstract records of one or more
given tyge%.3 Normally, one field per record type is extracted for each
application of the transformation. An index record type is created in the
process, where each extracted data value is stored in a distinct index
record. FEach index record is related to all abstract records that possess its
data value. The index record type is connected to each abstract record type
by a separate linkset. Figure 9 shows the result of extracting field F; from
the abstract record of Figure 6. As a general rule, index record types are
not dominant.

There are two known variations of extraction. Figure G illustrates

extraction with duplication where the extracted field F; appears in both the

INDEX; and CONCRETE record types. ADABAS, MRS, SYSTEM 2000, and INQUIRE use

extraction with duplication to create indices on data fields.

oo “ T T TR
' : CONCRETE - “mml ____________ R e
! : CORERETE 5 ! 5 N ' R wvm{’{ /‘
i L P i N T A T ‘Lj i L i
¢ l m
; : .
: ; ~.
i H § I5Y?
i ; N
| . ' ¢
i DI | v i
! |
5 i
*; f}i:&
Fi Ol
3 Compound fields may also be extracted. A compound field is an ordered
2

n
sequence of two or more elementary fields.

"3
Z

The other variation is extraction without duplication, i.e., the

extracted field does not appear in the CONCRETE record type. Figure 10

illustrates this transformation. Extraction without duplication is primarily

used Lo create dictionaries pather than indices. A dictionary for field ?é i3

a texicon of data values that define the domain of Fy; there are no pointers
or linkages which connect a data value of the dictionary to all of its
occurrences in abstract records. (In contrast, an index has such linkages).
Note that linkset L in Fig. 10.id is implemented only by parent pointers.
CREATABASE, ALDS, and RAPID use extraction without duplication to create

dictionaries on data fields.

CONCRETE

Figure 10

.

Collect. The DBTG concept of a singular set, which links together all
records of a given type, is an example of the collect transformation. The
general idea is to collect all instances of one or more abstract record types
together onto a single linkset occurrence. Figure 11 shows the result of
applying the collect transform to the abstract record of Figure 6, Linkset L
is a multilist (with precisely one occurrence) in Figure 11.,id, Note that the
parent record structure of L is maintained as part of the metadata of a
DBMS. (This metadata is indicated by "*" in Figure 11). INQUIRE, DMS-1100,

and SYSTEM 2000 use this transformation.

14

Segmentation. Abstract records can be partitioned along one or more

field boundaries to produce two or more subrecords. One subrecord is

designated as the primary (or dominant) record, the rest are secondary
ad i ‘y

records. A linkset connects the primary record type to each secondary record
type.

Segmentation can occur with or without duplication of data fields.
Figure 12 shows the segmentation of fields Fy ... Fy from Fy.q <o Fp of the
abstract record of Figure 6. No fields are duplicated and Tinkset L is a

singular pointer (i.e., a pointer array with precisely one pointer) with

oy
P
e+]
-
[N

arent pointers. The same segmentation occurs in Figure 13, except that
p

F. is duplicated. RAPID and IMS use segmentation with duplication; ALDS and

[

ADABAS use segmentation without duplication.

[{ {,...£
H } 1 1 k
y
SECONDARY CONCRETE ‘5 A
) 1
R,
L ¥ G ; { culf
K n L k1 I
fds
n without Duplication.
H
i
e
i i
T It P : § f
H ! i © L. 1 ¥
i

SECONDARY (¢

§
L x I "
; i ket 1 n i

Two instances of segmentation without duplication are so well known or

o
e

occur so frequently that they are given special names. Full transposition

segments each field from all other fields. That is, if there are n fields in
an abstract record type then a full transposition Q?@éuség rnorecord types,
each containing precisely one field (see Fig. 14). Because all fields are
treated identically, the resulting record types are not distinguished as being
either 'primary' or ‘secondary’. Thus, all may be considered as dominant.
(That is, a pointer to an abstract record can serve as a pointer to any of its
transposed subrecords). Note that linkset L of Figure 1l4.dsd, which
interconnects the n record types, is drawn in a way which does not require the
designation of ‘'parent' and ‘child'. Further information on transposed files

can be found in ([Mar83]). RAPID and ALDS use full transposition.

o

Fieure 1AL i1l ransposition Truan: for

Eh

16

The address converter transformation treats all fields of an abstract

record as an indivisible unit of data and segments it from the abstract
record, What results is an ADDRESS CONVERTER record and a CONCRETE record
connected by linkset L (see Fig. 15). The ADDRESS CONVERTER record contains
only the field P, ; the CONCRETE record contains all the fields of the abstract
record plus field C. (Normally L is a singular pointer with parent pointers
as shown in Fig, 15.id, but there are variationsj).

As we shall see later in Section 3, it is common for pointers to
reference abstract records. The gcal of the address converter transformation
is to be able to alter the storage location of a CONCRETE record without
having to update pointers to its corresponding abstract record. This 1is
accomplished by fixing the storage location of the ADDRESS_CONVERTER record
and updating the Pi pointer each time its CONCRETE record moves. ADABAS,

TNGRES, and DMS-1100 utilize the address converter transformation,

ADDRESS CONVERTER
T
o

b
oL

CONCRETE \\\ \

CONCRETE é

Figure 15. Address Converter Transformation

Division. Division is the partitioning of an abstract record or just
selected fields into two or more segments. Unlike segmentation, partitioning
is done without respect to field boundaries, A record or field i< usually
divided into fixed length segments [e.g., the first hundred bytes define

segment 1, the next hundred bytes are segment 7, and so on). DNivision is

1
:

identical to segmentation otherwise.

Division may occur with or without duplication of fields. Figure 16
shows the result of applying division without duplication to the abstract

record of Figure 6, Figure 17 shows the division of the same abstract record

e

with the duplication of field F, in each segment, (Note that Fooae ?ﬁ

1
denotes a segment of the string of fields Fo ees Pl As additional examples,
Figures 3 and 4 show how SYSTEM 2000 and MRS divide the inverted list field of
the abstract index record of Figure 1. Figure 2 shows how IMS and RAPID

divide the inverted list field into segments containing an individual pointer

and duplicate the data value field in each segment,

ABSTRACT

H
i j PRIMARY CONCRETH
; H i % i i
, PRIMARY CONCRETE ! [; p P - i
} ; |] 1 LT !
i i /
! ONDARY CONCR -
I §
- oo i { - -
| i 1 4 ; 1
H H
i
i 1
= i
dsd fdd id
fgur Division without Duplicati
T
i PRIMARY CONCRETE
{ ; | |
L PRIMARY CONCRETE ‘ FooliE, L o . £
L ; 1 2 7 L j 2 0
i i
i
i 8 |
! e H
! i
| ; 1 SECONDARY CONCRETE
H i 1 H
; ;]] . . . P , . _
i : H w .o w 4 [P S H i3 £
H) iy g M ’(;"**, i -y g i i }.,.‘! ;}:‘,).‘f(
I] | [2 nojoL Loy 1 n
} H
! { /
: i £
e =
dsd de id

Actualization. Most DBMSs have some facility to relate ltogical record

it

-
-
-

types. Dy 00 allows sets to be defined; ADABAS allows couplings. The
materialization of a logical relationship as one or more linksets is called
actualization. (That is, actualization is the means by which logical

relationships are mapped to physical structures). Figure 18 illustrates a

w

relationship between logical record types F and G that is actualized by a
pointer array linkset,

Actualization can be with or without field duplication. Normally it is
without, ADABAS, SYSTEM 2000, and DMS-1100 use actualization without
duplication., With duplication, selected fields of a parent record type can be

copied into its child record types and vice versa. Depending on the

cardinality of the parent-child relationship (i.e., 1:1, 1:N, and M:N) and the

cardinality of the fields themselves (i.e., scalar or repeating fields), the

fields that are copied may contain single data values or they may have a

variable number of values, IMS and TOTAL use actualization with dug%éiazéaa*Q

LOGICAL F

CONCRFTE ¥

v}

i
i
i COR
'
i
i

o e 7
A

id

pigure 18. Actualization of Logical Relationships

4 1t is worth noting that the idea of actualization was considered some time
ago in a rather different context. Mitoma, Berelian, and Irani ([Mit75]
[Ber77]) addressed a DBTG database design problem. Their approach was t
start with a binary data model of the database. By iteratively applying (what
we ~2a11Y artualization transfarmations . a DRTG schema was nroduced.

Layering, Physical database architectures can be muitilayered, where
each layer has well-defined notions of concrete records, file structures, and
secondary-storage data blocks., A data block and its address on one layer
correspond to an abstract record on the next lower layer (Fig. 19). IMS and
RAPID explicitly use layering.

Layering is occasionally implicit, UNIX, for example, provides the
abstract view of secondary storage as a sequential sequence of bytes. 0DBMSs
such as INGRES and MRS define sequences of 2048 or 512 bytes as "blocks" and
use these blocks to build unordered, B+ tree, and indexed-sequential file

i

structures. In reality, UNIX treats such "blocks" as fixed length records and

stores them on disk using the standard UNIX file structure ([Rit747).

PATA BLOCK

H
DATA BLOCK % LLOCK ADDRESS BLOCK COHNTENTS

[
<

Null. Abstract records are normally subjected to one or more
transformations before their maiterialization has been specified.
Occasionally, the application of these transformations will occur only under
certain well-defined conditions, If these conditions are not met, the
abstract record is treated as a concrete record. The transform used to model
these situations is the "null” transformation (Fig. 20). Models of the

hysical structures of SYSTEM 2000 and INQUIRE utilize the null transform.
pny

ABSTRACT

CONCRETE

CONCRETE

H

i

i

i N fooe £
g | ;
4

!

Figure 28, Null Trans{ormation.

It is believed that these nine transformations are sufficient to derive

ormations may exist. However, this question should
be resolved satisfactorily by the examination of the underlying structures of
other DBMSs.

In the following section, we will outiine a general methodology for

modeling a database management system using these transformations.

[
o

3. Modeling Methodalog

The approach to model the physical structures of a DBMS begins with a data
structure diagram {dsd} which captures the different kinds of logical
relationships that might exist between logical record types. For example,
relationships between logical record types in SYSTEM 2000 are strictly
hierarchical; the starting dsd for SYSTEM 2000 would be a hierarchy of record
types. (Note that as a general rule, starting dsds are not unigque. See
Appendices 1 and III for examples). OMS-1100 and ADABAS support
nonhierarchical relationships. A network of record types would be used here,
Relational databases, if cast into a dsd model, would also begin with a network
of logical record types. Some file management systems, such as RAPID and ALDS,
do not explicitly support relationships between record types. In these cases,
the starting dsd would be a single logical type,

The next step is Lo actuaiize all logical relationsnhips. This introduces
parent and child fields to the record types that are related by linksets, To
distinguisn logical records from those that contain parent and child fields, we

will call records of the latter type as abstract logical records. B8
Ji

actualizing all logical relationships, it should be possible to define a single
generic” abstract logical type which embodies the different abstract logical

record formats which could be encountered. (Examples of which can he found in

1.

e

the derivations of ADABAS and SYSTEM 2000 in Appendices ! and
Tnere are some DBMSs that actualize logical relationships solely by join

operations. As a consequence, no parent and child fields are introduced by

actualization. In such cases, it is simpler to skip the above-mentioned steps

and begin with a single logical record type. {(We do this in the derivations of

record type) has been determined, the derivation proceeds in well defined
steps, where one or more elementary transformations may constitute a single
step, A step is normally identified with all ir@ﬂﬁfﬁ?mazéens that are applied
to a single record type. The sequence of transformations that comprise a
derivation follows an intuitively evident course where abstract records are
progressively made more and more concrete, This progression can be seen in any
of the derivations presented in this paper.

The result of applying elementary transformations to logical record types
is a set of concrete record types and their linkset interconnections. Follow-
ing the idea of decomposition ([Bat811), the implementation of the physical
database is known when the implementation of each linkset and concrete record
type is known. Linkset implementations are specified whenever a linkset is
introduced in a derivation. As for the storage structures of concrete records,
a derivation terminates with a declaration of what file structures are used to
store the instances of each concrete record type., It is here that blocking
factors, primary keys, overflow methods, file placement, etc. are given,

One final note concerns the representation of logical records. We will

coliection of values,

]
ey

find it convenient to view a logical record simply a
In reality, it is a string of bytes which defines the DBMS's input/output

representation of these values. This might involve the use of ASCII or EBCD

pord

C
codes; it might also involve the use of special data structures (e.g., pointers
or count bytes) to separate the contents of repeating or variable length fields
(see [Max73]). The actual encoding that a DBMS uses to input and output its

records is irrelevant to our derivations. That is, the physical structures of

of gical records. For

[e]

a DBMS are not dependent on the input/output encodin

[S]
O

this reason, we shall ignore such encodings.
In tne following section and in the Appendices, we apply this methodology

to model the physical structures of INQUIRE, ADABAS, SYSTEM 2000, and INGRES.

[
fadt

4. The Physical Architecture of INQUIRE

INQUIRE is a product of Infodata Systems Inc. Over 300 installations in
North America and Eurcpe are using it. INQUIRE creates a distinct physical
database for each logical record type defined by a user. Interconnections

etween logical record types are implicit; they are realized by join

C}“

operations rather than by physical structures. The underlying structures used
by INQUIRE, therefore, can be understood by examining how records of a single
logical type are stored,

The generic LOGICAL record type supported by INQUIRE i3 shown in

py
o

W
g
%
{441

ot
s

. It consists of n fields, ?1 oo ?n, which may be elementary or

compound. The value of n is user definable. An elementary or compound field
may be scalar or repeating. A scalar field always contains a single data
value (possibly null), A repeating field contains zero or more data values,
Data values can have fixed or variable tengths. In general, LOGICAL records
have variable lengths.

LOGICAL record types are the record types that are defined at the schema

level; LOGICAL records are the records that are processed by INQUIRE users,

Legical Record of 1N

The concrete record types of INOQUIRE are derived in the following way.

First, INOUIRL augments a delete flag DF to every LOGICAL record. This flag
is used to mark deleted LOGICAL records, HNext, INGQUIRE allows scalar and
repeating fields to be indexed. Field F. is indexed by extracting it from
LOGICAL records. An R%:T%ACYMEEGEXE record type is produced in the process

(Fig. 12). {The notat

i

on ()e.. in Figure 12.dsd means that an extraction of
different fields may occur zero or more times. For each data field that is

extracted {i.e., indexed), there is a child field in the ABSTRACT LOGICAL

type. The child fields Cy. , Cp. 5 -.e in Figure 12.fdd are the result of

R ip
J1 37
extracting fields Fiig Fi s eeo). A1 fields are indexed in this manner,
o o

I
f
i |
; . B = 3 - |
= , x| & oy 19T by ek
I ! H i
| 1o - L
! A
% \
I \ j
{ :‘“ié i 7
s 4,
; i 4
i e | | &
i
;
L

dad bdd id

Figare 12, Extraction of LOCICAL Kecords

{inkset 1., which connects ARSTRACT E%DEﬁé to ABSTRACT LOGICAL, s an M:N

3 4
e -

multilist with count fields., Records are linked in descending (physical)

address order. A conventional (or 1:N) multilist, as defined by the UM and

elsewhere, links a parent record to its child records by a linear list. Each

child record is connected to at most one parent record. An M:N multilist, in

[
L

contrast, allows child records to have more than one parent record.” This is
accomplished by assigning a distinct fixed-length binary value, called a
binkey, to each multilist occurrence. A binkey is stored in the parent record
and is paired to each pointer of its list so that pointers of one multilist
can be distinguished from those of another. In Figure 12,id, the bink ey for
the multilist occurrence with x as its parent record is 0 and for the one with
parent record y it is 5.5 MIN muTtilists arise because an indexed field may
be repeating {i.e., an indexed field may contain several distinct data
vai&eg).?

INQUIRE requires indexed fields to be designated as being either prefix
or simple, The distinction is evident to a user at the query language level
where an equality predicate on a prefix field must be expressed as "field name
= value", whereas on a simple field it is merely “value",

Consider, for example, the retrieval of all records of a LOGICAL file
that have the data value 'TOP SECRET' in the SECURITY field., If SECURITY is
prefix, the INQUIRE operation 'FIND SECURITY=TOP SECRET' would accompiish the
retrieval. If SECURITY is simple, 'FIND TOP SECRET' would be the operation.

The distinction between prefix and simple fields is also seen in the

r'r*

physical structures of INQUIRE., The ABSTRACT _INDEX records for field ?j are

5 5o that there is no ambiguity about the distinction between 1:N and M:H
Tinksets, it is well known that CODASYL sets are 1:N, If M:N sets were
supported, a member record could participate in multiple occurrences of the
same sef al any one time,

sufficient to say

6 1t i envisioned with a §€ﬂ€?é3§2€é UM that it will b

g e
thet a linkset is an M:N multilist, M:N poi tcr array, etc., without resorting
to a detailed description of its reaii ation, as we have done here.

/ Note that in field Py there is a subfield containing the number of

o

J
records on a list. This field was not shown in Figure [2.1d, but if it were,
e e s 5 records would contain the val e
both ABSTRACT_INDExj fecords would contain the value 2

26

made concrete by augmenting the characteristic string “ij“ {i.e., the field
name followed by an equals) to each data value. This is done only to prefix

fields (Fig. I3). No augmentation is performed on simple fields (Fig. 14).

ABSTRACT INDEX,

o T e 1
i H
i ! PREFIX_INDEX,
i PREFIX_INDEX : ur, i =
s 3 H R T F_o=x

H i \ 4 i 4 ©
i , zj
. !

;

£dd 1d

ABSTRA

Figure I3,

CT INDEX, Records.
- i

STMPLE_INDEX,

13

z} P . o

dad fdd id

Again consider the SECURITY field example. Suppose two possible values
of SECURITY are 'TOP SECRET' and 'CONFIDENTIAL'. If SECURITY is prefix, the
data value strings 'SECURITY=TOP SECRET' and 'SECURITY=CONFIDENTIAL' would be

stored in distinct PREFIX INDEX records. If SECURITY is simpie, the strings

ot

INQUIRE forces concrete records of type SIMPLE INDEX and PREFIX THDEX to

share an identical format and fixed length, This is done so that all index
records can be organized by a single file structure rather than having a

separate file structure for each indexed field (as is done in SYSTEM 2000,

1S, and MRS, among others).

An ABSTRACT LOGICAL record of Figure 12 is materialized by collectively

segmenting all C; fields from the data fields Fi -os F, (see Fig. 15). The

i
13 ®
’}

delete flag DF is duplicated in both segments, This segmentation produces the

%SSTR%CYW§§ARCH and AES?RACTMQA?A record types. Linkset D, which connects

ABSTRACT SEARCH to ﬁBS?RAC{mﬂé?§S is a singular Q@iﬂté? with parent

pointers. (A singular pointer is a pointer array that contains precisely one

pointer). Figure I5.id shows the result of this segmentation on the ABSTRACT

LOGICAL records of Figure 12.id.

pointers from ABSTRACT INDEX records

/
ey /
H N e
i @ A_,.,j“‘ .
i X & A = £ ey
' T3 -
. DS
3
;
i
H
’ ; ,?
| o) : . 3 X,y
Do ABSTRACT DAY { A o P }A x ; Y
;) D n . ;
i !
i l
b e e e -
dsd fidd id

28

ABSTRACT SEARCH records are variable in length because each Cz. field
may contain a variable number of (binkey, pointer) pairs, one pair fi? each
distinct value in an indexed repeating field., Rather than storing and
maintaining variable length records, INQUIRE divides the collection of all

C fields into fixed length segments. The primary segment, which contains

g
]

the Pp field of ABSTRACT_SEARCH, is the SEARCH record type; all secondary
segments are instances of the SEARCH OVERFLOW record type (Fig. 16), Note
that the delete flag DF is duplicated in the primary and secondary segments.
SEARCH and SEARCH _OVERFLOW records are connected by Tinkset S which is a 1:N

multilist with parent pointers (Fig. 16.id). SEARCH OVERFLOW records are

linked in order of ascending physical addresses.
; i SEARCH
| ! T
; S1 i P P :
| | D : L ~~~~~~~~~ , - R
| / T
| i / e T .
i SEARCH OVERFLOL / T
o C — r“ﬁ*ﬁl“' !
P : UL B i< § | T
o SN DR SRS S S I] S —
i —
Tl id

\
(Sl

ol

The ABSTRACT DATA record of Figure 15 is materialized in two steps (see
Fig. 17). First, all of its instances are collected together on a single
list. Linkset R, which realizes the collection, is a 1:N multilist (with
precisely one occurrence). Records are linked in reverse chronological
order, Second, instances of ABSTRACT DATA are usually variable in length
because some fields are repeating, INQUIRE materializes an ABSTRACT DATA
record by dividing it into a primary segment and zero or more secondary
segmeﬂtsgg The primary segment (PRIMARY SEG) is coupled to zero or more
secondary segments (SECONDARY SEG) by linkset C, which is a 1:N doubly linked
multilist., SECONDARY SEG records are linked in ascending physical address
order., Note that linkset R collects together all instances of PRIMARY StG.

Figure 17.id shows two ABSTRACT DATA

—

ecords; one is in three segments (one

primary, two secondary), the other is in four segments.

o

P Z S—

jre

B3

8 Primary and secondary segments are variable in length., The length of a
primary segment is fixed at the time of record insertion; it equals the length
of the ABSTRACT DATA record {as it appeared initially to INQUIRE) plus some
extra space. {(The amount of extra space can be declared as a constant or a
function of the record size). As data values are added to repeating fields of
an ABSTRACT DATA record, its length may expand beyond the size of its primary
segment. IT is at this point when INQUIRE divides the ABSTRACT DATA record.

te

[#8]
C‘\

The purpose of linkset R is now clear. In order to retrieve all LOGICAL
records, linkset R must be traversed., For each PRIMARY SEG that is
encountered, all of its SECONDARY_SEG records are retrieved via linkset C.

L

e

Adjoining the PRIMARY_SEG and its SECONDARY SEG records materializes a LOGIC
record., In thnis way, INQUIRE realizes a scan of a LOGICAL file.

The concrete record types of INQUIRE are SIMPLE INDEX, PREFIX INDEX,
SEARCH, SEARCH OVERFLOW, PRIMARY_SEG, and SECONDARY SEG. SIMPLE INDEX and
PREFIX_INDEX records are organized by a single VSAM or ISAM file structure.
SEARCH and SEARCH OVERFLOW records are organized by separate BDAM or RSDS file
structures. All PRIMARY SEG and SECONDARY SEG records are organized by a
single BDAM or RSDS file siructure,g These four file structures are
respectively called the INDEX, SEARCH, SEARCH OVERFLOW, and the DATA files in
ITNQUIRE documention,

This ends the derivation of the physical architecture of INQUIRE., It is

worth noting that our model of INQUIRE is quite accurate; the concrete record
types that were derived can explain the presence and purpose of every pointe

and every byte of the stored records that are documented in the INQUIRE
manuals. A data structure diagram that summarizes the derivation is shown in
Figure I8. Source materials used in the derivation are [Inf79a,b] and [Des82],
ly, it is worth noting that INQUIRE, like most other DBMSs, has some
support files which were not considered in this derivation, In particular,
these are the DECODE, ACCOUNTING, and MACRO LIBRARY files, among others, These

files could have been included, in principle, without much difficulty. But

ey

since their presence is optional and they do not constitute the core o

INQUIRE's physical architecture, we omitted them for simplicity.
i , Y

© In the terminology of the UM, VSAM is a B+ tree, ISAM is an indexed-
sequential structure, BODAM is a one-level unordered file, and RSDS is a
multileveled unordered file,

LOGICAL

T et

o e s e s i oo
i
{

ABSTRACT SEARCH

PR it f

Ees)

! SEARCH

i
{
!
; !
%
|
i
{
[
!

OVERFLOW 5
.
| el e et | 1
; D ABSTRACT : |
e e e et e e e ;
| ! N
< o, H
Ji4 . i
H : I, ,
| i T . 5 |
i !)
| | | .
{ ; i
[¢ b
! i
‘ P L
i | SECONDARY SEC , i
i {
H 1 i
L L
H WSS S R T T TS .
’ I
! ; : !
, B o e v e i s vttt i o o o i e ot vt i v i i o i o e v B 1
{

PREFIX I?

NE

4
B+ tree
unordered
unardered
DCCUT T e unoardered
L. tvpes MiN omuiriliaz

il omudoiiise with

I PeN omuloilist

i donblv finked muloiliag

[N YT IR
I i TNOUTRE

Lad
g

5. Future Work and a Perupective on Functional fguivalence

Understanding the physical structures of a DBMS 1is a necessary
precondition to understand the DBMS's behavior and performance. But it is not
sufficient., Operations on these structures must aisé be considered and
performance models need to be developed, We will address each in turn

Modeling operations on physical databases will require the use of
abstract data types. This can be seen by noting that each step of a
functional equivalence derivation defines a new record type. Operations on
logical record types are realized by operations on abstract Togical types, and
these operations are in turn realized by operations on less-abstract type
and so on. The programming languages notion of a module - i.e., the idea of
encapsulating a record type with all operations that can be performed on it

2]) - embraces the idea of functional equivalence and provides

G
.w)
3%
(a9}
[aW)
f—

a natural way to model operations.

ads to a

i(}

Following this approach, we have also found that it 1«
comprehendible methodology for designing physical database architectures,
Although the value of abstract data types in database impiementations has long
been recognized ([Ham761, [Row79], [Bar811), the mechanism by which modular
design concepts are applied at the "internal® or physical level has not been

well understood. We feel that functional equivalence can i mprove and clarify

(Q

these methodslogies., Results on this topic and that of mod: 1ing operations in

general are presented in forthcoming works ([Wis83], [Bat841).
Performance and design packages for commercial NBMSs can be developed
once it is known how operations are mapped from the logical to the physical

Tevels. The development of these packages will require the integration of

erformance prediction techniques with the descriptive technigues of

LD

e

functional equivalence. Presently we feel that the integration process will
be straightforward. Tnis does not mean that optimization prodblems for
database design will be any easier to solve: it simply means that the result
of an optimization will be tailored to the peculiarities of a specific DBMS.,
For example, it is well known that papers on index selectio

optimization models that were not tied to any existing de

there is reason to beiieve that the results of index selection for an

kY

database may be different (albeit slightly) from that of an ADABAS or INQUIRE
database. Research on such topics should prove to be quite interesting.

The immediate usefulness of functional equivalence is seen in thre
ways. First, our work may be the start of a comprehensive reference to the
architectures of operational DBMSs. Database systems are being developed
today and will be developed many years from now. Accurate des criptions of the

architectures of commercially successful DBMSs should be quite useful to

)
-y

unctional equivalence derivations provide a
useful medium of communication., In just a few pages, the physical structures
of a DBMS can be conveyed with considerable detail and precision, Presently,
this is accomplished by reading cryptic (and often confusing) documentation

oftware manuals; all of which are quite time consuming.

£
)
[
D
o
o
o
(‘ i
[
M
(i i

we feel that knowledge of the physical architectures of well-known DRMSs
ultimately improves ones understanding of physical databases in general,

Presently, we are surveying the architectures of other DBMSs. We do so

to further demonstrate the power of functional equivalence, but also to

Lo

discover what simple files (e.g., multirecord type file structures, B+ tries

@
(o]

Tinksets {M:N multilists, record clustering) still need to be encorporated

into existing general models of physical databases. In addition, these

]

surveys will help uncover any remaining elementary transformations which have

L
i

not yet been noticed., It is believed all of the major transformations have
been discovered, but no theoretical result can be stated at this time to
support this claim,

Finally, we noted in Section 2 that a tenth transformation exists. It is

commonly referred to as horizontal partitioning ([Alsb757, [Cer837). The

pasic idea is to partition a file of records into two or more groups.
Differential files ([Sev76], [Agh82]), for example, partition records into two
groups: modified and unmodified. Distributed databases may support the
distribution of records of a single file at different sites. Unlike other

elementary transformations, no explicit physical structures (e.g., delete

s %

5

flags, pointers, etc.) are added to horizontally partitioned records to

interrelate their groups. However, metadata must be present (somewhere) in

D

DBMSs to make such relationships explicit. Thus there appear to be

tranformations that introduce structure at the "metadata” level, nol at the

i

abstract and concrete dafa record levels, Further research on horizontal

partitioning is necessary.

Z

N
(%)

6. Conclusions

Modeling the physical structures of a DBMS is a prerequisite to

understanding and optimizing database performance. Previously such modeling

has been difficult because some fundamental principles of physical database

St

design and implementation were not well understood. This has been clearl

evident to those researchers who have tried to use existing “general” models
of physical databases to model specific commercial DBMSs.

It has been shown that functional eguivalence provides the necessary
means to model the complex structures of well-known DBMSs in a simple,
concise, systematic, and comprehendible way. This is the primary contribution
of this paper. But we have also explained the relationship of functional
equivalence to abstract data types and its role in DBMS design methodologies

and in the development of performance packages for commercial DBMSs. We

believe functional equivalence is an important step toward tieing physical

database theory to practice.

. 1 gratefully acknowledge the encouragement, support, and

o

W

Acknowledgement

ideas 1 received from the following people: Ignacio Casas of the University of
Toronto: Jim Desper of Infodata Systems, Inc.; John McCarthy of Lawrence
Berkeley Laboratories; Alan Wolfson of Software AG; Paul Butterworth of

Relational Technology: and Tim Wise, Stan Su, Sham Navathe, and Jim Parkes o
e A 4 3 3

the University of Florida.

Lo
on

References

[Agh82]

[Als75]

[And76]

[Bar81]

[Rat82]

[Batg4]

[Ber77]

[Bur8l]

[Buts3d]

[Cas81]

He Aghiti and D.G. Severance, "A Practical Guide to the Design of
Differential Files for Recovery of On-Line Databases”, ACM Trans.
Database Syst. 7,4 (Dec., 1982), 540-565,

P.A. Alsberg, "Space and Time Savings Through Large Database
Compression and Dynamic Restructuring”, Proc. IEEE 63,8 (Aug. 1975),
1114-1122.

H.D. Anderson and P.B. Berra, "Minimum Cost Selection of Secondary
Indices for Formatted Files”, ACM Trans. Database Syst. (Mar. 1977),
68-90,

A.d. Baroody and D.J. DeWitt, "An Object-Oriented Approach to
Database System Implementation”, ACM Trans. Database Syst. 6.4 {(Dec.
1982), 576-601.

D.5. Batory and C.C. Gotlieb, "A Unifying Model of Physical
Databases", ACM Trans. Database Syst. 7,4 (Dec. 1982), 509-539.

D.S. Batory and T. Wise, "A Methodology for Modeling and Designing
the Internal Level of a Database Management System", to appear.

E. Berelian and K.B. Irani, "Evaluation and Optimization", Proc. VLDR
1977, H45-555,

R.A. Burnett, "A Self-Describing Data File Structure for Large Data
Sets", in Computer Science and Statistics: Proc. of the 13th
Symposium on the Interface, Springer-Verlag, New York, 1881, 359-362.

P. Butterworth, (Relational Technoloagy, Inc.), Technical Discussion,
1983,

I. Casas-Roposo, "Analytic Modeling of Ntabase Systems: The Design of
a SYSTEM 2000 Performance Predictor", M,Sc. Thesis, Dept. of Computer
Science, University of Toronto, 1981,

I. Casas-Roposo, Technical discussion, 1982,

J.Ve Carlis and S,T. March, "A Computer-Aided Data Rase Design
Methodology”, Auerbach Report on Design and Development, TR 23-01-11,
1

1981,

5. Ceri, M, Negri, and G. Pelagatti, "Horizontal Partitioning in
Database Design", Proc., ACM SIGMOD 1982, 128-136.

Cincom Systems, Inc., "TOTAL PNP-11 Programmers Reference Manual®,
Cincinnati, Chio, 1979, .

Cullinane Natabase Systems, Inc,, "IDMS System Overview", Westwood,
Massachusetts, 1981,

"
g

C.J. Date, An Introduction to Database Systems, 3rd edition, Addison-
W 1

J. Desper, &Eﬁfﬂdﬁta Systems, Inc.), Technical NDiscussion, 1983,
E. Fredkin, "Trie Memory", Comm. ACM 3 (1960}, 490-500.

J.P. Fry and D, Jeris, "Towards a Formulation of Data
ﬁearaanézat%o&“ﬁ 1974 ACM STGMOD Workshop on Data Description, Access

nd Control, 77-107.

Gesellshaft fur Mathematik und Datenverarbeitung, "ADABAS: Database
Systems Investigation Report, Vol. 2, Part 1", Istitute fur
Informationssysteme, Bonn, West Germany, 1976.

C. Ghezzi and M. Jazayeri, Programming Language Concepts, John Wiley
and Sons, Inc, HNew York, 1987,

M, Hammer., "Data Abstractions for Databases”, Proc., Conf. Data:
Abstractions, Definition, and Structure, SIGPLAN Notices 11 (Special
Issue), 1976, 58-59,

G.N. Held and M.R. Stonebraker, "Storage Structures and Access
Methods in the Relational Database Management System INGRES", Proc.
ACM Pacific 1975, 26-33,

8,C. Housel, "A Unified Approach to Program and Data Conversion’
Proc., VLDB 1977, 327-335.

D. Hsiao and F, Harary, "A Formal § nformation Retrieval
!

. tem for
from Files", Comm, ACM 13,2 (Feb.), 6

vst
970

NJQ

¥
in
; -73.

DA, %uffm3;z A Method for the Construction of Minimal Redundancy
Codes”, Proc. IRE 40 (Sept. 1 52), 1098-1101.

1BM, "IMS/VYS Version 1: Data Base Administration Guide”, San Jose,
California, 1981,

ormatics, Inc., “SHRINK/? Users Guide"™, Canoga Park, California,

infodata Systems, Inc., "INQUIRE Basic Training Course”, Pittsford,
New York, 1979.

Infodata Systems, Inc., "INQUIRE Database Desiqgn and Loading Manual”,
Pittsford, New York, 1979.

J.Z. Xornatowski, "The MRS User's Manual®, Computer Systems Research
iroup, Un ?v@fSX*y of Toronto, 1979.

. Kroenke, Database Processing, S.R.A. Inc., Chicago, 1977,

P

"Cryptology in Transition", ACM Comp. Surveys 11,4 (Dec.

B, Liskov, A, Sayder, R, Atkinson, and C. Schaffert, "Abstraction

Mechanisms in CLU", Comm, ACM 20,8 (Aug. 1977), %d?«J;6¢

5.8B. Navathe and J.P. Fry, "Rests ructuring for Large Databases: Three
Levels of Abstraction”, ACM Trans. Database Syst. 1,2 (June 1976),
138-158,

National Bureau of Standards, Federal Information Processing
Standards, Publication 46, 1977,

NDX Retrieval Systems, Inc., "CREATABASE Performance Manual®,
Houston, Texas, 1981,

S.T. March, D.G. Severance, and M, Wilens, "Frame Memory: A Storage
Architecture to Support Rapid Design and Implementation of Efficient
Databases®, ACM Trans. Database Syst, 6,3 (Sept. 1981), 441-463,

5.T. March, "Techniques for Structuring Database Records", to appea
in ACM Computing Surveys, March 1983.

W.L. Maxwell and D.G. Severance, “"Comparison of Alternatives in an
Information System", Proc. Wharton Conf. Research on Computers in

Organizations, University of Pennsylvania, Philadelphia, (Oct. 197 3y,
-16.

‘*J

Irani, "Automatic Data Base Schema Nesign and

MoF. Mitoma and ¥.R. s
C. B O1975, 786-371.

Ire
Optimization", Proc. VLI

ﬁif 2

L A, Rowe and K.A. Shoens, "Data Abst ractions, View, and Updates in
RIGEL", Proc. ACM SIGMOD 1979, 71-81,

D.M. Ritchie and F. Thompson, “The UNIX Time-Sharing System", Comm.
ACM 17,7 (July 1974), 365-3

i,
75,

P

M.bE. Senko, E.B, Altman, M.M. Astranhan, P,L. Fehder, "Data Structures
cessing in %ataha%@ Systems Sys

%
(B4 Syst. Jour. 12,1 (1973). 30-

D.G. Severance, "Some Generalized Modeling Structures for use in
Design of File Organizations®, Ph.D. Thesis, University of Michi igan,
Ann Arbor, Michigan, 1972.

.G, Sévgraﬁkv and G.M. Lohman, "Differential Files: Their
Application to the %aénteﬁaﬂie of Large Databases", ACM Trans.
Database Syst. (Sept. 1976), ?256-767.

B. Shneiderman and G. Tﬁomass “An Architecture for Automatic
Relational Database System Conversion®, ACM Trans. Database Syst, 7,7
(June 1982), 235-257,

Software AG of North America, Inc., "ADABAS: Introduction”, Reston,
Virginia, 1977,

(o8]
WO

Software AG of North America, Inc,, "ADABAS: CEffective Data Base
Management for the Corporate Environment”, Reston, Virginia, 1980.
Stanford University, "Design of SPIRES: VYol. | and 11", Center for

;ﬁfarmailﬁﬁ Processing, Stanford University, 1973.

Statistics "RAPID Internals Manual', Ottawa, Ontario,

1981,

Canada,

“The Nesign and
tabase Syst. 1,3 (Sept.

and P, Kre
ACM Trans,

M.R. Stonebraker, b. Hong,
Implementation of INGRESY,
1976), 189-222.

205,
fa

S YW, Su, H, Lam, D.H. Lo, "Transformation of Data Traversals and
Operations in Application Programs to Account

Databases”, ACM Trans, Database Syst, 6,2 (June 1981), 255-294.

T.J. Teorey and J.P. Fry, Design of Database Structures, Prentice-

Hall, Englewood Cliffs, New Jersey, 1987,
0.C. Tsichritzis and F. Lochovsky, Data Base Management Systems

Academic Press, New York, 1977.

ND.C. Tsichritzis and A. Klug (eds.}, "The ANSI/X3/SPARC DBMS
Framework Repo
Information Syst,

3, 1978, 173-191,

o
v
[d
b
(@]
jo7)
el

R Hamiﬁﬁ@ o, Co

Turner, . Co G “& DAMS for Large Stati
1979, 3

.
L
3

S

L
9.

M, Wells, "File Compression using yérééb%e Length Encodings®
Computer J. 15,4 (1972), 308-313.

T. Wise, M.Sc. Thesis, Dept. of Computer and Information Sciences
University of Florida, to appear.

software AG of North America, Inc.),
17

or Query
), 223-241,

. and K, Youseffi,
Processing”, ACM Trans,

<,
L =

Uat&ﬁ&s%

Yao, "An Attribute Based Model
s

Analy s‘, ACM Trans, Database Syst.

o
<

Canada,

for Semantic Changes of

rt of the Study Group on Database Management Systems”,

Appendix [. ADABAS

ADAI

o

AS is a product of Software AG, Inc. A typical ADABAS database is
populated with one or more logical record types which may be related either
explicitly by couplings or implicitly by join operations. A representative

ADABAS data structure diagram is shown in Figure Al. Couplings are

V’“\

represented by lines that connect two different logical record types. ADABAS
does not allow for a record type to be coupled with itself, or for more than
one coupling to exist between two record types at any one ﬁ?meél

The generic LOGICAL record type supported by ADABAS consists of n fields,

F_, which are elementary or compound. An elementary or compound field

}. & & ® ns
may be scalar or repeating. Data values can have variable lengths, Generally,

LOGICAL records are variable in length,

I00TeAT T AT CHTT AT
LOGICAL LOGCICAL LOCT AL
5 i

LOGICAL
dsd T
P At A D
Figure Al, A Representative d

] &

1 Couplings are used in only 1-2 percent of ADABAS databases because their
u*iéé*v is limited to processing specialized queries and they degrade

erformance significantly for update-intensive files ([Ges76]1). Couplings are
su@p@rtea in the most recent release of ADABAS, but their use is not
recommended. Join operations are promoted instead.

41

When record types are coupled, a o«

made on the basis that they share a common value in designa

fields may be repeating, couplings can b
J i)

pling.

LQGICA;j

The concrete record types o

tach coupling is actualized by a pair of

parent of one linkset and both

pointers of each array are maintained in

A7 shows the actualiz
Two L reco

fization of the

P
bol 4
o

differs from
have

iﬁf Dtﬂ%s
, but eqaév&éeﬁig d

ling between

_LOGICAL record types and ¢

more than one parent rec

onnection between individual records is

ted fields. Because

A

illustrates an M:

« B

e M:N, Figqure AZ.id N

ARSTRACT LOGI CAL,

iﬁ SN Fﬁ e

Tl

are derived in the following way.

the

type is

253 The

Pinksets: esach record

are M:N pointer arrays.

order of ascending addresse Figur

1
A%

™

)

=

LOGICAL: and LOGICAL,
)

rd types and two linksets are produced

database 1in Figure Al would produce a

eight Ksets

&

12N in

{\jﬁ

& conventional pointer array
or

a
" oarray with parent
rewsrd type arbitrarily

This results in

a

2

The generic forn of an ARSTRACT LOGICAL record is shown in Fiqure A%, An
ABLITRACT LOGICAL record is the parent of m linksels, Lz ess Lm’ which were
produced by the actualizaetion of m couplings., A record consists of data fields

Fi cen ?ﬁ and m parent fields ?LE soe ?Lm'

%

ABSTRACT_LOGICAL records are materialized in two steps (see Fig. A4).

First, fields P «ae Py are individually segmented from the data fields F.
L} i i

m+l record types result: an ABSTRACT DATA type and an ABSTRACT _

=3
%]
[l
&
<
[
I

ATOR, type for each linkset Lyo Linkset Ays which connects ABSTRACT _
ASSOCIATOR, to ABSTRACT DATA, is a singular pointer {i.e., a pointer array that
contains precisely one pointer).

second, ADABAS allows scalar and repeating fields to be indexed, Field F.

3
w4

is indexed by extracting it from ABSTRACT DATA. This forms an ABSTRQC?Mﬁﬁﬁgij

i

record, Linksst Eja which connects A%S?R%C{mlﬂﬁixi to éSiTRAC?mQQ?A, is an M

inverted list (i.e.,

£

n M:N pointer array). The pointers of each inverted list

are maintained in order of ascending addresses. All fields are indexed in this

=

manner.

Note that if a LOGICAL record type was uncoupled and had no indexed
£ ¥

fields, it would be mapped directly to an ABSTRACT DATA record via the null

transform.

A
o

ABSTRACT DATA

i Te another
ABETRACT
LOCTCAL
file
i fdd 14
fuure A .

and Ixiract ion of ABSTRAQT i

Pointers to A%ST%AQ?“SQTA records are known as internal seguence numbers

(ISNs). A distinct ISN is assigned to each LOGICAL data record and is used to

Tocate the record., Its role is further amplified later. Internal file numbers

and internal field numbers, which we will collectively call IFNs, are used
¥

internally by ADABAS to reference LOGICAL record types and their constituent

F4 a1

tds. Field numbers are distinguishable from file numbers,

-
4y

=

An ABSTRACT_INDEX; record is materialized in three steps (see Fig, A5),
First, a metadata field containing the IFN of field F, is augmented. Second,
the value in field F; is encoded by an ADABAS compression techniqu (see

[Ges76] for more details). The encoded field is labeled F! in Figure A5.fdd.

o

f

Third, the record may be divided into segments with the IFN and ?é fields
duplicated in each segment. (The conditions under which division occurs will
be explained shortly). Figure A5.id shows how an QSSTQAiijﬁﬁgxé record with
an inverted list of 100 pointers might be divided. Because of this

B

construction, no distinction is made between the primary record (1.e., the

44

o

first segment) and secondary records {i.e., the remaining segments).

}
: | i ! !
. | . ’
TNDEX, g SEI R {5 |4 | A § é; |
. 1 | b | 1 3 | | §
j{
{ 1..20 21,73 21
:
wwwwwwwwwwwwwww 3
dsd fdd id

Figure AS5. Augmentation, Incoding, and Nivision of ABRSTRACT TTGE\,E}QJ Kecords.,

An ABSTRACT_ASSOCIATUR, record is materialized in a similar manner (see

s
e

W
L

A6). First, a metadata field containing the IFN of the child file of

Tinkset Lk is augmented. Second, the record may be divided into segments with

the IFN and ?ﬁ fields duplicated in each segment. Fiqgure A5,id shows how an
b4

ABSTRACT_ASSOCIATOR, record with a pointer array of 100 pointers might be

divided.

ABSTRACT ASS0CIAT (Pl

] ASSOCTATOR,
®
; -
' §
ASSOCTATOR,] (83 IR 0 S k k K
k A de T |
R i i H
] TTTF
. P 1...20 ¥ 21,73 # 7
H
dsd fdc id

Figure Af6. Augmentation and Division of ABSTRACT é}{TIA’E‘{’}i{k Records.

4 If a distinction were made or if a linkset were to be introduced, the
structure Caﬂﬂesf%ﬁg the primary to the secondary records would be an
relational linkset with Vink key (IFN, F!), A relational linkset does not
expiicitly connect parent to child regarés by pointers, but rather the
connection is implied by the >Nsr7ﬁg of a common key called a link key,
Relational databases normally rely on relational linksets for connections
between relations,

45

ADABAS forces concrete records of type INDEX, and AS Sﬁﬁig?‘*k Lo have a
similar format so that they can be organized by a single file structure rather
than having a separate file structure for each indexed ?ia%d and file
coupling. The file structure is a B+ trie, which is similar to B+ trees in
that file growth is accommodated by node s;%étzénggﬁ The division of an
ABSTRACT_INDEX; or ABSTRACT ASSOCIATOR, record is a result of node splitting.
When a node splits, two nodes are created; both are approximately half full,
Although ENQEX; and ASSSCIATQRK records are variable length, loading both nodes
equally is not a difficult task if the records are much smaller than the size
of a node. When records are large, howaver, evenly loading both nodes is not
possible without dividing one record into two and storing them in different
nodes. Figure A7 illustrates the splitting of a node and the division of

record R3 into R3' and R3Y,

'M‘"m’”’“"""‘""“m”‘”‘j e ——
N LT T |
B | RiER2 |
(. Lo I L |
e S S
node before split nodes afrer sniin

]
i

Thiustration of Division of 1

_
7 A B+ trie is a hybridization of the Trie {[Fre60], [TeocB82]) and B+ tree,
The B+ trie used in the most recent release of ADABAS has from one to six
levels. The top levels partition INDEX and ASSOCIATOR records on their IFN
and ?é or ?ﬁk values. The second lowest level partitions records on Fé or Py
L K

e
H
i

SN values, The bottom level contains the INDEX and ASSOCIATOR records,

et

and

An ABSTRACT DATA record of Figure A4 is materialized in two steps. First,
all data fields are encoded by en ADABAS compression technique. Second, the
address converter traésfsrmatéoa is applied to the a@mgfégge@ fields. What
results is an ADDRESS CONVERTER record and a COMPRESSED DATA record connected
by linkset AC. An ADDRESS CONVERTER record has a fixed length and contains
only the field Pprs a COMPRESSED DATA record has a variable length and contains
compressed data fields Fy ... Fy and field Cpp. Linkset AC is materialized by
a pointer to the block that contains the associated COMPRESSED DATA record, and
the COMPRESSED DATA record has a pointer to its ADDRESS CONVERTER record (Fig.

A8). This is a 1:1 cellular serial linkset with parent pointers,

wntat fon and Pacoding of ABSTRACT DATA Records.

Mote that ADDRESS CONVERTER records maintain the 1:1 correspondence

hetween [SNs and the storage Tocations of COMPRESSED DATA records. Because of
this correspondence, a COMPRESSED DATA record can be relocated in secondary

storage without altering the inverted 1ists and pointer arrays of INDEX and

ASSOCIATOR records that reference it, (The pointers of these lists and arrays

are ISNs). Relocations occur when there is no room in a block to accommodate

I

an expanded COMPRESSED DATA record. Expansions happen when a LOGICAL record is
modified, such as adding a new value to a repeating field.

The concrete record types of ADABAS are EN)?X ASSSCE%TS%kg ADDRESS
CONVERTER, and COMPRESSED DATA. Every LOGICAL file is materialized by a

collection of these records and each collection is organized by a separate

77

group of file structures. For each LOGICAL file, all occurrences of the INDEX.

d

~~d
[
@

and ASSOCIATORy record types are organized by a single B+ trie (see [Kro

[Ges76], and footnote 5 of this Appendix). ADDRESS CONVERTER and COMPRESSED

[R
o

DATA records are organized by separate unordered files. An ISN is the relative
tocation key of an ADDRESS CONVERTER record.

ADABAS places all B+ tries and ADDRESS CONVERTER files that belong to a
single database in an area of secondary storage called the “associator”. (This
is not to be confused with the ASSOCIATOR, record types). The COMPRESSED DATA
files of the database are placed in another area called “"data storage".
Separate “associator” and “"data storace” areas exist for different databases.

A data structure diagram that summarizes the derivation is shown in Figure

-
H
E-

A9. Source materials used in the derivation are [Ges767, [Sof77], [Kro77

[Sof80}, and [Wol827.

48

Lf;

J

3 s i i
i

? |

i !

| z { ADDRESS CONV

| i AC
!

! i

! i
i

9

)

B e o o S s e o o

Appendix 11, INGRES

INGRES was the first major DBMS that was based on the relational model

([Hel757, [Sto76]). 1t was developed in the mid-1970's at the University of

-~

California, Berkeley, and is now marketed by Relational Technology, Inc.

The generic LOGICAL record type supported by INGRES ¢ sts of n scalar

{,ﬁ
Mx

and elementary fields {see Fig. Gl). Data values and their respective fields
have fixed lengths. Relationships between two or more LOGICAL record types

are realized by join operations.

LOGICAL
antear - o :
LAl F I
LOGICA ; 1) V1 ‘ﬂ;
- ! | i
dsd fdd id

Gl. Generic LOGICAL Record Type of INGRES

LOGICAL records are materialized in the following way. INGRES allows

elementary or compound fields to be indexed. (A compound field is defined by
INGRES to be a field that consists of two to six elementary fields). Field Fs
is indexed by segmenting it with dupiication from LOGICAL records. This

produces an A%S?Rﬁi{mEQQEXé record type connected Lo an ABSTRACT DATA record

fype by link

'\3

Wy

et 1 (see Fig. G2). I is a singular pointer. (The value of
this pointer is called the tuple id of the LOGICAL or ABSTRACT DATA record.)
Y

A1l fields are indexed in this manner. (The notation ()... in Figure GZ.dsd

means that zero or more fields may be indexed,)

L
P
f—)

LOGICAL
roctTT e ABSTRACT DATA
H A i s, i
| ABSTRACT DATA| ! Fileoe | ¥y V] es Y§ el Vg
H — o i
t é 3 7
i Iy '
[5
{ ER \‘\ .
oy b N \
| { T E | ARSTRACT INDEX,
. L ABSTRACT INDEX, ,
' - ! Fool oy v, 4
i H H B
S S S |
dsd fdd id

67, Seqmentation of LOGICAL Record Type

INGRES treats ABSTRACT INDEX files as special normalized relations
consisting of & data value field and a pointer field., This treatment actually
simplifies the implementation of INGRES, for ABSTRACT INDEX and ABSTRACT DATA
records are materialized by the same sequence of transformations. We define
this general transformation seguence in terms of a generic record type,
ABSTRACT REC.

Let ABSTRACT_REC consist of n fixed length fields Gy ... G, (see Fig

G3). ABSTRACT REC 1s materialized by the address converter transformation
(i.e., fields Gy ... G, are segmented from ABSTRACT REC). An ADDRESS

CONVERTER REC and REC record types connected by linkset AC REC

[
et}
.
[e#]
T
=5
<
(o8
S:'
?‘T'\

o
-3
o}

tne process (see Fig, G4). ADDRESS CONVERTER REC is fixed length and contains
the single field Ppr ppp. REC is ddentical to ABSTRACT REC in terms of its
contents. AC REC is a singular pointer with special parent-child clustering

properties (to be explained shortly).*

1 AC REC would be classified as a cellular-sequential singular pointer in
the UM, : :

gdsd f;ﬁj; ::i
63, ABSTRACT_REC Type
ABSTRACT REC
e ABSTRACT CONVERTER REC
i]
{ | ADDRESS_CONVERTER REC f 9AC~R£C : %
I ; *j-‘
i AC_REC i
i i REC
! orr | g N A [
REC | G Ygy a1
i | i n 1 "K;
H . v
dsd fdd id
G4 Address Converter Transformation of ABSTRACT_REC Tvoe
The database administrator can declare whether or not instances of REC

are 1o be compressed, {IH

blanks from character fields).

the encoding transformation,
1f compression does not occur,

thereby producing the UNC

COMPRESSED REC are

UNC

el
(52

GRES compresses records by eliminating trai

1ing

If REC is compressed, it is materialized by
The COMPRESSED REC type results Fig. G5).

OMPRESSED

REC is materialized by

the null transformation

) REC ¢ COMPRESSED REC and

66).

(see Fig.

Lype

concrete record types.

Compression of BEC

L
od

REC

URCOMPRESSED RE

f
’ e
I JTUNCOMPRESSED REC | [P0 I I 94 o
| - i i n 91 Tn

S . ;
X . e b ncd

dsd fod v
Gb Hul ransformalion of REC Type

The above sequence of transformations for materializing ABSTRACT REC will

be referred to as the INGRES transformation.

The INGRES transformation materializes both ABSTRACT INDEX and ARSTRACT

~

DATA records of Figure G2. The result is shown in Figure G7, along with the
rest of the physical architecture of INGRES, As a general rule, INDEX records
are not compressed,

The file structures used to organize instances of the concrete record

types of INGRES can be understood in terms of the INGRES transformation. When

=

ABS

e

RACT_REC is materialized, two concrete record types result. One is

ADDRESS CONVERTER REC. The other is either COMPRESSED REC or UNCOMPRESSEN

REC, depending if records are compressed. In either case, INGRES always

s

stores related records of both types on the same page (see Fig. G8). The

storage locations of ADDRESS CONVERTER REC records are fixed (but for an

exception described below) and do not change with time; the storage location

within a block) of COMPRESSED REC and UNCOMPRESSED REC records may change
] - o Y e

with time. With this notion of parent and child clustering in mind, instances
i g

([Hel76

v
o

ER

of related record pairs may be organized by indexed aggreqat
[Bat82]), hash-based, or uhordered file structures, As a general rule,

COMPRESSED

i
i

INDEX and UNCOMPRESSED INDEX records are usually organized by

indexed aggregate files.”t

Concrete Record or Linkser

e o - e

i

!

H s P — - - . s - .,g

i ; i

! j - f

! i | g

| !

! / !

| | | AC_DATA !
H i

| | | !
H i

| ;] i

] ! % DATA i

| | f " T T T T s e e 3 i
! ‘ L

! | | COMPRESSED DATA or UNCOMPRESSED DATAL 1

i ! = —

: i e e !

! e o e — e e o e]

i | -

|

|

i 1.

§ 7

|

% AGCTOACT

i ABSTRACT cs

H ‘r"‘""‘*"""’—""’“'“"”‘”m e T e e e "“‘"‘W‘“""”—;

! i !

| ' |

']

| !

|]

i

i

i

i

!

H

¥

i

H

i

H

ementation

hash-based,
indexs
or unor

singular

cellular-sequential
singular pointer

cellular-sequential
singular pointer

data pag%#”:>

e

e RS RN S

-~ - S -

ADDRESS_CONVERTER RE(S
records e ™ |
I e T

z | l
i i

wwwwww e }

3 k]

G8, Clustering of ADDRESS_CONVERTER_REC and COMPRESSEN.REC

and UNCOMPRESSED. REC records

It is worth noting that ADDRESS CONVERTER _REC records maintain the 1:1
caorrespondence between tuple ids and the storage location of COMPRESSED REC
and UNCOMPRESSED REC records. This correspondence allows CG@?QESSEQ‘Rgﬁ and
UNCOMPRESSED_REC records to be relocated (within the blocks in which they are
stored) without altering the INDEX records that reference them, (The pointers
of INDEX records are tuple ids). Relocations within blocks occur naturally as
a consequence of updates, insertions, and deletions. Relocations beyond block
boundaries occur when there is no room in a block to accommodate an expanded

COMPRESSED REC record. Such expansions happen when a LOGICAL record is

modified., In such cases, the LOGICAL record is assigned a new tuple id. This
means that the corresponding COMPRESSED) REC is moved to another block which
can accommodate it and its ADNDRESS CONVERTER _REC record. Furthermore, all
[NDEX records that reference the LOGICAL record must be updated to reflect the
change in tuple id. This particular design reflects the belief that
interblock movements do not occur often.

P

The physical architecture of INGRES is summarized in Figure G7. Source

jut

materials used in the derivation are [Hel757, [Sto76], and [Butg3].

7 , , e .)
© The primary keys, or cluster keys ([Rat821), of indexed-aggregate and hash-

based files may be defined over any {?GSZE“D} number of data fields., Whereas
indexed compound fields are limited to six or fewer el tementary fields, no such

size limitation is placed on primary keys,

55

Appendix I1I. SYSTEM 2000

SYSTEM 2000 s a product of MRIL Systems Corporation. SYSTEM 2000
organizes logical data according to a hierarchical data model. A database is
viewed as a collection of disjoint trees that have record occurrences as

nodes, fach tree is referred to as a database tree and consists of one root

record and all of its dependent records. A1l database trees are instances of

a hierarchical definition tree which specifies the hierarchical relationships

among logical record ty;es,i A definition tree allows the parent, children,
ancestors, and descendents of a record to be identified in a natural way. A
representative SYSTEM 2000 definition tree is shown in shown in Figure S1.

The generic LOGICAL record type supported by SYSTEM 2000 consists of n

data fields, ?i ees Fo, which are elementary and scalar. fData values, which
are stored in these fields, can have variable lengths. Generally, LOGICAL

records have variable lengths.

Figure %1. A Representative

3
* Terms such as record type, database tree, and hierarchical definition tree
are taken from Tsichritzis aﬁﬁ Lochovsky Z?s%??aéje Different releases of

-

SYSTEM 2000 have used different sets of terminology (see [Cas81]).

The first step in the materialization of a hierarchical definition tree
is to transform LOGICAL records into ABSTRACT LOGICAL records by actualizing
logical relationships. ABSTRACT LOGICAL records, it turns out, are fairly
easy to understand, but their derivation is long and rather complicated. To
make the derivation comprehendible, we will first describe an ABSTRACT LOGICAL

An ABSTRACT LOGICAL record differs from its LOGICAL record counterpart by
the addition of three fields (c.f. Fig. Sl.fdd and Fig. S$3.fdd). One field,
Tabeled IFN, identifies the LOGICAL record type. A second, labeled Pﬂa is a
parent structure field which contains a pointer to the first child record of
a Vinkset D occurrence, A third, labeled an is a child structure field which
contains a parent pointer and & pointer to the next child of a linkset A
occurrence, These fields are introduced as a result of the following four
step derivation (see Fig., S$S72).

First, SYSTEM 2000 distinguishes different LOGICAL record types by
assigning them distinct internal file nunbers [IFNs). Each LOGICAL record is
augmented with a field containing its respective IFN.

Second, the relationship between a parent record type and all of its
immediate child record types in a hierarchical definition free is actualized
by a single linkset where the roles of parent and child are preserved. The

Tinkset is a multilist with parent pointers, Child records are arranged in

reverse chronological order (i.e., new records first, old records Eas%}sg
Figure SZ2.id illustrates this arrangement. All relationships in a
nierarchical definition tree are actualized in this manner.

2 When a SYSTEM 2000 database is first loaded, records are entered in
hierarchical sequence {[Cas81]). Subsequent record additions are placed at
, s 3 & ol e et g P . . 5 -

the head of multilists, so the hierarchical sequencing is not preserved,

\””‘\\ Last Pointer
AN
\'a
Y
A
-« \ jj-i?
i e % = PROVE— ¥ i 1
7 y
\"\,
/ i\ \ e
/
/
;v[Cy i . k; 4 Ty 1 J — ¥ =
k i i i x
: : [+ [t 4 x
1 \1
k / ; // ; \
i
|] SN
/
g 33 - h h b
, 2 ; ;
z = = =
Hove: r is a record of type

ABSTRACT LOGCTCAL
- I

fdd id

Slo Augmentation, Acteolizat fon, and Colleetion of Logical Records,

Observe tnhat the actualization process introduces a parent structure
field in the root record type, a child structure Tield in feaf record types,

and a parent and child field in intermediate record types of a hierarchical

for alil ABSTRACT LOGICAL records to have both

-y

definition tree. In orde
rent and child structure fields, some null pointer fields must be
introduced. This is done in the remaining two steps.

Third, so that all instances of the root record type can be accessed
efficiently, root records are collected together by linkset ROOT. ROOT is a
multiltist {with precisely one occurrence) with parent pointers and a pointer

last root receréﬁg (Note that a parent pointer to the system * record

to the

3 SYSTEM 2000 ac tually stores the pointer to the Tast root record in the
parent pointer slot of the first root record of the ROOT multilist,
(Normally, this slot would otherwise be occupied by a null pointer). A more

%ffic ent implementation would store the last pointer in the system * record
as shown in Figure SZ2.id. :

58

is indistinguishable from a null pointer). Root records are linked in
chronological order (i.e., old records first, new records fast).

Fourth, a field containing a single null pointer is éagmeated to each
leaf record type of a hierarchical definition tree. This field isg
indistinguishable from a parent structure field (labeled ?% in Fig. S3.fdd) of
a multilist linkset where there are no child records. These null pointers are
shown in the occurrence of record types ASSTRA@?M;GGIC&Lj and ABSTRAC?ﬂ
LOGICAL,, in Figure S2.id.

The generic form of an ABSTRACT LOGICAL record is shown in Figure S3. An
ABSTRACT_LOGICAL record is a child of linkset A (A for ancestor) and is the

parent of linkset D (D for descendent). (Note that a specific instance of

Tinkset A is ROOT). A record consists of an IFN field, a parent field P, a

1
child field Cpy, and n data fields F, ,,. Frye
3 Es
Parent Pointer
f Next Sibling
P A A g
A —
§ WOT LUGTCAL T
Wl £ Cen " N o i L £ £ H
fi Py LA i} fn k Byoeee B ;
¥
Fiy Chiitd
Hote: Al wwers re [
ARS CLOCICAL records.
H id

59

o

i
&

L

An ABSTRACT LOGICAL record is materialized in the following way (see Fig

R4Y. SYSTEM 2000 indexes all data fields, unless told otherwise. Field ?; 15

indexed by extracting it from ABSTRACT LOGICAL records, forming an ABSTRACT

1

DACT
T A

ENQE%E record type. Linkset 133 which connects A%STRAC?M}%SEXB to ABSTRACT _

DATA, is a 1:N inverted list. Pointers of an inverted 1ist are in

chronological order. Other fields are indexed in an identical manner.

i i
i ! ABSTRACT DATA
i ! %
TN P I w 7 3 & B
i S i{} \,/A .i ...,n .,§;,4 .-f}'»‘ ;“‘ril
b
H | . "7
| i S
; T i e
; 4 | yd
{ ABSTRACT TNDEX,
| { } | 3 _INDEX, \X /
,] I [
i T " £
§ ; % - i 4
,
! i
Do o e e 1
3 ‘1’5’:_@ id
bt ic

ABSTRACT LOGICAL Records,

j N

Note that if an ABSTRACT LOGICAL record had no indexed fields, it woul

be mapped directly to an ABSTRACT DATA record via the null transform.

3

contains n data fields (Fy ... F). !

W1
i-

TEM 2000 does not store data values

W

@
L

directly in these fields, but does the following., When a LOGICAL record type

L]

is defined, each data field F: is given a nominal length len,;. If the length
J

of a data value to be stored in F. is shorter than len; bytes, the data value

Lo

is stored left-justified with blank padding, If it is longer, the first len.
4
bytes are stored in the field and the remaining bytes are stored as a single

£?Tj (Extended Field Table:) record. A pointer connects the

on
-]

field to the EF?; record. (Note that a null pointer signifies that the data
value is contained entirely within }enj bytes). All data fields are
represented in this manner., |

This materialization is recognized as a division of a data field Fj into
one or two segments, The first segment is stored with the original record;
the second, if it exists, is stored as an E?Tj record. Both records are

connected by a singular pointer linkset. We will refer to this

materialization as the overflow transformation of a data field,

An ﬁﬁs?R&Cfﬂiﬁﬁgxﬁ record is materialized by applying the overflow
transformation to field ?§9 Linkset vj is produced in the process. Next, one

of twoe possibilities occur. If the inverted list of field P1. contains at

J
. e . , . 5 LK
most one pointer, the AﬁSiRAC{W1ﬂ%EXj record is mapped directly to a Ev2§
s , * . . .
(Distinct Value Table:) record via the null transform (Fig. S5).
ST IND
f““”“"’““”’”}“""‘“’”’é
‘ § YT
H j
i }
| ovT s Sry 1 0
3 : j i 5]
i !
H i {
i ‘V i ner &
! j j
1. :‘i ? :T 5‘\)
j | ,
e
H
L fdd id
Cieure S5, Diwviston of AUMTRACT INDEX Records.

IT the inverted list contains two or more pointers, a B?Tj record is produced

by dividing the Py field into variable length segments called ﬁ@?i (Multiple
J : .

Uccurrences Tab?ej} records. Linkset %js which connects DVT. to MOT., is a
. J)

multiiist with last child pu%ﬁtﬁrﬁgq M@?s records are linked in chronological

Note that the Py and Py, fields in Figure S5 and Sh
J J

o
~d

order (see Fig. S6).

occur in mutually exclusive situations and that both have the same fength,

Thus, DV?§ and SVTE records share the same fixed tength and format. This is

done so that records of both types can be organized by a single file

structure.

ABSTKACTWINE)E}%

i P .,1”
: i, .
H
= i J i j
i
v M ; =T
] ; j
i F,
! L
EFT MOT ; i -
} i % Ed AV !j
H Il ~p
! M T,
i] J
Pointers to ARST BRACT DATA Pecords
dsd fad id

R ivision of ABSTRACT IHDEX
Figure S6. Division of ,‘Lniz&(,i‘ﬁihu,;i}fj

4

SYSTEM 2000 actually stores the pointer to the last MOT, record of an

M: Tinkset occurrence in the first MOT; record. A more efficient
i
Figure $6.1d,

mplementation would store the last pointer in the DVT: record, as shown in

5 Mot records are variable in length. When a database is first loaded, all
pointers of an inverted list are placed in a single MOT record. Subsequent
pointer insertions are placed in new MOT records. The length of a new MOT
record is a function of the length of the first MOT record.

62

A ABSTRACT OATA record of Figure S4 is materialized by segmenting the
{FN, ?5, and C, fields from the data fields F} osn Fﬁ. This produces an HT
(Hierarchical Table) record and a DATA record connected by linkset H. H is a

singular pointer (see Fig. S7).

ABSTRACT DATA . A
e Parent Pointer

| i
i |
i ! H 7
f 7 i FN 2 P
H ¥ ‘ I ?f} i " k
| I
i
| . ! /
; | First £hild
x : DATA
! ;
| ATA X ! : £ £
. | E {n "1 I
! z
| H
e e e e e .
i5d fdd id
Figure $7. Segmentation o

A DATA record is materialized by applyving the overflow transform to each

sh

iy

of its data fields. The resulting data record is referred to as a DT (Data
Table) record; linkset fj connects it with at most one S??j ecord for each
data field ?j. Figure S8.1d 1llustrates & 07 record with ree data fields

that have overfiowed. Owing to this general construction, DT records that

correspond to a single LOGICAL record type have a fixed length (this is the
sun of the n nominal field lengths plus the length of n pointers); EFT
records have variable lengths. DT records of different LOGICAL record types
will, of course, have different lengths.

It is worth noting that if a data value overflows its nominal field

it occurs multiple times in a logical database, there will be

34
o}

WD
o
po
[o%)
o}
jos
("f
m;
o

??g record for each of its occurrences. No effort is made by SYSTEM 2000

to eliminate duplicate E

0¥
-
ina

-
[-

[
Cia

4
o
it
oy
o
H
y
g
1
y
ey
™

i
*

dgd feddd id

i
L B

The concrete record types of SYSTEM 2000 are Q¥T§, %v?j, Mﬁ?i, HT, BT

o]

and EFch For each j, all occurrences of the DV?j and DVT; record types are

%
J
organized by a separate B+ tree. The occurrences of all MOT.

! 3
J

organized by a single unordered file. HT and DT records are stored in

record types are

distinct unordered files, and the occurrences of all 55?; record types are
stored in a single unordered f53636
A data structure diagram that summarizes the derivation of the physical

stuctures of SYSTEM 2000 is shown in Figure S9, Source materials used in the

derivation are [Cas82], [Cas81], [Tsi77a], and [Kro777.

5 A SYSTEM 2000 database has one other file, called the DEFIN file. It
contains metadata, such as the root nodes of all simple files and the system *
record, ‘

LOGTOAL .

ABSTRALT DATA

v DATA

T ‘n]

| | |
i i EZFTE EFT ,
i . : §
! { .
‘ j | ,
i UV | i i
i i ! [
| i !
e e o e e e g S {
! i

Concrete Record or Implement

HT unordered
DT unordered

unordered

fed

+

Lree

ALl MOT, occurrences for all j unordered

k1 o
H singular pointer (1:1 pointer
E, and V, for all 1, j

singular pointer

M, l:n multilist with last pointer

el
ot

inverted list

, D 1in multilist wi
pointers
L TABSTRACT

Lo voot

{and

Last pointer
COTTREROT

and Concrete Record Tvpes of

