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ABSTRACT

This “dissertation defines and describes the Graph Data
Language, sketches the'implementation of a aatabase management system
based on this language and compares the performance characteristics

of this system with relational database management systems.

Tﬁe Graph Data Language (GDL) is'proposed”té be'a'high level
data langﬁage which allows execﬁtioﬁ efficienéy without iosing daté
independence and which can be compactly implementéd. GDL is founded
on graphs and an algebra which operates on graphs. The Graph Data
‘Model (GDM) is the framework for GDL. GDM formulates schemas as
directed graphs and data operations as algebraic operations on these
graphs. The nodes of a schema graph represenﬁ recdrd types; the arcs
of the graph represent link types'that are treated as logical access
" paths. A link type is a representation of a many-to-many
relationship between two record types. We déﬁeloped link opefators
which endow GDL with high expressive power‘ including explicit
represenﬁations of nﬁmerical--quantifiers;_ irreflexive transitive
ciosure énd grouping. | GDL  also allows recursive link typés that

represent relationships within a single'record'type.
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- The facilities of GDL are carried by two components: the DDL

(Data Definition Language) and the DML (Data Manipulation Language).

The DDL implements definition of schemas and views, both of which may
contain integrity constraints, The DML_ provides a. set-at-a=-time
query interface‘(in the sense that a set of qualified occurrences is
- retrieved at a time by a rsingle DML statement) as well as a
procedural interface. A query is expressed as a path on a connected
graph, Record types on a bath may be recursively qualified by other
paths. Thie approach gives the system the necessary guidance for
determining.access paths, thus reducing execution overhead of the GDL

based -DBMS.

GDL allows dynamic creation and deletion of link typeé.
Because of this feature, the reetfiction that.queries are represented
as a .peth on a connected graph does not limit the power of the
language. It also eupports data independence since the user ean

redefine record types and links as a schema evolves, Integrity

constraints and views are treated as invocations of DML statements

upon occurrence of specified events,

'We have given an implementation design of a GDL-based
database management system, The 0DL concepts are shown to be in

c¢lose correspondence to implementation concepts. Performance of
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access path str;tegies was compared between GDL and the relational
médel by using an extension of Yab's cost model. The. GDL based
system yields excellent performance for queries where é'small number
of occurrences are qualified by the queriez and for queries that

contain semi-joins.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

A data language 13 a language for defining and manipulating
databases. The framework for a data language 1s a data model. A_
data model is the formal abstract definition of the data objects and
relaticonships togéther with ﬁhe operatiohs_ on the structures
supported in the data language. A data iangﬁage consists of a data
definition language (DDL) that defines' the data objects and
felationships, and a data manipulation language (DML) that expresses

operations on the objects defined in the DDL.

The significant desirable characteristics of a data language
include:
- representatidnal power of the data drganization {objects
and relationships) defined in the DDL
- computational power of the operation set defined in the DML

- ease of application including initial formulation,
programming and modification ‘

- execution efficiency

- compactness of the system



The importance of each of %these characteristics varies strongly

between applications.

This 1list of application oriented characteristies can be

mapped to a set of requirements for a_data language.

- support by the data model for formal definition of both
data structures and operations on the'data structures

- support for a high level query representation

- data independence in the sense that logical data structures
are decoupled from physical data structuring

- ready mapping of " logical data structures to physical
structures on contemporary computer architectures,

This dissertation defines and characterizes a data language that

occupies a unique position with respect to this 1list of requirements,

Recent research [3, 13, 72, 69, 76, 83, 24, 8, 81] aimed at
development of data languages which meet these requirements has been
founded mostly on the relational data model originated by E. F. Codd

{19]. The relational model achieves:
- data independence in the sense that the evolution of data
organization and the evolution of manipulation programs do

not interfere with each other -

- a formal abstract definition of data organization and
manipulation

- a non-procedural query representation

Data independence reduces the maintenance work of data and programs;

the second and third features simplify query representation and




enhance the representational power of the data language. The simple
formal definition of the relational model _has motivated extensive

theoretical and experimental research.

Data.language sys£ems ﬁasea 6n the reiati§nal model have had
serious deficiencies with respect to a few of the significant
desirable characﬁeristics and/or requifements listed precedingly,
First, it is not straightforward to obtain'executibn efficiency. In
the relational model, relationships amohg felaﬁions (recorﬁs) are not
structurally specified, A ‘user interprets the values..of .certain
_Kpairs of atfributes as represenﬁation éf relationéhips..(Let us call
it value-baéed representation éf relatibnéhips.) | Conventional
computer architecture does.noﬁ, however; directly supporﬁ aécess-to
records.by values. Actual implementétions.of,the rélational model
may prbvide acceés paths for.exeéution effiéiency as in Syétem R [31.
Translation from the value—base& query representation into én optimal
execution sequence of basic,Operations utilizing appropriate access
paths can be, however, very complex, (Chapter 6 will discuss
performance of various access path strategies.) Second, the
relatioﬁal model is basically a set of tables. Such a flat structure
is not helpful to a wuser attempting to comprehend the logical
strueture actually existing in a_kschéma. A more-:structured data
organization.is sﬁitable'and natural for some applications. Third,
its expressive power is_not sufficient to formulate'arbitrary'cbmplex

queries .in- a non-procedural or set—at—a-time manner, The




set-at-a-time manner means that a single DML statement can retrieve a

set of qualified”occurrences at a time while only a single occurrence

is retrieved at a time in a record-at-a-time manner. Queries

involving transitive closure or numerical quantifiers are often

encountered. for example, in graphics applications.

Value~baséd representations of relationships among relations
(reeords) do not give the DBMS guidance for the formulation of
efficient query processing, It is dlfflcult for a user to estimate
execution cbsté and probable' regponse times of .complex queries
because they depend upon the algorlthms used 1n query proce531ng.
There have been exten31ve efforts to 1mprove executlon efficiency of
the relatlonal_ model L3, 81. 62, 1”]. Database machines [56, 5]
‘ designed to efficiently .process relational type queries have been

proposed and indeed implemented [31].

An essential element of the relational approach is complete
. removal of access. path specification from the user, This often
simplifies query formulation; but'it'imposes a heavy burden oh the
systeﬁ to determine access paths. This is our point of departure for
seeking a data language' that preserves the advaﬁtages of the
relational model but  thét dbes not retain .its'udisadvantages. We
'require”the user'to describe his pr.her access paths at a logical
level, “That is,'the logicai access paths between two record types

are represented by links, The concept of link is not at all new.




The novelty of our approach is the development of an algebraic
treatmeﬁb'of links, set-at-a-time query representation in_termé of
the properties of links, and link-oriented query computationz. OQur
goal is to design a data modei based on a graph structure which
retains the desirable properties that the relational model achieved
and simultaneously overcomes the performance and prpvides structural

representation of databases.

1.2 OVERVIEW

This reseafch.atﬁempts'the formula£idh and analysis of a data
model and a. déta“ laﬁguaée. which '.ﬁéets the afdrémeﬂtioned
requirements. We particularly “aim at."a formal definitional
structure,‘ a setnat-éftime quefy reﬁresentétion. reasonable -cost

execution and data independence. As an alternative approach to the

relational cne, we propose a Graph Data Model (GDM) and a ggggg Data
Languége (GDL) which is founded on GDM. The data structﬁre of GDM is
a labelled directed graph. VRécords are repkesented as nodes
charécterized by attributes and 'holding values, ngggi. which are
interpreted as binary.rélationships between-reéords, are represehted
by directed ares. Links serve aé logical access paths. GDL.is based
‘upon'algebraic operations on the graphs. We have investigated the
semantics of links and developed powerful 1link operators. The
concept of record list which integrates records and links into a
single object is' introduced  to retain interﬁediaﬁe results of

computations.




GDL consists of a data definition language (DDL). and a data
manipulation language (DML). - DDL provides facilities for defining
and changing schemaa and - views, These definitions may -include
integrity constraints. The definition of constraints and views is
operational; that is, the language constructs in the DML are also
used to define constraints and views, DML provides facilities for
manipulating both records and links. The DML and DDL are integrated
in %that dynamic definition of both records and links is supported.

The strategies taken in the design of GDL are:

Users are given the ability to structure query processing

Queries are represented in terms of graph traversals

The query language interface is a structured non—procedural
language using extended path expressions

Dynamic (éxecution time) specification of logical access
paths and record definitions is supported

A usef of this system can, by specifying logical access paths
(links), give the system guidance for the development of efficient
processing structurgs for the queries a user exgécts to perform, The
user has control over crucial performance factors which only he or
she can anw, by specifying informatign which is a property only of a

logical structure of the application and not the physical

representations used by the DBMS to represent these logical features.
This approach together with the rule in DML that a query must be

expressed as a connected graph improves performance without ¢omplex




optimizations and avoids disastrous performance on complex queries.
Qf course, it is not desirable to force a user to know or understand
the details of physical storage access paths. The acces=s paths
defined in GDL are logical access paths meaningful to the user rather
than physical access paths, They are, however, readily mappable to

executable representation on conventional architecture,

The data model further incorporates the .capability of
creating and deletiﬁg record types _and link types dynamically _to
support evolution of schemas. We can in this way achieye_gractical
data independence. The user, as ﬁis‘ requiremepﬁs- change, can
dynamiéally éhange data organizationr.td ﬁonform to changes 1in
application reéuirements. A separate daﬁa reorganizatibn language

is, therefore, not needed in GDL.

The DML of GDL has advantages over a data language based on
the relational calculus or relational algebra in addition to ease in
obtaining low cost execution, The algebraic basis of GDL hasradded
power over that of relational algebra. The algepra based on GDM can
directly express transitive «closure, numerical quantifiers and
grouping. ingher level languages based on relational algebra or
caleulus can of course be extended Ito include these features as

demonstrated by the transitive closure in QBE [83].)

This dissertation is divided into seven chapters. - The rest




of this chapter discusses previous work related to our research.
Chapter 2 contains ¢the definition of GDM, The data definition
facility and data manipulation facility of GDL are -descfibed in
Chapter -3 and Chapter #, respectively. 'Chapter 5 outlines a
prototype implementation of GDL. 1In Chapter 6 we compare GDL with
the relational model with respect %o performance of access path
strategies. Chapter 7 concludes this dissertation by assessing the

contribution of this research and discussing future research.

1.3 RELATED WORK

Many high level query _1ang§ages or formal frameworks for
network-oriented data models have been recentiy proposed._ Some of
these lahguages are specifically designed for CODASYL network
structure [11, 54]. Some are proposed for heterogeneous data models
in order tq integrate hierarchical, network and relational models

[25, 44]. Others are designed fof data models which formulate a
database as some type of graph such as the Entity-Relationship model
[17]1 and the functional model [30, 641. This section discusses
these languages and formalisms, and elucidates the differences and

relationships between these researches and GDL.

The Link and Selector Language (LSL) proposed by
D. Tsichritzis [72] has a similar approach to GDL in the sense that

L3L alsQ intends to_solve performance problems by making access paths




visible, LSL allows, however, only one primitive type of_operation
on links. The representational power of LSL is a subset of that of

GDL .,

An extended - owner-coupled set .data model proposed by
J. Bradley [11] developed a non—procedurél language on a CODASYL~-like
graph data structure, .it is, howeﬁer, a reatrictive data.-model
becguse linkages between record types are “allowed only if
correSponding connection fields exist in those record types. This
type of linkage is similar torvirtual link types of GDL described in
Chapter 2. Manola and Pirotte {5”} also designed g high level query
' 1anguége; CQLF, for CODASYL-typg databases. CQLF is.similar to non-
procedural languages in the rélational model such as SQL [13] and
QUEL [69]. The. implementation of these non—proéedural ianguages
will, however,-face the problem.of finding optiﬁal query.processiﬁg
similarly %o the relational model. Designers of'these-languages have
not developed tactics for this problem. "{Note that Dayal and Goodman

investigated this problem [261.)

NQUEL proposed by U. Dayal [24, 25] is a non-procedural data
language for a generalized network model. We adopt NQUEL-like
notation for link opgrators in GDL. - The approach taken in NQUEL is
very' different from GDL. That .is, NQUEL treats 1links merély as’
iogical relatibnships while GDL treats links as logical access paths.

NQUEL  is predicate calculus-based while GDL is algebraic (i.e.,
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queries are constructed by composing elementary operations). GDL
offers an -expanded set of opérations on linké, to enable guery
processing of GDL. Computational power i1s increased in GDL. Jacobs

f44] proposed daﬁabase logic as a framework for a DML for
heterogeneous databasés ‘inqluding the relational, hierarchical and
network models. It is an applicatién ‘of' mathematical logic to

databases,

~The Unified Database Language (UDL) prqposed byrc. J, Date
{22].15 claimed £o accommodate both record—at;aetiﬁé and set-at-a-
time.manipulationéron network data structures wﬁich are more abstract
thah 'CODASY_L data structure, (Relational and nierarchical data
modélsrare treated as subsets of the network model.)} ﬁecord—at-a—
time manipulations are made clear in UDL by_the use of a "cursor"”
concept, Manipulations on _the. ﬁetwork structure are réther
navigational 1like CODASYL nethrk mﬁdel. For example, a nested
access path structure canhot be expressed by a single DML Statement.
Therefore, set-at-a-time manipulations on the network structure are

not fully supported in UDL.

DAPLEX prOposed_by Shipman tﬁu] is a data language based on a
functional data.model. The basic concepts of this model are the
entity and the. function.  Entities and functions of a schema are
represented.by nodes and ares, respectively, in a gfaph. DAPLEX is a
procedural language. = Basic algebraic operations are not formally

defined,
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Path expressions in a language designed by B. Schneiderman
and G. Thomas [65] to describe database conversion, can be thought of
as a degenerate case of path expressions in GDL. Their underlying
data structure is a CODASYL-like netwofk model, Path expressions are
also used in GORDAS designed by Elma;ri and Wiederhold t363. GORDAS
is a formal high level language for the Entity;Relationship model,
These path expressions do not contain the conceptlof operations on

links and nested structures of path expressions.

| In comparison'with these languéges; the data structure of GDL
is not restricted to CODASYL-type network structure; it is a
generalized network strgcture (gréph). Operations on the network
structure are formally defined., Records and links are not associated'
with particular semantics unlike the Entity-Relationship model and
DAPLEX functional quel. They are rather operational objects in GDL.
Links are treated as logical access paths as.in L3L. GBL provides
extended operations on links. Its DML is algebraic, GDL provides a
powerful set of algebréic operations for defining networks in terms
of other networks. These operations can be used to retrieve networks
(records and links), to dynamically create network views, and to
dynamically change the schema, Moat of the other languages provide
mechanisms only for retrieving "flat" records, - (NQUEL 1is an
exception because - it does havé stateménts for defining' network

views,)



Chapter 2

GRAPH DATA MODEL

2.1 OVERVIEW

This .chapter describes..the Graph Data Model (GDM) that
underlies the GDL Data ﬁefinition and Data Manipulation Languages, A
schema is repreéented by a labelled directed gféph whose nodesg
represent recofds and whose arcs represent links., A query is

formulated as an élgebraic expression on the graph, Our data

language to express queries is called an Elementary Data Language.

The operations'on the graph are called Elementary Data Operations.

The Elementary Data Operations include manipulations of both records
and links. The semantics of 1links are incorporated into the data
model a3 definitions of link operators. Relationships among records
are represented directly by the properties of linkage., It will be
shown that a link-based data language is at least as powerful as a

value~based data language.

At query processing time, records and links are unified into
a single object, called a record list, which is a list of records. A

link can be thought of as a binary record list. A record is a unary

12
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record list. The record list is also considered as an abstraction of
a two-level hierarchy of records and their values. The Elementary

Data Operations of GDM are defined on the record lists.

The computational power of our Graph Data Model is gréater
than that of the ‘relational calculus and algebra [19]. Link
operators which include the operations defined in the  relational
algebra and also extend to include transitive closure and numerical
quantifiers (including existential and universal quantifiers) have
been defined., Link operators are often more efficiently executed on
conventional computers than value—bﬁsed operations if the number of

occurrences retrieved is small. L

2.2 3CHEMA

A schema, denoted by 3, is a logical desecription of a
database., It consists of a set of record types, R and a set of link
types, L:

8= (R, L)
L can be an empty set. Let Ri and L] denote a record‘type and a link
type, respectively, R and L are expressed as:
R={Ri:i=1,...,m} and L={LJ:J=1,...,n1}

m is the number of record types in S. n is the number of link types
in 8. A schema can be represented as a graph whose nodes represent

record types, and whoseé arcs represent link types.
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Associated with each record type Ri is an ordered set (a
list) of attributes, Ai. We write it as:
Al = ( Ait, Af2, ....., Aify )

Each attribute Alk in Ai is associated with a domain of its values,
domain (Aik). Let Vik denote a value of Aik. An occurrence ri of a

given record type Ri is expressed as:
ri = ( Vi1, Vi2, ....., Vif; )

f; denotes the number of attributes in Ri. The attributes are

compatible if they are defined on the same domain.

A link type represents a binary relationship of record types.

A link type Lj is defined by an ordered pair of record types:
Lj= (R, Ri* ), Lj= L, Ri, Ri' ¢ R

An occurrence 1j of a given link fype Lj is expressgd as:
15 = (ri. ri') ‘where ri ¢ ﬁi and ri"s‘Ri'

The following terms are used with respect to Lj:

1. Lj is incident with Ri and Ri',
2. Ri and Ri' are the endpoints of Lj.

‘3. Ri is the initial node {record type) of Lj.

K, Ri' is the terminal node (record type) of LJ.

" We allow a self-loop link type that links a record type to

. itself, i.e.;'Lj-= ( Ri, Ri ). ‘We call. this kind of link type a
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recursive link type. Ordering within a record type can be expressed
by a recursive link type. The Graph Data Model allows a schema to
contain more than one link type having the same pair of an initial

and- a terminal node, for example,

Lj= (Ri, Ri' ) and Lj' = ( Ri, Ri' )

where Lj % Lj'

We say that Lj and Lj' are garallel.' Hence, a schema is a general
directed graph. (A directed multigraph has the second property.
Together 'with the  first property, viz self-loops, it becomes a
general_directed graph.) Because of the existence of parallel link

types, we expliecitly specify the link types used in a traversal of a

schema.
Unlike the CODASYL DBIG network model [27], 1links are not
restricted to being inverse functions (i.e., 1:n). Such a

restriction can, however, be defined as an integrity constraint on a

schema,

A state (or extension), denoted as $3, of a given schema S is
detérmined by actual occurrences of record types and link types. Let
$R1 and $Lj denote a state of Ri and a state of Lj, respectively,

-Then, $35 is expressed as:

$S = ( $R, $L )

~ where $R = { $Ri :i=1,...,m}
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$L = { $LJ j.= Tyees s }
Further, we write:

$Ri =z {ri : ric Ri A (ri is stored in
the database for Ri} }

and

$Lj = {13 35 13 e L A (1) is stored in
the database for Lj) } '

The number of distinct occurrences of a given type is called the
bardinalitz_ of the type. Note +that the existence of a 1link
occurrence reqﬁires the existence of its initial and terminal node
record occurrences, A type is an abstraction of a set of occurrences
of .the same property. The state of a given type refers to .the set of
occurrences for the type at a given time, The results of Elementary
Data Operations are defined against the State of a schema,
Pérmissible- states of a schema hay be restricted by .integrity

constraints which will be described in Chapter 3.

For a given link. type L, we define an inverse link type

denoted by %L as a link type which has, except direction, the same

structure as L and the inverse occurrences:

$C3L) = 1 (r2,r1) & (r1,r2) € $L }

The other notations that will be used to describe the
Elementary Data Operaticns are as follows. Suppeose X = (ait, AiZz2,

vesssy Aip) © Ai, Let r denote an occurrence of a record type R.
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1. Domain (X} is the Cartesian product of domain (Aik),
k=1, p.
2, rlX] is the value of r on domain (X).

3. RIX] s { rl¥] s re R}

2.3 ELEMENTARY DATA OPERATIONS

GDM Elementary Data Operations are operations on the schema
described in the previous section. A DML statement can be translated
intc a sequence of elementary data operations. They are classified

into :

- set operations

- database operations
Set operations of GDL are union (+), interseection (n), and difference
(-). Since these operations have their conventional definitions..we
do not discuss them further, The database éperations are
restriction, record list projection, projection, link ereation, two
basic types of link traversal operations and four types of storage
operations, To describe these operations, we first introduce the

concept of record list as a transient object for query prqcéssing;
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2.3.1 Record List

‘A record 1ist is a transient object that unifies records and
links and is created at query processing time, A‘record list type RL

is an ordered set of record types:
RL = < E1, E2, ..sssy En >

Ei is associated with Ri ¢ R. Two different record types Ei and Ej,

where 1 % j, can be agsociated with the same record type Rie R.
Definition 1: Eg = { E1, E2,..., En}
Definition 2: n is the degree of RL

A record 1list rl is an occurrence of a record list type RL. It is

Wwritten as:

rl = (r1' r‘2,...,‘t“n)

where ri ¢ Ri
Definition 3: rl[Eil = ri

Definition 4: rl[Ei.Aik] = rilAik]

We introduce this concept of record list for the following
reason. It is often possible to avoid making acceszs to recofd
occurrences when processing a query. That is,rif some access path is
available, it is not always necessary to obtain values for records in
the path in order to evaluate a query. To keep the intermediate

results, however, we must be able to retain the information that
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uniquely identifies the resultant record occurrences. A record list
is such a faecility. - We ecan also avoid doncétenating record

occurrences until it is actually necessary,.

A record list is an abstraction of a two-level hierarchy: it
is a list of unique record identifiéfs and the values of attributes
underneath them. Query evaluation'primafily proceeds at the first
level, When a database operation needsrvalues-of‘ attributes, it
descends to the second level, coming back to the first level before
it goes o the next operation. Information passing between two‘
database operations is done at a record 1list level, Attributes are

hidden under elements of record lists.

2.3.2 Restriction

A restrictiocn operation.(RST).sglects the océurrences of a
record list type that satisfy a givén qualification.. It is similar
to the restriction operation defined. in the relational algebra; A
difference is that a GDM restriction is extended to operate on a
record list type BL rather than on a single record type. | A
restrictioﬁ'"is denoted by RLIP] where P is a ‘predicate for the

restriction. Formally it is defined as:
RL[P) = { rl : rl € RL A P(rl) }

A restriction ‘involves either one or two attributes., The designation

of an attribute needs not only the name of the attribute,.Aik, but
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also the name of the record type, Ei, of which Aik is an attribute,
The restriction can be a comparison of an attribute and a value, or a

comparison of two attributes which can be of different record types:

1. Ei.Aik <c-op> value
2. Ei.Aik <c-op> Ei‘.Ai‘k‘
" {e=0p> i3 one of the followings:

=, X, <, <=, » and >=.

i' can be the same'as_i. P(rl) is, however, not a join predicate as
in ﬁhe 'rélatiqnal algebra even if 1 X i', It 1is because rl 1is
created .as the result of some link traversél(s). This type of
restriction can be executed only after the record types are joined by
link operétors. Corresponding to each format, P(rl) is true if and

only if:

1. r1[EL.Aik] <c-op> value

2. rl[Ei.Aik] <ec-op> rll[Eif.Ai'k']

2.3.3 Record List Projection

A record list projection operation (RL—PROJ)_creates a new

record 1list typé from another. On the other hand, a projection

operation which will be definéd in the next section creates a new
record type from a record list, Reéord list projection iz used with
other operations to form a proper‘resultant record list type. Let EL
denoté the specification of how a new record list type is created

from an existent record list type, We can write EL as:
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FL = < E1, E2, ....., En >

where Ei ¢ Ep. Ei is associated with a subset of Ai of the
corresponding Ri. We define a record 1ist projection, denoted by

RL<EL>, as follows:

RLKEL> = { { rllE1], rllE2], ceeee,

rl[En] ) : rl € RL }

2.3.4 Projection

A projection operation (PRQJ) creates a new record type from
a given record list type. It requires a'specification of how the
record type is to be created from the record list type. Let ELp be

this specification. We can write ELP as. follows:

ELp = (Epi.Apiql, Ep2.Ap2q¢2,..., Epl.Aplql)
where 1<pi<n, ApiqicApi and EicEp; . A projection operation, denoted
by RL(ELp), is defined as:

RL(ELp ) = { (ri[Ep1.Apigt], rllEp2.Ap2q2],

wesssy P1[Epl.Aplql]l ) : rl ¢ RL }

Note that a projection creates a record type while a record list

projection creates a record 1list type.
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2.3.5 Link Creation

If a query involves relationéhips between more than one
record type, we express the relationships in terms of the properties
of the link types connecting the record types. If no link type
‘exists between two record types, we first coﬁstruct a link type
between them, by a link creation operation (LNKCRT). Suppose we
construct a link type L = (R1, R2). The link creation operation is
denoted by R1[PJR2 where P is a predicate describing a relationship

between R1 and R2. It is defined as:

R1[PIR2 =

{ (r1,r2) : rte R1 Ar2 g¢R2 * P(r1, r2) }

Note that we can consider R1 and R2 as unary record list types.

Their values are not coﬂcatenated by this operation. It has the

following format:

R1.A1k <c-op> R2.AZ2k' -
or

R2.A2k' <c-op> R1.A1k.

If P is omitted, this operation is simply a Cartesian product of R1

and R2.

The inverse link type %L is automatically created by the
system whenever L 1Is created.. Qtherwise, the system cannot

efficiently delete link occurrence whose terminal node is deleted.
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2.3.6 Link QOperators

Thé Graph Data Model provides extensive 1link traversal
operétions. Because of this facility, the model can express_many
types of relationship between recofd types. There are basically two
types of link operators: numerical link operators and transitive
link operators. _Existential 1link operators and universal 1link
operators are defined as variants of numerical link operators. 3ince
the existentiai link operators are very frequently used, we describe
them. separately from the numerical link operators, These operators
are chosen so that many common queries can be expressed in a single
DML statement, Complex relationships betweeﬁ record types, including
transitive cloéure and numerical quantifiefs, are directly expressed
in tefms of 1link operators, A link operator takes the following

operands:

1. a link tyﬁe. L

2. a record list type containing'an initial node, RL1
3. an iniﬁial node, R1

4, a record list type containing a terminal node, RL2
5. a terminal node, R2

6. a mode specification, MODE

7. a comparison Speéificétion, <g> (for numerical and
transitive link operators)

8. one or two grouping specifications, Xﬁ and X2 (optional)

In a DML statement, all of these need not be explicitly specified by
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the user, RL1, RL2 and MODE can be determined from the context,

MODE tells which record type(s) should be retrieved:

1. heutral mode: both R1 and R2

2. downward mode: only R2

3. upward mode: only R1
The first case is allowed only when the link operator accompanies no
' grouping. The endpoint(s) to be retrieved is (are) called the
target(s) of the link traversal, The semantics of link operators
varies depending on the MODE, In the upward mode, this operation is.
‘similar to the feature of "having" in SEQUEL [3]. Note that only R1
and R2 actively participate in link traversal. <@ is described in
Sections 2;3.6.3 and 2.3.6.%, Gfouping' is described in Section

2.3.6.1.

Application of link cperators may be complex. We decompose

it into the following sequence of operations:

1. grouping of R1 and R2 by X1 and X2, if any (GROUP)

2. link traversal from R1 to R2 with L, producing RESULT
(TRAVERSE)

3. formation of a resultant record list type from RL1, RLZ,
R1 and R2 (FORM)

The GROUP operation is not applicable to a transitive link operator.
Only the TRAVERSE operation differs from one link operator to
another.. We write a link operator as:

RL1 [ MODE : traversal expression ] RL2
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Definition of +traversal expressions is given in the following

descriptions of link operators.

2.3.6.1, Grouping

Some queries involve properties of aggregates of 1link
ocecurrences rather than pfoperties of . individual link occurrences.
For example, consider-an educational détabase shown in Figure 2—1. A
rectangle denotes a record type. An arrow denotes a 1link type. This
schema has two record types, COURSE and ENROLLMENT, and a link type,
ENROLLS. Suppose we want to find SNO of the students who tdok all
the core courses, To express this in our Graph Data Model. Wwe group
the record.occurrences-of_ENROLLMENT by SNO. wé then test each group
for whether it is linked to.all the core courses.

Schema:
COURSE

ENROLLS

[ e QT P —

| SNO | CHO | GRADE |

" ENROLLMENT

Figure 2-1: Schema Diagram of
Simple Educational Database
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Let x domain(X), 'Formally_ we define a group to be an

equivalence class on Ri as:
Bri (X, x) = {r :re Rian r[X) =x}

Record - occurrences of a record tLype are partitioned into disjoint
groups such that the value of an occurrence on X is the same as that
of every other occurrence within its group, 'Further, we denote the

collection of these groups by:

.GRi (X) = { gpy(X,x) & % ¢ Ri[X] }

After 'groupings are specified with 1link operators, the
TRAVERSE operations are performed on the groups. Otherwise, they are
performed on individual occurrences., The projections which appear in
a query expressed in the relational algebra can be replaced by this
grouping except for the projection at the end of the algebraic

expression,

Grouping has been incorporatéd into the relational model in
the form of quotienﬁ relations and an algebra of quotient relations

has been defined [34].
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2.3.6,2, Existential link operators

This and the next two sections describe the semantics of
TRAVERSE operatioﬂs of link operators. An existential link operator
(EXT) checks existence of links between two record types. This is
one variant of a numerical link operator (see Section 2.3.6.3.). The
traversal expression‘of this link type is: |

downward mode:

Rt we=> / L / (X2) -—> R2
upward mode:
Rl —=> (X1) / L / ~==> R2
Note that it is not meaningful to define grouping on. both node reccrd
types, If a grouping is not involved, the existential link operator
(EXT) retufns:

neutral mode: .
{ (r1,r2) : r1 € R1 Ar2cs R2 A31 L

(1=(r1, r2) )1}
downward mode:
{ (r2) : r2 ¢R2 Adr1 ¢ R131 L
{1=(r1, r2) )1
upward mode:
{ (r1) :r1 ¢R1 A3r2 ¢R231 ¢L

{1 =(r1,r2) ) }

When grouping is specified, this operation is extended to
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retrieve all thé mémbers of the groups, in each of which there is at
least one member that 1is linked to at leést dne occurrence.of the
6ther record type. The semantics depends on the mode:
downﬁard mode: |
{ (r2) : 2 ¢ R2 ~ dr1 e R1 3r2'e ggp(X2,r2lx2])
1 e L (1= {(rt, r2") )}
upward mode:
{ {r1) : r1 g R1 A dr2 ¢ R2 3r1'g.éR1(X1,r1[X1])
| M .L(1=Cri',yr2) )} |
In case tﬁa; grouping_ exists ih an existential link operator, we
allow the refrieval of only either an initial_node-or a terminal
nqde. 'Otherwise, the occurrences of the taréet_reGOfd type that are
in one of the qﬁalifiéd groups but that are not directly linked to

the other node record type, would have to be paired with null values.

Let us show how this operator can be used. Consider the
educational database in Figure 2-1, In order to retrieve all the
ENROLLMENTs of those students who took a database course ("DB"), we
use the downward mode of the existential link operator, Figure -
2-3 gives an expfession for this retrieval. The first form is a GDL
algebraic expression. The second form is a partial staﬁement of our
DML. DML statements will be described in Chapter 4, The result of
the query for the state shown in Figure 2-2 is also given in Figure.

. 2—3-
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State:
COURSE
1,08,C3,YE3 2,DB,C3,NO 3,PL,CS,YES
ENROLLS
10,2,A VEO.T,A' 20,2,B 30,1,A
10,3,B 20,3,C 30,3,A.
ENROLLMENT

Figure 2-2: State of Simple Educational Database

The negation of this link operator is called a negative
existential link operator (NEGEXT). It is expressed as:
downward mode: R1 ===> / 7 L / (X2) -==> R2
upward mode:  R1 ===> (X1} / " L / ===> R2
If we denote the result of the corresponding existential link
operator by RESULT, the semantics of t{he negative existential link
operator can be written as:
.1. without grouping
neutral mode: R1? X R2 - RESULT
downward mode: R2 - RESULT
upward modé: R1 - RESULT

2. wWith gréuping
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Query 2-1:

Retrieve all the ENROLLMENT occurrences of the
students who tocok DB course

Algebraic éxpression:
{COURSE> [ COURSE.CNAME = "DB" ]
(downward mode:; COURSE ——=> /ENROLLS/{SNO) ——==>
ENROLLMENT] <ENROLLMENT>

(ENROLLMENT . SNO,ENROLLMENT.CNO,
ENROLLMENT.GRADE)

Partial DML statement:
COURSE [CNAME = "DB"] —ew>/ENROLLS/(SNO)=mm=
ENROLLMENT
Result:
{ (10,2,A), (10,3,B), (20,1,A), (20,2,B), (20,3,C) }

Figure 2-3: Example of Existential Link Operator
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downward mode: R2 - RESULT

upward mode: R1 - RESULT

The R1 X R2 denotes the Cartesian product of R1 and R2,

2.3.6,3. Numerical link operators

| A numerical 1link operator (NUM) provides a user with a
powerful facility to express relationships between two record types.
We wWrite the traversal expression of this Operatqr as:’

Rl w==> (X1) // Kq@> L // (X2) -==> R2
where <q> is of the form: <ec-op> n. If the comparison operator <§-0p>
iz omitted, "=" i3 assumed, The grouping is optional, It can be
specified for 5oth nodes or either node. n is either a p@sitive
integer or a symbol.ﬂ+". If no grouping is involved, the numerical
link operator specifies that each occurrence of a target record type
must be linked to a specified number of cccurrences of another reebrd
type. The symbol "+" denotes the cardinality of a given initial or
terminal node, In other words, it expresses a universal quantifier.
When grouping is specified, the preceding definitions are applied to
the groups inétead of individual occurrences, The semantics of a'
numerical link operator for the case that <q} is "=n" is defined as:

1. without grouping

neutral mode:

[ (F1, 12) trlecRlAr2e R2
(Il ¢ L (.l = (r1, r2) ) }

downward'mode:
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{(r2) :r2eR2 A @mrieR1 31l el
(1= {r1,r2) )1}
upward mode:
{(r1) :r1 e R1 A (Gn)r2 ¢ R231 ¢ L
(L = (r1, r2) ) }
2. with grouping
downward mode:
{ (r2) : r2 ¢ R2 A (In)ggq e Gg1(X1) Irt e gpq
dr2' ¢ gpo(X2,r2{x21) 31 ¢ L
(1=A(r1, r2") )1t
upward mode;
{ (r1) : r1 ¢ R1 A (3n)gps & Gpo(X2) Ir2 € gpo
| 3r1; e g1 (X1,r1{X1D) 31 ¢ L
(l=(r1t, r2) ) 1}
The (3n)x denotes that there must be exactly n instances
{(occurrences) of the variable x satisfying the predicate following

it. The semantics of the other variants are similarly defined.

An existential link operator is the case where <{g> is ">=1",
If the symbol "+" is specified, (dn)x in the ébove definitions is
replaced by ¥x. It means that the predicate is satisfied "for all
instances of x", The division operation of the relational algebra

can be easily simulated by this operator,




33

We illustrate how this link operator can be applied. Let us
use the same schema_as in Figure 2-1 and the same state as in Figure
2-2. Suppose we want to retrieve all the ENROLLMENTs of the students
who took all the core COURSEs offered. An existential link operator
is not wuseful in this case, because it will retrieve éll the
ENROLLMENTs of £he students who took any éore COURSEs offered, - This
query is correctly expressed with a numerical link oﬁerator. Figure

2-8 illustrates this example,

Query 2-2: _
Retrieve all the ENROLLMENT occurrences of the
students who tock all the core courses

Partial DML statement:
COURSE [CORE = "YES"] --=>// + ENROLLS//{SNO)

——=> ENROLLMENT
Result:
{(20,1,8), (20,2,B), (20,3,C), (30,1,4), (30,2,A)}

Figure 2-4: Example of Numerical Link Operator

Numerical link operators support quantifier ( <c-op> n) only
at the outer level if there is grouping; within a group, only the
existential quantifier may be used. We assume that the former is

more common than the latter.
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2.3.6,4, Transitive link operators

A transitivellink operator (TRN) can be used for a recursive
link type. Ih neutral mode, it retrieves the record occurrences that
are connected to at least oné'occurrence of the initial node by a
sequence containing a specified number of link occurrences, In other
modes, occurréhées of either endpoint are similarly retrieved., It is
expressed as:

R ==w> N\ <g> L \ ===>R
where <q> is of the form: ?c-op) n. If the <c-op> is omitted, "=" is
assumed, The n is either a positive integer number or a symbol "aM,
The latter denotes the cardinality of R, Setting n te "+" permits
the computation of the transiﬁive closure of a link, As mentioned
before, we do not allow grouping for this operator, . If <{g> iz "=n",
this operator returns: |
neutral mode:
TNp(n) = { (r1,rn) :r1 e Rarne Ra 311 e L
312 ¢ L ..., 10t eL3r2e RIr3 e R
eeesedrn=1 ¢ R ( 11=(r1,r2) Ao 12=(r2,r3) o .....
A ln=1={rn-1,rn) ).}
downward mode:
TDgln) = { (f) tre Radit oL 312, 1L
eseee Jlng LIr1 ¢ RIr2e¢ R +vves drne R

(11

(r1,r2) Al2 = (r2,r3) A venes

adn = (ro,r) ) 1}
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upward mode: .
TUg(n) = { (r) : re R adl1e L Jl2¢ L
ceeee Ane L3Irt e RIr2e R ... Jrne R
(11 =(r,r1) A 12 = (P1,r2) A vuevu

Aln = (rn-1,rn) ) }

Other variants can be defined in terms of these definitions.
For example, the downward variant where <q> is "<=n" is:
TDR(1) v TDg(2) v cuvus v TDg ()
Using this 1link ope;étor, we caﬂ, for' example, retrieve all the
superiors (i.e.; manaéers at every level in a hierarchy) of a given
employee. Note :that this 1link opérator allows :the retrieval  of

record occurrences that are connected to themselves.

2,3.6.5. Formation of resultant record list type

The last operation of a 1link operator, a FORM operation,
ereates a resultant record 1list type., We use the following notation

to desecribe this operation:

1. rlir denotes that r is appended to the end of rl.
2. comp(r,rl,R) is a predicate that is true if r = ri[R].
Let RESULT be the type of the result of a TRAVERSE operation,
Depending on the MODE, the FORM retﬁrns:- |
1. neutral mode:
{ rltir2 2 rI1 ¢ RL1 A r2 o R2 ,3ri e R1

( comp(r1,ri1,R1) 5o (ri,r2) . RESULT ) }
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2, downward mode: RESULT
3. upward mode:
{ rl1 : rl1 € RL1 A 3rt ¢ R1

( comp(ri,rl1,R1) A (r1) e RESULT ) }

2.3.7 Storage Operations

Two storage operations are defined on both records and links,
Those operations that violate integriﬁy‘constraints must be rejected.
A4 record addition operation (RECADD) adds a record occurrence to a
record type. If r1 is added to R1, then the state of R1 is:

$R1 = $R1 + { 1 }

A record deletion operation (RECDEL) deletes a record
occurrence from a record type. If f1 is deleted from R1, then the
state of R1 becomes: |

$R1 = $R1 - t r1 1
This operation has side effects when the occurrence deleted 1is
incident with some link occurrences, Sudh link cccurrences should be
deleted by the system. In oqr qata model, however, no further
riﬁpling effect oceurs, since each iink type 1is independent of all

others.

A link addition (LINKADD) adds a link occurrence 11 to a link
type L1 as in a record addition operation. The state of L1 after the

operation is:




37

$L1 = $L1 + { 11 1}
The record occurrences which are incident with this link occurrence

must exist for correct execution of this operation,

A link deletion (LINKDEL) deletes one link occurrence 11 from
a link type L1. The state is changed to:

$L1 = $L1 - { 11 }

No storage operations are defined for a record list tYpe
because it is an transient object defined only at query processing

time,




Chapter 3

DATA DEFINITION LANGUAGE

3.1 OVERVIEW

This chapter describes the Data Definition Language (DDL) of
GDL. It is founded on the data model GDM described in the previous
chapter. The DﬁL iz used to defiﬁe the structure, the integrity
constréints and viewg of a  schema. It also supports schema
evolutioq. GDL allows the construction of temporary record ﬁypes'and
link types that exist only during a Singie:session or run, we say
that these objects are volatile. Volatile record and link types are
described in Chépter 4, The recofd and link types that reside in the
database are said %o be resident. DDL supports  definitions of

resident record and link types.

In designing a schema, there are some conflicting factors.
For example.'records with indices can be accessed faster by using the
indices than records without indices; however, each index requires
more space, and more time to stpre and update record occurrences;
Because the ﬁradeoffs really depgnd on applications, it is important

to provide a user with some means for controlling tradeoffs., This

38
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control should be, however, at a logical level, GDL provides two
types of access Kkeys to control storage structure of record types. (
Keys are described in Section 3.2.1. ) The inclusion of link types

and access keys in a schema definition make this possible.

GDL makes it possible for a user to design his of her

applications as in a solely value based system, a Solely link based

system or -any mixture of these systems; A value based system is a
system in which queries are expressed as qualification3'on values, A
link based system is one in which queries are -expreésed as link
traversals, A system based on the relational model is a typical
value based system. Conversely, a system based on the CODASYL model

is a typical link-based system.

3.2 SCHEMA DEFINITION

A schema definition consists of: a schema name, a list of
record type definiﬁions, a list of link type definitidns and a list
of integrity constraint definitions. The following sections define
the functions of the DDL. We use two example schemas in this chapter
and the next chapter. Their schema diagrams are illustrated ih
Figure 3-1 and Figure 3-2. Their scﬁema definitions are given in

Figure 3-3 and Figure 3-4.
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define schema EDUCATIONAL-DATABASE

record COURSE

attribute CNO integer

attribute CNAME character 10
attribute DEPT character 10
attribute CORE character : 3
search key CNAME

unique key CNO

record ENROLLMENT

attribute SNO integer

attribute CNO integer
attribute GRADE character 2
record STUDENT
attribute SNO integer .
attribute SNAME character 30
attribute MAJOR ¢haracter 10
gearch Key SNAME
unique key SNO
link PREREQUISITE * (COURSE, COURSE)

link ENROLLS, ENROLLED (COURSE, ENROLLMENT)

link TAKES (STUDENT, ENROLLMENT)
virtual SNO = 3NO '

link TAKEN (ENROLLMENT, STUDENT)
virtual SNC = SNO

~ Figure 3-3: Definition of Educational Schema
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define schema ENTERPRISZE - -

record EMPLOYEE

attribute ENO integer 10 -
attribute NAME character 30
attribute SALARY integer
clustering key NAME
‘gearch key ENQ
unique key ENO

record PROJECT
attribute PNO integer o
attribute NAME character 20
attribute MANAGER integer 10
clustering key NAME
search key PNO
unigque key FNO

link DIRECTS (EMPLOYEE, PROJECT)

link MANAGED (EMPLOYEE, EMPLOYEE)

constraint link DIRECTS (EMPLOYEE, PROJECT) never
path EMPLOYEE --->/DIRECTS/---> PROJECT :
EMPLOYEE.ENO X PROJECT.MANAGER

constraint link MANAGED (E1, E2) never
path E1 ——=>/MANAGED/=-->E2 !
E1. SALARY >= E2.SALARY

Figure 3-U: Definition of Enterprise'Schema
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3.2.1 Record Type Definition
A record type definition is composed of a record type name, a
list of attribute definitions and key definitions. The attribute

definition consists of an attribute name and a data type definition,

The key definitions are optional.

Two types of Keys are provided in GDL.

1. access keys: to specify storage structure and access paths
of record types

. unique key: to spec1fy that the values of a given set of
attrlbutes must be unique within a record type._

There are, furthermore, two types of access keys: clustering keys

for physical ordering of record occurrences and search keys for

indices on attributes.

Only one clustering key definition ié ‘possible for ‘each
record type. The c¢lustering key- - can be a single attribute or a
combination of attributes. It specifies that the record occurrences
are clustered by the values of the clustering key attribuﬁe(s), The
first key attribute is a major clustering attribute which we call a

primary key attribute, The values of the second key attribute

cluster the record occurrences that have the same value of the first
key attribute, and so on. By default, the primary key attribute is
defined to be the first attribute appearing in a record type

definition, For example, the clustering key attribute of record type
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COURSE in schema EDUCATIONAL-DATABASE (Figure 3-1) is CNO by default.
A primary key is also provided with an index in our current design of

GDL. Sequential access ordered by this attribute is efficient.

Any attribute and any combination of attributes can be
defingd as a search key. Search keys are currently implemented by
indices., Any number of search keys can be‘defined for each record
type. A search key declaration tells the syétem théﬁ ﬁhere may be
many queries on this attribute, We create a fast access path for
each Ssearch Kkey or each combination of search Lkeys, It is
inefficient. to_ Séarch records by .an attfibute. that is neither a
primary Key nor a search key, unless the number of fecord occurrences

is small. Null values are permitted for search keys.

A unique Key can be a single attribute or a combination of
attributes. These attributes can also participate in other types of
keys ‘at the same time. 4 unique key declaration specifies that there
are noe wwo record oceurrences that have the same value of the
attribute or the combination of attributes. This is a typé of
integrity constraint. A unique key is defined only within a record
type. Uniqueness constraints spanning more than one record type hust
be defined in constraint definitions on a schema or views. Null

values are not permitted for unique keys.
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3.2.2 Link Type Definition
GDL has two classes of link type:

- real link type

- virtual link type

For a real link type, which is the default, the occurrences always

physically exist. It can be an essential link type that bears

information, or a non-essential link type that bears no information,

In the latter case, an attribute of the terminal node record type
must be compatible at least one of the attributes of the initial node

record type.

In case of non-essential link types, it is possible to link
two record types without physically steoring link océurrences. For
example, consider link TAKES from STUDENT to ENROLLMENT, in schema
EDUCATIONALaDAIABASE (Fig. 3.1 and Fig. 3.3). We can efficiently get
all the enrollments of a given student identified by SNO, by
searching identical values of SNO in ENROLLMENT since this 'SNO is the
primary key of ENROLLMENT. That is, if the terminal node record &type
of a link type has a fast access path.on a particular attribute and
the initial node_fecord type.contains the compatible attribuﬁe, the
DBMS can efficiently implement link traversais ‘without physically
storing 1link occurrences, The access path on the terminal node

record type virtually links two record types. We define the

semantics of a virtual link type from record type R1 ( having an
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attribute A1 ) to record type R2 ( having an attribute A2 ) as

follows:

f (r1,r2) : r1 € R1 A r2 e R2 A

r1lA1] <e-op> ra2{a2] }

where A1 and A2 are gompatible and A2 is either a primary key.or a
search key. The <c~op> is one of the cémparison operators defined in
Chapter 2. This is similar to a Jjoin defined by E. F. Codd [20],
Arbitrary Jjoin predicates can be defined on.virtual link types in

view definitions,

Virtual link types are used in DML statéments just like real
link types except that no storage operations are possible on these
link types. Note that if we use only virtual link types to connect
record types, GDL becomes a value-hased system. One aemerit i=s that
all the link types used in queries must be defined prior to their

use.,

The name of an inverse link type may be specified in the
definition of a link type. Otherwise, it is referenced by the name

of the corresponding link type prefixed with a %.
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3.2.3 Constraint Definition

We take an operational approach to Supporting integrity

constraints, views and schema evolution as in many relational
systems.  GDL provides the user with an assertioﬁ ianguage that
allows him or her to specify integrity-constraints, views and schema
evolution.using phe same language construects as in the DML, This
appféach simplifies DBMS architecture and préserves a'unifdrm system
to the user. Further, all the expressive power of the DML is
available to these'facilities without expanding the DEMS. The DML

will be discussed in the next.chapter.

An integrity constraint defines a restriction on permissiblel
states of a schema. The numerical link operator (NUM) is useful for

representing functional dependencies. Due to the power of 1link

operators, integrity constraints of GDL can express not only first

order predicates but also higher order predicates.

An integrity constraint 1is checked only when a storage
operation on the object in question is invoked, because only storage

operaticons change the schema state. GDL provides two modes of

integrity constraints: "never" and Talways", In the negative mode
specified by '"never", the DBMS tries to seleect record or link
occurrences using an expression supplied by - the user. If - no

occurrences are retrieved, the constraints are satisfied. Otherwise,

the storage. operation must be rejected. '~ In the affirmative mode
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specified by "always", the operation in question is satisfied if one
or more occurrences are retrieved. Although one of these modes is
theoretically enough to express integrity constraints, we decided to

have two modes from an efficiency point of view.

Two examples of an constraint definition are given in Figure
3-4, The first one specifies that if an éccurreﬁce of EMPLOYEE is
connected to an occurrence of PROJECT via link type DIRECTS, then the
value of ENO in EMPLOYEE must be the same as the value of MANAGER in
PROJECT. The second example specifies that the salary of any manager

is lower than none of his or her subordinates! salarles.

Note that an constraint deflnltlon is never specified for a
virtual link type since storage operations are not defined on this

link type.

3.3 VIEWS

Definition of views permits more than one application %o
securely and conveniently share a database. A view definition is
composed of a view name, and a list of record and link type
definitions, The record énd link definitions c¢ongist of not only a
specification of ﬁheir structure but also a specification of mappings
that describe how they are derived from a schema. These mappings are
specified in terms of a record selection expression or a link

selection expression against an underlying schema, Each query
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against a given view will be modified to be consistent with the view
definition. -The occurrences of a view are not copied in separate
storage in our current design. This approach saves storage and
avoids the problems of inconsistency betwéen the state of a view and
the state of its underlying schema, although it can be inefficient if

the view i3 frequently used.

We give an example of a view, PUBLIC-CS-DATABASE, on schema
EDUCATIONAL-DATABASE. This view allows the uséf to see public
documents in the Départment of Compgter Sciences ("C3"), Figure
3-5 and Figure 3-6 show the diagram of this view and the view
definition; respectivély. It consists of two record types, COURSE
~and STUDENT, and two link types, PREREQUISITE and TAKEN. COURSE =
represents the courses offered in the Department of Computer
Sciences. STUDENT represents the students whose major is Cémputer
Sciences. Note that if some courses in the department of Computer.
Sciences have prerequisite courses that- are not within the
department, they are not included in PREREQUISITE, A similar

discussion alsc holds for TAKEN.

3.4 SCHEMA EVOLUTICN

A user may occasionally need to change the definition of his
or her schema., . Changes in a schema definition may propagate to the

databases and/or application programs. To complete schema evolution,
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Figure 3-5: Diagram of PUBLIC-CS-DATABASE View

define view PUBLIC;CS-DATABASE
‘ on schema EDUCATIONAL-DATABASE

record COURSE (CNO, CNAME, CORE)
from COURSE [DEPT = "CS"] (CNO, CNAME, CORE)

record STUDENT (SNAME)
from STUDENT [MAJOR = "CS"] (SNAME)

link PREREQUISITE (COURSE, COURSE)
from PREREQUISITE [path COURSE[DEPT = "C5"]
——=>/PREREQUISITE/~--~>COURSELDEPT = "CS"]]

1ink TAKEN (COURSE, STUDENT)
from (COURSE, STUDENT) [path COURSE[DEPT = "CS"]
—wr>/ENROLLS/===>ENROLLMENT~~->/ TAKEN/
———>STUDENTI{MAJOR="CS"]]

Figure 3-6: " Definition of PUBLIC-CS-DATABASE View
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we must also handle these side effects, Figure 3=7 gives the
relationships between types of change and tﬁeir effects on
environments. By an effect on a databaée, we mean that some existent
database(s) must be converted whether the effect is a side effect or
not, By an effect onh an application'program, we also mean that those
existent application programs %that refer Lo the schema need to be

converted,

Schema evolution can be processed in two ways:

1. Using only the DDL: A user specifies a definition of an
evolved schema together with the spec1flcat10n of how to
derive from an existent database,

2. Using. both DDL and DML: A user creates a new definition

" of a schema by the DDL; usging select statements in the
DML, retrieve the occurrences in temporary areas, called
volatile types (described in Section #.2); using add

statements, store the occurrences into new types that have
been defined by the DDL.

" As we see in Figure 3-T7, addition of a search key, a record
type and a link type has no effect on existent databases and
application prdgrams' in our architecture, In many cases, the
conversion of an application program can be avoided by defining a
view on the new schema, although it may cause poor performance.
Schema changes ﬁhaﬁ cause conversions of-databéses and/or application
programs should be minimized-because these conversions are costly.
Schema evolution will generally be accompliéhed by deriving new

record types and link types from existent databases one by one.
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cbject add delete replace

data type of attribute - - A, D b
clustering key - - | A. D

search key N A -

unique key | D A A, D

attribute o A, D A, D -

record type 7 N A -

réai/viftual ' y - - D

endpoipt record type - - | A; D

Iink typef : N A -

constraint D A 4, D

where A denotes effect on existent applications
D denotes effect on existent databases
N denotes no effect on both
- = denotes "not applicable"

Figure 3-7: Types of Schema Change
and Their Effects




Chapter 4

DATA MANIPULATION LANGUAGE-

4.1 OVERVIEW

This chapter deseribes the Data Manipulation Language {(DML).
The Eleméntary.Data Language discussgd in Chapter 2 ﬁrovides a usgeful
repertoire of operations on netuork struecture. = Like an assembly
language, howgver, it is tedioué to write queries in the Elementéry
Data Language. To provide a user with a more high-level language
facility, we design a DML on_top of the Elementary Data Language.
The DML defines rules for composition of Elementary'Déta Operations,

'The design goals of DML are summarized as:

- easy to write queries
- aid the user to construct efficient queries
- precise definition of each DML statement

To achieve these goals, we take thé following approach:

§

queries are formulated in terms of traversals of the schema
- set-at-a-time representation of DML

- close correspondence between each DML statement and its
actual processing ‘ .

- each DML statement is uniquely . translated into a sequence
- of Elementary Data Qperations

53
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- the user can manipulate not only record types but also link
types

- dynamic creation and deletion of record &%ypes and 1link
types are allowed

GDL. supports a very versatile DBMS architecture, DML
provides a user with powerful tools for sophisticated database
operations, These language features allow an advanced user to

efficiently tailor databases for his or her applications, At the

same time, a beginner can write a query with very little knowledge of
GDL. For example, such a user does not need";o know 1link
manipulations.  To retrieve record occurrences of a schema, he or she

only needs to know expressions for selecting records.

The following sections describe prominent features of DML. A4

full and precise definition of the syntax is given in Appendix A.

All the record types and link types must be defined before

being referenced.’

4,2 VOLATILE OBJECT DEFINITION

The DML supports volatile reéord and link types. Volatile
types differ from resident types in‘several aspects. ~ They can be
defined only ‘in a DML program or an interactive query session, 'They
are stored in simple arrays that are created.in a user's area by a.

DML processor or a query processor, The user and the system can both
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access the arrays. The naming. convention depends on the host
language. Volatile record and link types can be used as an area for
data passing between an application program and the system, No key

definitions are allowed for volatile record types.

As we will déscribe in the next section, the record and link
ccecurrences retrieved are stored in volétile'record and 1link types
specified - by ﬁﬁe user, To support schema evolution, these
occurrences can be inserted inte a new schema by "add ‘record" and
"add link" statements, The new schema must be‘ defined prior to

loading data.
4.3 RECORD SELECTION AND CREATION

4.3.1 Variables

A variable represents a set of qualified occurrences of a
given type; Record type names and link type names themselves are
used to denote variables in DML statements, When a single record
type i3 referenced more than once in a single DML statemeﬁt. howevér,
ambiguity may occur. A recdrd type name can be associéted with more
than one different qualified set. For example, record type EMPLOYEE
can be assoclated with both subordinates and managers. To

distinguish different qualified sets, wé provide variable statements.

One example of a variable statement is: : L
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VARIABLE EMPLOYEE: E1, E2

4,.3.2 Record Selection

Selection of recofd occurrences is expressed by.a selection
expression which is one of the basic language constfucts of the DML.
It is used nbt only for recofd selection.but also for link selection
since a 1link occurrence is identified by a pair of record
occurrences, A_ qualification for record or link selection may
involve_bnly one”recorq type or relationships between record types.
This section describes the former case and the following sections

describe the latter case,

A qualificétion that involves a single record type is calied
an intra-record restriction (IRST). Consider the enterprise schema
(Figure 3-2).' An example of an IRST on record type EMPLOYEE is:

NAME = "3SMITH"
In a general form, a qualification may héve more than one restriction
connected by set operators (4, -, n)- For example,

NAME = "SMITH" , SALARY > 30000

Parentheses may be used to change a regular left-to-right

evaluation order..
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§.3.3 Path Expressions

In a gquery that involves more than one fecord type, the
record types referenced in the query must have some relationship to

the record type(s) to be retrieved which we call target record

type(s). ( A user specifies the target record type(s). ) This means
that those record types are in some way connecteﬁ to the target
record  type(s) in the GDL graph when all the relationships between
record types are expressed by link types. Whether 1link types are
temporary or not does not make a difference at the representation

level of a query.

To express the structure of connected record types, we extend
the concept of path (e.g., [#01). The usual definition of a'path is
a finite alternating sequence of _record types and link types
beginning and ending with record types, such that for each link type,
the preceding record type is the initial node record type of the link
type and the following record type is ﬁhe terminal node recofd_type
of the link type. We expand this notion of a path by including
operations on record types and link types on a path. We céll this

structure a path expression. That is, a path expression is an

expression of a sequence of record restrictions and link traversals,

‘<path expression> ::= <path expression> ——-->
<{link operator> ---> <record clause> |
<record clause> ---> <1link operator>

-==> <record clause> ' :
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<record clause> ::z <{record name> |
<{record name> [ <selection expression> ]
(<record name> [ <selection expression> ] )

When a record clause for a terminal node is enclosed by parentheses,

the terminal node will be evaluated before the traversal operation.

Let.ﬁs giﬁe-an exaﬁple'of a-pathf Suppose we have a query
that selects thése employées who directly manage employee "SMITHY for
the enterprise schema illustrated in Figure 3-2. We reference two
_ types pf EMPLOYEE, declafing E1 and E2 as the variables of EMPLOYEE.
E1 denotes the employee:célléd "SMITH" ahdvEZAdgnotes'the managers of
E1. - We .caﬁ_-exp;eSS- this qualification easily by a single path

expreséion.
path E1[NAME="SMITH"} ——-> /MANAGED/ ~ww> E2

An intra-record restriction (i.e.,, NAME="SMITH") is specified for E1
to find .embloyee(s) .called "SMITH". Symbols enclosing link type
names indicate the types of link operators to be operated on the link
typés: /' / for an existential.link opefator, /7 // for. a numerical

link operator, and \ \ for a transitive link operator.

If the query is modified to select all the superiors of
EMPLOYEE "SMITH", then the path expression will have a transitive

link operator instead of an existential link operator:

- path E1[NAME="SMITH"] —-—-> \ + MANAGED \ —--> E2
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Every path must follow the direction of the 1link types
appearing on the path. (Of course, inverse link types can be used to

follow the path.)

The positions of target record types on a siven path

déterminé fhe mode of each link operatdf.. On the left of the
leftmost target recor&'ﬁypé, the terminal node record type of each
link type is alﬁays the target of the link operator (i.e., a downward
mode). Those link operators in between the leftmost and rightmost
target record types have a neutral mode. - The link operators on the
'rigﬁt of the rightmost target record type alsorhave.a neutral mode
except the last link operator that has an-upward_mode. The modes of
link bperatofs appearing on inner nested paths are recursively
defined, The constraint that record types appearing in a query ﬁust
be connected via some path does not reduce the péwer of the language,

3ince the user can create link types "on the fly" if necessary..

4,3.4 Inter-Record Restrictions

A path can be followed by a qualification that specifies

restriction(s) spanning more than one record type on the path. Such

a restriction is called an inter-record restriction (XRST) as opposed
to an intra-record restriction. The predicate that the salary of a
manager is lower than that of his/her subordinates cah be expressed

as.
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path E1 -—-=> /MANAGED/ ---> E2: E1,SALARY > E2.SALARY

As in an intra-record restriction, restrictions in an inter~-record

restriction can be connected by set operators and parenthesized,

4.3.5 Nested Path Expressions

Nested paths are allowed in the"DML. This 1is useful to
express.phe situation where é record type on a path must be further
qualified by another path expressioa or ﬁhere 6ther tafget record
types aré_on another péth(s). Consider ﬁhe énterprisé schéma.‘ The
prediqate.that employees named "SMITH", E1, direct PROJECT and are
managéd.ﬁy employee E2 can.be exbreésed by a nested path exbressioh:

path E1{ path EJ[NAME="SMITH"] -w-> /DIRECTS/
~—=> PROJECT ] —-—-=> /MANAGED/ ---=> E2

. 4,3.6 Set Qperators

Path expressions can be connected by set operatdrs (+, = ,n

J. If two path expressions are connected by a set operator, both
path expressions must contain the séme‘ target_ record type. N
OtherwiSe, the set operation is undefined. An example is a query
that selects employees who .manage employee "SMITH™ or who direct

project "DBMS":

( path E1[NAME="SMITH"] —~~> /MANAGED/ =—=> E2 ) +
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( path E2 w~~> /DIRECTS/ -~-~> PROJECT[NAME="DBMS"] )

E2 must be specified as the target record type in the DML statement.

u.3.7 Select Record Statement

The select record 'statement i3 used to  select record
occurrenées of one or more record types and to construct occurrences
of a new record type from them, The syntax for the select record
statement is:

select record <record name> ;= <target record lizt>

{ [<selection expression>] } { <projection> }
{ <sorting> } '

Items enclosed by curly brackets are optional, The record name in

‘this statement specifies the destination record type into which the

retrieved record occurrences 'arg to be brought. We restiriect a
destination record type to be a volatile record type. Both the-user
and the system can access the destination record tybe. No special
communication area is necessary. The record 1list in the statement
specifies target récord type(s). The selection expression specifies
qualification of the target record %type(s). If no selection
expression is. specified, all the occurrences of the f{arget record

type(s) are retrieved,

The projection part gives a specification of a projection

operation including null and default value assignments. If this part
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is absent, the whole record is copied to the destination record type.
The sorting part gives a specification of softing on the destination

record type.

An example of a select record statement is shown in Figure
4-1. The parenthesized NAME in the second GDL statement specifies a

projection on E2 to retrieve only one attribute NAME., MANAGERS is

the destination record type of this record selection statement.

| EMPLOYEE |<—- MANAGED

o o, S s s

Query:

Select, into MANAGERS, the names of those who
directly manage employee SMITH

GDL statements:

VARIABLE EMPLOYEE: E1, E2

select record MANAGERS := E2 [path E1 [ NAME =
MSMITH"] ww>/MANAGED/ ~—=> E2 ] (NAME)

Figure 4-1: . Example of Simple Record
Selection Statement

The next example contains an inter-record restriction. Ir - .
the constraint on a manager's salary defined in Figure 3-4 is not

enforeced, thére might be managers who are paid ‘less than their
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subordinates. VThe. DML statement in Figure L4-2 retrieves such
managers. The restriction on SALARY is between two record types, E1

and E2, connected by link MANAGED.

Figure 433 shows an example of a.ﬁore complex query for the
educational database shown in Figure 3-1. Its intént is to retrieve
those students who took COURSE "386" but who have not actually taken
its prerequisite courses, The DML statehent can be decomposed into
three path expreasions. Note that this is not the only way to
express the query in GDL. We can, for example, decompose the GDL
statement inte two_sbatements_to avoid ?edundant evaluation of the

intra—record restriction on COURSE, -

The last éxample shows how we create a new record tjpe that
consists of attributes of more than one existent record type.
Suppose we need to create a record type that is composed of an
employee's name, and his or her manéger's name, Figure U4-4 gives a

DML statement for this query.

These examples show how easily queries are expressed in GDL.
As we see, writing a query merely involves tracing path(s) in a graph

representing a given schema,




Query:

Select the managers (LOW-PAY-MANAGER) whose
salaries are lower than at least one of their
dlrect subordinates

GDL =tatements:
VARIABLE EMPLOYEE: E1%, E2

select record LOW-PAY-MANAGER := E2 [
path E1 --=> /MANAGED/ =—-> E2 :
£1.SALARY > E2.SALARY ]

Figure 4-2: Example of Inter-record Restriction

Query:

select the students, intc SKIP-STUDENT, who took
386" but who actually have not taken
its prerequisite courses

GDL. statements:
VARIABLE COURSE: €1, €2, C3

select record SKIP-STUDENT := STUDENT
- [ path ENROLLMENT [ path C1 [ CNO = 386 ] ——=>
/ENROLLS/ (SNO) ---> ENROLLMENT —==>
(SNO)// X + ENROLLED // —==> (. C3 [ path C2 [
CNO ‘= 386 ] —--> /PREREQUISITE/ ===> C3 ] ) ]
———=> /TAKEN/ ~-=~> STUDENT ]

Figure 4-3: Example of Complex Query

64
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Query:
Get all pairs of an employee and his/her direct
manager
GDL statements:
VARIABLE EMPLOYEE: E1, E2
select record EMP-MNG ﬁ: Et, E2
[ path E1 —~-=> /MANAGED/ ——-> E2 ]
{ ENAME := E1,NAME, MNAME := E2.NAME )

Figure 4-4: Example of New Record Type Creation

4,3.8 Translation of DML statements

Each DML sﬁatement is translated inte a sequence of
Elementary Data Operations, The evaluation of a given selection
expression 1is executed from 1left to right unless parentheses or
nested path expressions are encountered. In this ca#e, the inner
expressions ére évaluated before the outer expression as in usual
mathematical expressioné. A path expression is evaluated along the
direction of the path. The record clause for a given terminal node
record type can be parenthesized; in this case, the record c¢lause
will be evaluated before the 1link traversal.  The select-record

statement in Figure 4-1 is translated into:
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1. restriction on E1 (RST)
<E1'> 1= <E1> [ET.NAME = "SMITH"]
2. existential link operator on MANAGED (EXT)

E2 := <E1'>[downward mode: E1' —--> /MANAGED/
-—=> E2] <E2>

3. projection on E2' (PROJ)

MANAGERS := <E2'> (E2'.NAME)

The items enclosed by angular brackets denote record list types.

Chapter 5 describes translation of DML statements.

4.,3.9 Graph Driven Interactive Query Interface

The désign of an interactive query.ihterface is beyond this
work, The DML is; however, closely tied with our strategy for the
interactive query interface. Therefofe,.we give a bfief summary of
the system being designed. Qur interactive query ihterface is

graph-driven, supported by graphlces packages, It can be summarized

as follows:

1. the user selects a schema

2. the system shows a diagram (a graph) of the schema on a
CRT screen ' .

3. the user points to record types (nodes) and link types
(arc)} alternately to draw a path representing his/her
query

4, at each node %o which a user points, the system asks the
user its qualification expression :

5. at each arc of the path, the system asks the user which
link operator_should be applied
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This system can be implemented by a rather simple graphics system and

a query processor,

It is easy for the user to formulate queries using such an
interface, because the approach is very visual and natural. Its
power becomes even more evident if a query involves many record types
and ;ink types. GDL is obviously a suitable data language for the
graph driven query systenm since the mapping between the user language

and GDL is one to one,

4.4 LINK SELECTION AND CREATION

GDL allows the user to explicitly manipulate links as well as
records. An occurrencé of a giﬁen link type can be identified by an
occurrence of a.binary record list type that consists of the two node
record fypes of thg link ¢type. Seléction " and creation. of link
ogeurrences can be done in terms of manipulating oeccurrences of the
corresponding binary record list type. The select link statement is
used to select and to create a link type composed of two counnected
record types, ﬁhile the creaté link statement is used %to create a
link type composed of two unconnected record types. the'that the
select  link and. the connect -link statements permit the ruser to

establish new relationships between two record types.
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4.4,1 Select Link Statement

. The select link statement is used to select occﬁrrences of a

given link type or to create a link type that is defined between two

connected record_types. Its syntax is: ' ”

select link <link name> := <link clause>
where

" <link clause> ::= <link named> { ({record name>,
<record name>) } { [<selection expression>] }

The first link name in this statement specifies a destination
link type into which qualified occurrences are brought. The link

clause specifies a target link type, its endpoints and its

qualification.,  The target link type is a link type whose occurrences
are to be retrieved, 1Its qualification is expreséed by a selection
expression, as in the select record statement, where ﬁarget record
types are the initial and terminal node record types of the target

link type.

For example, we can  select link occurrences of a link type
called LOW-PAY-MANAGED from 1link type MANAGED in schema ENTERPRISE
by: | o .
gelect link LOW-PAY-MANAGED := MANAGED (E1 E2)

[ path E1—==>/MANAGED/-~->E2 :
E1.SALARY > E2,SALARY ]
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This is a link version of query 3 shown in Figure #4-2,

4.4,2 Connect Link Statement

This statement enables a user to create a new link type
between two unconnected record types, Its syntax is:
connect link <link name> ;=
( <record clause>, <record clause>)
[ <link creation condition> ]
The initial and terminal node record types can be independently
qualified, The link creation condition is either a Cartesian

product, denoted by ™#"  or an inter-record expression, = The link

~ecreation condition is translated into a link creation operation.

Suppose we originally did not have 1link type DIRECTS in
schema ENTERPRISE. We can .easily create this by a connect .1link
statemeﬁt, as shown in Figure 4.5, That is, we construct link fype
DIRECTS that links the occurrence of record.t§pe EMPLOYEE to that of
record type PROJECT if the value of ENO of EMPLOfEE is the same as

that of MANAGER of PROJECT.

4,5 STORAGE OPERATIONS

Storage operations on both record and 1link <types are
déscribed in this seetion, They are translated into corresponding
storage operations of the Elementary Data Operations. All the target
record and link types deseribed in what follows must be volatile,

Destination record and link types can be either resident or volatile.
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Intent:
Construct a link type called DIRECTS which
connects EMPLOYEE to PROJECT if the employee
is the manager of the project

GDL statement:

connect link DIRECTS :=  (EMPLOYEE,PROJECT)
[ EMPLOYEE.ENO = PROJECT.MANAGER ]

Figure 4-5: Example of Connect Link Statement

4.5.1 Add Record Statement

To copy the occurfences”of_a record .type into.another-record
type, we have .an add record statement.,  The syntax of'the.add record
statement is:

add record <target record type> to

{destination record type>
Record océurrences of the target record type are copied ;o the
destination record type. It can be input by the user or dgri?ed from
the current database by using a select record Staﬁement. ~The target
record type and the destination record type 'should have the same
composition of compatible attributes. We say that two such record

types are comgatibl . Nete that this statement does not change the

state of the target record type.
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4.5.2 Add Link Statement

This statement allows the user to copy the occurrences of a

link type to another link type. The syntax is:
add link <target link type> to <{destination link type>

As in the add record'statement. thié operation can be used-to input
link odcurrences. Let us define compatible link types. If two link
types have Dboth a compatible _initial node record type and a
compatible terminal node record type, then they are called compatible
link types: The target link type should be compatible with the
destination link type. The add link staﬁeﬁent is successfully
executed oﬁly if initial and terminal node record occurrences

actually exist. It does not change the state of the target link

type.

4.5.3 Delete Record (Link) Statement

A delete record/delete link statement aliows a user to delete
the record/link occurrences of the target record/link type from the
source record/link type. This is a szet difference operation. = The
syntax is:

delete record <target record type> from
{source record type>

delete link <{target link type> from <{source link type> .
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The target type and the source type should be compatible.  This
operation does not change the.state of the target record/link type.
If the record occurrence deleted is an initial or terminal node
record cccurrence of any link occurrence, then those link occurrences

are also deleted.

4.5.4 Remove Record (Link) Statemenﬁ

These statements provide another form of deletion for a
‘record/link type. They delete the record/link occurrences that
satisfy a given qualification. The qualification is specified in the

same way as in the select record/link statement. Its syntax is:

remove record <{record clause>

remove link <link clause>

As in the delete record statement, the execution of the remove record
statement may invalidate the existence of the link occurrences whose
initial or terminal node record occurrences ‘are removed by the

statement,

4.5.5 Replace Record Statement

We can replace values of some attributes of a record type by

a replace record statement. Record ocecurrences to be replaced are
specified by the record clause previously described. The syntax of

the replace record statement is:
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replace record <record clause> ( <replace attribute
list> ) .

The replace attribute list is a list of replacement specifications,

each of which consists of an attribute to be replaced and a new

value,

4.5.6 Reconnect Link Statement

We can update link occurrences by this statement. Its syntaz

is:
reconnect link <link clause>'<reconnect node>

The 1link clause specifies the link occurrences to be changed.. The
reconnect node specifies which node recqrd type is to be changed and
the new node record occurrence(s), The latter i3 specified by a
record clause. Figure #4-6 shows an example of a réconnect_ link

statement.
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Intent:’

Update link DIRECTS such that REAGAN (ENO=2) .
directs PROJUSA instead of CARTER (ENO=1)

GDL statement:

reconnect link DIRECTS
[ path EMPLOYEE [ENO = 1] -—=> /DIRECTS/
—>» PROJECT [NAME = "PROJUSAM™] ] - :
initial node := EMPLOYEE [ ENO = 2 1]

Figure Q-G: _Example of Reconnect Link Statement
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IMPLEMENTATION OF GDL

5.1 OVERVIEW

This chapter defines and describes.an implementation design

for GDL. The GDL concept.of defining logical access paths as ah

intrinsic part of data definitiops'yields a system with a high degree
of integration between the_DbL processor - DML precompiler and'the
run~time system, The data definitionrtables esﬁablished_by the DDL
process§r are used by the DML precompiler not only to generate
appropriate code for data manipulatioﬁ but also Ito effect local

optimization of expressions within DML statements,

DML stateﬁents coﬁsist of sequences of operations from the
GDM described in Chapter 2, This mapping is accomplished basically
by a simple leftwto~right scan as is illustrated in Figure 5-9., The
run-time system can and does directly implement the Elementary Data
Operations. 'Eleméntary Data Operaﬁions are mapped by thé precompiler

directly to physical storage operations,

These latter two factors combine to give a very simple
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structure to the run-time system and a very short call .depth to
execute a query. The run-time system consists essentially of only
these levels as in illustrated in Figure 5-1. The short call depth
to process a query is one of the major contributing- factors to

efficient CPU processing.

DML

EXPRESSION

ALGEBRA

|

|

:

i 1 LOGICAL |
i | STORAGE |
b ' i
i

|

Figure 5-1: Representation Levels in a GDL~based system

The implementatiﬁn design given in this chapter'follows the
~flow of data through the_creatioh of data definitions by the DDL
-'processor through their use by +the DML precompiler and query
processor to execution of Elementary Data Operations against these

data structures and finally to physical -storage operations.
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GDL is characterized by its graphical repreéentation of data
relationships and its explicit manipulation of links. Therefore, wer
put emphasis on implementation support for these features in our
descriptions of all the components of the system., Implementation of
integrity control and view support are briefly described. We do not,
however, discuss implementation of other facilitiés of a full
database management system, such as a report generatof or a recovery
facility. Concurrency control can be handled as cleanly as in the
relational model, because eadh record type and each link %type are

treated as individual objects in our system.

The design goals for the implementation are;

structured design

high performance

simplicity

independence from specific operating environments

To obtain high performance for query evaluation, we

specifically targeted the following goals:

minimize the number of I/0 6perations

minimize the number of record fetches to keep neeessafy
records in core . '

maximize loecality in working space

i

cluster records by clustering key
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Our proposed system configuration is given in Figure 5-2,

Major components of a DBMS include:

1. DDL processor
2. DML precompiler
3. run-time system
4, query processor
The arrows represent information flows in the system. The double

line arrows represent information directly supplied by users.

A schema definition must be processed by the DDL processor
prior to the use of DML statements for the Schema. The processing of

DML statements embedded in a host language has two phases:

1. translating DML statements into target host language
statements ' .

2, executing the translated statements with the run~time
system ' '

5.2 SOME DESIGN ISSUES

This section describes some major issues and our appreoach in
the design of a GDL based system: particularly, evaluation of path
expreasions, implementation of record lists, storage structures for

link occurrences, and concurrency congrol.

Query processing in GDL is rather straightforward because a

query expressed by a path expression is close to the decomposed form
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\described by [76]. Youssefi and Wong [82] showed that "reduction" is
almost always a good tactice in deéémposition of a query. Formulating
a query 'by. a path expression in GDL is actﬁélly performing a
reduction at query definition time, We do not support global
optimization . o make our system .compact. without it, the query
evaluétion in: GDL yields reasonable efficiency bécause the system
enforces the existengg of access baths on relationships between

record types in a query.

This system can, however, easiiy incorporate optimization of
intra~-record restrictions and of expressions Ehat'contain only one
link operator, i.e., the simplest form of path expreséions. In the
relational ﬁodel, the latter is called é two-variable query, Chapter
6 describes possible alternatives for query evaluation for tkof

variable queries.

We represent the recbfd list desecribed in Chapter 2 as a URI-
tuple. A URI-tuple 1is a tuple ‘of_ unique record identifiers
(abbreviated URIs). .' Most Elementary Data Operations can be
formulatéd as manipulation of URI-tuples., One of the advantages of
this strategy is that the length of egch élemént of a URI—tqple is
fixed (probably one word). The type of a URI-tuple has one.to one

corregspondence with the record list type that it represents.

In an actual implementation, URIs can be implemented directly
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as logical record addresses, or simply as uniqug identifiers. In the
latter case, the gsystem mu;t_ support a directory to the. logiecal
record addresses. This indirectidn eaéeS' the maintenance of
referential integrity wﬁen record occurrences aré”deletgd or moved.
It requires, howéver, an extra access ~to the directory before
accessiﬂg a record pcgﬁrrence. _Hhich apprqa;h to choose depends oh
the characteristics of applicapioﬁs._ For a rather static applicatién
where Eecérd update is infréquent, the first approach is appfopriate.
The second approach may be taken for dynamic applicatioﬁs.. In our

current design, we chose the first alternative., (See Appendix B.)

Link 6ccﬁrrences are  stored ‘separately from record
occufreﬁces. Qur -storage structure for link occufrences is similar
to that for indices.  It consists-of a tree structured.file,and a
flat file. The tree sfructured file is organized by the values of
URIs of an initial node. The flat file contains actuél link
occurrences, sorted by the values of the URIS of the initial node,
Access ﬁo record occurrences through the separately stored link
occurrences' is slower than one through embedded link occurrences
~ because of_an extra access to the link storage. The followings are,
however, the advantages of our approach over the embedde& link

approaqh:

- it is easy to support schema evolution, because additions
and deletions of link types can be done without changing
_ the storage structure for the endpoint record types.
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- -gimpler storage structure for record types

- reduction in the record file size which allows a faster
scan on record storage

~ = reduction in the number of record accesses for some semi-
Jjoins

An intra-record restriection on a record type can be evaluated only by
indices. If this record type is not a target record type and hot
used in an inter-record restriction, further access to the record

occurrences is not needed,

As we have mentioned-in Chapter 2, upon. the creation of a
link type, its inverse link type is automatically -created' by. the
system. When a terminal node occurrence of é link type is deleted,
its inverse 1ihk type is used to identify the corresponding initial

node,

For concurrency contrel and reco?ery, GDL can be easily
expanded to include the definitioh of transactions. ' A transaction
defines a unit of work where the integrity of a database is
maintained béfore .and after lthe‘ transaction. The degree of
consistency of a database [36] can be controlled By'a user in terms

of this transaction definition.

A transaction may span many DML statements or a DML statement
containing a path expression. Within a Single path expression, there

are also possibilities of different degrees of consistency. Whether
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all the record and link types'(or their occurrences) in a given path
should be 1ogked until the end of evaluation of the expression or not
depends on the degree of consistency that a user requires. If all
the record and link types (occurrences) in a path expfession are not
locked, the system must properly  handle the incidences of deleted

record and link occurrences during the processing of the expression.

The degree of éoncurrency of the system [36] is determined by
the underlying lock mechanism that controls concurrent transactions;
fﬁe granularity of.locks and tﬁe protocol for locks determine this.
There are at least four_ levels of granularity:' schemas, views,

record and link types, and occcurrences,

A GDL user can define a transaction .as easily as in the
relational system, The set—at—a—time  query .representabion allows
concise expression of a processing task. In GIL, physical placement
of records is independent of that of 1links, A user writes DML
statements without any consideration on physical structures _unlike
the statements in a CODASYL network model or in a hierarchical model.
A path expression is a'specification of logical relationships among
records, even though it can be easily mapped onto physical access

paths.

GDL does not allow a deletion operation to automatically

propagate beyond incident 1links or  endpoint  records. If the
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propagation of a deletion of a given node to the sub-~tree rooted from
it is desired, as.seen in a hierarchical data model, it should be

explicitly expressed by a constraint definition.

When a system provides access paths such as indiceg and
links, referential integrity becomes a problem. Especially, in an
environment where concurren£ access to a database is allowed, the
system must securely maintain the referential integrity within a
reasonable time constraint, If either or both endpoint occurrences
of a link occurrence are deleted, the link occurrence must also be
deleted., ' Indices must be updated whenever the values of reéords for

the corresponding attﬁibutes change.
5.3 DDL PROCESSOR

5.3.1 Functions of DDL Processor

The DDL processor translates a schema definition and stores

. the information into definition tables. If the user modifies the

schema definition, the DDL processor updates the definition tables

and conforms its relevant databases to the new schema.

Definition Tables contain all the;necessary information on
schema definitions. Most information for construction of the
definition tables 'is directly supplied by the wuser's schema

definition (DDL program). 3ince the DBMS makes frequent access to
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these tables for mapping of physical to logical storage and vice
versa, the organization of definition tables is important. The

definition tables can also serve as a basis for a data dictionary,

The followings are madjor definition tables:

1. schema definition table

2., record definition table

3. attribute definition table

‘4, link definition table

5. constraint definition table

6. view definition table
Volatile records and links exist only during aISiﬁgle session or run.
The definitions of such volatile bbjects are kept only during the

period of their existence,

5.3.2 Schema Definition

For each user or user group, we create a schema directory
which consists of at least two enﬁries: a séhema name and a pointer
to a schema definition ﬁable. In an actual implementation, thé
second entry might be the name of a file which contains all the

definition tables.

The schema definition table is composed of the following

entries for each schema:
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1. numbe? of record types composing-the schema

2., number of link types domposing the schema

3. number of all the attributes in the schema

4. number of constraint definitions

5. number Sf view definitions
Only the number of record types in -a scheﬁé is stored in the schema
definition table, Actual record type definition5 are stored.in a
record definition table. 1In this way, we can also easily accomﬁodate
changeé in_ a record type definition, énd additions/deletions of
record type definitiqns. Similar concerns apply for the other
definition tables. Figure 5-3 illustrates how the several tables are

interrelated.ﬁ

5.3.3 Record Definition

The record definition table has the following entries for

each record type:

1. record type name

2. record'length

3. pointer to a record oqdurrence file (file name)
4, physical clustering attributes

5. unique key attributeé

6. search key attributes

7. number of attributes

8. pointer to an attfibute definition table
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9. number of incident link types
10. pointers to incident link type lists
11, number of constraint definitions
12. pointer to a counstraint definition table
Pointers mentioned in this chépter are usuaily. indices %o other

tables,

A file into which the DBMS3 stores actdal record occurrences

is called a record _occufrence file. The physical elustering
attributes specify in what order record bccurrenées are placed in
this file. If a unique key is defined for a record type, then its
record occurrences are uniquely identified by the key; The search
key attributes are those attributes which ére provided with a fast
access mechanism (ihdices). The incident link list is simply a iist
contgining pointers to the link définition table. Tﬁis_list is.used
to identify link types thgt are inciaent to a given record type.
There are two types of incident link types depending on whether.thé

record type serves as an initial node or as a terminal node.

5.3.4 Attribute Definition

The abttribute  definition table contains the foilowing

information for each attribute:.

1. attribute name -

2. data type
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3. length

4, access path information (key or not)

5.3.5 Link Definition
A link definition table is composed'of the following entries:

1. link type name
2. kind of link types (real or virtual)

3. pointer to an initial node record type in the record
definition table

4, pointer to a terminal node record type in the record
definition table

5. pointer to a link occurrence file (for real link types)
6. number of conatraint definitions {(for real link types)

7. pointer to a constraint definition table (for real link
types) - ' ' .

8. linking condition (for virtual link types)

The link occurrence file is a file for storing the occurrences of a

link type.

5.3.6 Constraints, Views and Evolution of Schemas

Definition of constraints, views and schema . changes is
operational; the definitions have close; correspondence with DML:
statements. 4 constraint definiﬁion is translated into a -DMﬁ
statement (actually a sequence of ruh time procedures) at definition

time and the name of the object prbgram is stored in the constraint
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definition table. The program.itself can be stored on a separate
file, It is called by the run-time system or the §uery processor
whenever the storage operation is executed on the associated record
or link type. Since an-attribute is not a unit of storage.'we do not
associate conétraint definitions with attribute ‘definitions, but

rather with record typé_definitions.

A view definiﬁion is alse translated into a set of DML
statements, The query modification approach proposed by Stonebraker
[69j is employed to implement the view facility. That is, DML
statements against a view are modified to inciude the DML statements g

for the construction of the view,

When a schema is changed after the database is loaded, the
DBMS mus% update not only the schema definition but also thé
databases to make them conform to the updated schema definition, The

user specifies this process in terms of DML statements,

5.4 RUN-TIME SYSTEM
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H
5.4.1 Overview of Query Evaluation

We show a global picture of query evaluation by informally
describing execution of a few typical DML statements. Consider the
following DML statement which selects record occurrences of record

type R3 qualified by a path expression:

select record RESULT := R3 [path R1{P1] ===> /L1/
—> R2[P2] —=> /L2/ ——=> R3[P3] 1]

where P1, P2 and P3 are some expressions qualifying record types R1,
R2. and R3, respectively. P1, P2 and P3 can be an intra-record
restriction or a path expression. = Path expressions are recursively
evaluatéd if they are nested, We can'summarize the query:evaluaﬁion

procedure as follows:

1. evaluate PT, ecreating {(r1)}

2. tfaverse L1, creating {(r2)}

3. evaluate P2, restricting {(r2)}

4. traverse L2, creating {(r3)}

5. evaluate P3, restricting {(r3)}

6. fetch the record occurrences whose URIs are in {(r3)}
where (ri) stands for a URI-tuple which isrcomposed of a URI for
record typé Ri. Note that the URI-tuples carry sufficient

information for selecting record occurrences.

Another example illustrates the evaluation of an inter-record

restriction. Suppose we have:
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select record RESULT:=R3[ path R1[P1] —==>
/LY ===> R2[P2] —=> /L2/ =—=> R3[P3] :
P4(R1, R3) 1

where P4 is an inter-record
restriction of R1 and R3,

Its execution sequence is:

1. evaluate P1, creating {(r1)}
2. traverse L1, créating {(ri,r2y}
3. evaluate P2, restricting {(r1,r2)}
7 H; traverse L2, creating {(r1,r3)}
5. evaluate P3,_res;pictiﬁg {(rj.r3)f
_6:'evglugpe P4, greating {(r3)}
7. fetch the feéord occurreﬁces whose URIS are in {(fﬁ)}
Note how record 1ist types change. The precompiler specifies these
record list types by keeping track of target record types and record’

types appearing in inter-record restrictions.

Record oceurrences are feﬁched only if they are not in the
wdrking space. In many cases, we can avoid record fetches by using‘
indices and links. As we will deseribe later, run-time procedures -
keep track of the contents of the buffer in order to minimize the
number of record fetches. - Global query optimization is avoided_in
our design. Instead of modifying a query into an optimized form, we
issue warning mesSages whenever the precompiler or the query

processor detects possible inefficiency in evaluating queries,

i
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Because of this, the implementation of GDL is rather straightforward.
This strategy encourages and assists a user to formulate queries that

are effectively evaluated,

5.4.2 Run-time Data Structures

One of our goals in designing run-time data structures is to
effectively manage working space for query computation. To execute a

single elementary data operation, we need at most :

1. three storage buffers to hold URI-tuples {two for 'input
.operands and one for a result operand)

2. two storage buffers to hold record occurrences for value
comparison

Let us call the first type_of storage'URI—arraXs and the second type

of storage record-arrays. A URI-array holds a record list type. The

dimension of a URI—array changes from one elementary Operation to
anothet because the record list type which the URI-array represénts
changes. Also we note that some URI-arrays must be saved to handle
nested expressions.l Record-arrays are uséed only when values of
record occurrences must be fetched or when querj evaluation is more

efficient when working directly on record occurrences.

Our proposed data structures for run-time are given in Figure

54, There are three stacks to hold URI-arrays, We call them

URI-stacks. There are two small stacks to indicate current operand

URI-array(s) and to keep track of where intermediate results are
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stored, These two stacks are called the operand-display-stack and

the recbrd-list—display—stack, respectively. As execution of a query

proceeds, we assign one of the available URI-stacks to a URI<array at

run-time, The assjignment algdrithm is given in Section 5.3.4.

The operand-display-stack has at most three slots, each of

which contains::

1. URI-stack identifier

2. position where a URI-array starts in the stack

3. degree of the URI-tuple
The record-list-display-stack contains the same information as the
above for each URI~array (record 1istrtype) pushed onto one of the
URI-stacks. There are aléo two record-stacks and a'récord-diSplay-
stack, A record-stack contains one or more feéord—arrays.. - The
record-display-stack speéifies the contents of the 'record-stacks,
This information is wutilized to minimize the number of record

fetches, Each entry of this stack is comprised of:

1. recdrd;staqk-identifier_
2. poéition where é reqord-array starts in the stack
3. record 1ength. |
If both_record-stacks_have no more un-used space, then new record

occurrences are circularly superposed on the used space,



URI stacks
| 1 ] ] []
t 1 1 1
i | i URI-array | }-———ew—— —
1 1 i t ]
I ] [] [ ]
i P P
| record | | operand |
-=>1 list |} ~=>} display |
i display | { stack |
| stack | ———————
record stacks
3 T 1 1 T i
[ | ] t
| record | H i
| array | H |
| ————— —i i i
i record |
—>| display |
|  stack H
| status |

FigureIS—u: Major Data Structures of
Run~time System
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5.4.3 Run~time Procedures

A list of GDL run-time procedures which the precompiler sees

iz given in Figure 5=5, We call them the first level run-time

procedures. Most 6f the Elementary Data Operations described in
Chapter 3 are rgadily implemented as run-time procedures of the first
level, A restriction operation may be decomposed into twd cases: a
restriction.infoiving only a single record type and a restriction
involving two record types. Run—time.procedure IRST.(XRST).executes
an intra-record gxpression (an inter-record expression) described in
Chapter 4, Run—ﬁime procedures for storage operations deal with a
set of occurrencésr rather than an individual occﬁrfence. No set
operations can be executed directly on stored databaées. ‘The record

list projection operation is incorporated into other data operations, -

?USH and POP are run-time procedures which do not_ have
corresponding operations.in Elémentary Data Operatiqﬁs 5ecause-tﬁese
are sequencing operations. They handle the bookkeeping for nested
axpressions. Anbther prbcedure which does not appear in Elementary
Data Operations is FETCH, It brings in record occurrences of a given
record tLype wﬁose URIs are stored in one of ﬁhe URI-stacks but not in

the_record-stacks.

Figure‘ 5-6 gives -an example of translation for a select-
record statement. The parameter values of the run-time procedures

are symbolically represented in the figure, although they are
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- record restriction
IRST, XRST

- record formation
PROJ, FETCH

- link‘traversél
EXT, NEGEXT, NUM, TRN

- link creation
LNKCRT

- set manipulation
UNI, INTS, DIF

- storage manipulation
RADD, RDEL, LADD, LDEL

- seqﬁencing operation
PUSH, POP

Figure 5-5: Run-time Procedures of
the First Level
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numerical values in an actual environment. Appendix B contains

descriptions of run~time procedures.

We give another example to illustrate how a nested path
expression is executed in_tgrm of a sequence of run-time procedures,
(See Figure 5-7 ) The PUSH procedure is called whenever a nested path
expression is encounﬁered. It'keeps track of where én intermediate
result (a resultant URI-array) is stored by updating the display
stacks and a URI4Staék pointer. After evaluating the inner
expression, the POP procedure_restorgs the previous result. Then, we

call the INTS procedure to make the intersection of the two lists,

The first level run-time procedures share many procedures

which perform smaller functions., We call them the second level run-—

time procedures. Those functions are classified into:

1. retrieval of

a. records - GETREC
b. links - GETLNK
. ¢. indices -~ GETIDX

2. storage manipulation (add and delete) of

a, records - ADDREC, DELREC
b. links - ADDLNK, DELLNK
¢. index - ADDIDX, DELIDX

3. working spaée manipulation of

a, URI-stacks - ASGNRL, DELRL
b. record-stacks - ASGNREC




———————  MANAGED

! EMPLOYEE |- >} PROJECT |

DIRECTS

DML, statement:

VARTABLE EMPLOYEE : E1, E2

~select record RES := E2[path PROJECTLTYPE = "PRODUCTION"]

. ===>/EDIRECTS/~=> E1 ——=> /%MANAGED/ ——> E2:
E1.SALARY < E2.3ALARY]

translated into:

IRST (PROJECT, TYPE = "PRODUCTION", TYPE,
<PRQJECT> ) . .

EXT(%DIRECTS, PROJECT, E1, downward, —,
CE1>) _

EXT (%MANAGED, E1, E2, neutral, -,
{E1,E2>) o ’

XRST (E1, E2, SALARY < SALARY, <E2> )

FETCH (<E2>,RES3)

Figure 5-6: Example of DML Translation
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i COURSE | | STUDENT |

ENROLLS TAKES

~=————>! ENROLLMENT |{——mm

DML statement:
select record RES := ENROLLMENT{path COURSE[CDEPT="CS"]

~==>/ENROLLS/=~~>ENROLLMENT[path STUDENT[MAJOR X
"CS"] —-->/TAKES/—-=>ENROLLMENT 1]

translated into:

IRST ( COURSE, DEPT = "CS", DEPT, <COURSE>)

EXT ( ENROLLS, COURSE, ENROLLMENT, downward, - ,
<ENROLLMENT>) ' o _

PUSH

IRST ( STUDENT, MAJOR X "C5", MAJOR, <STUDENT>)

EXT ( TAKES, STUDENT, ENROLLMENT, downward, -,
<ENROLLMENT> ) '

PQP
INTS
FETCH(<ENROLLMENT> ,RES)

Figure 5-7: Another Example of DML Translation
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4, record list projection - RLPROJ
5. other operations
a. grouping - GROUP
b. sorting - SORT
Retrievéluénd stdrage'manipulation heavily depend on access paths.
We discuss the access paths in Section 5.4, The working space
assignment has an important role on performance, Procedure ASGNREC
tries to minimize the number of record're—fetches. If a record type
in the record-stack appears in a resultant record list type, we 6ften
need it later. We say that the record type is useful, As'long as
there is enocugh sﬁace, we want to.keep it in the record—stack. We do
not know in advance, however, the number of record occurrences which
must be stored in the record buffer to complete a given operation.
We use a simple algorithm to solve this problem. First, we always
keep the useful record typés. If we run out of space, Qe overwrite
the occurrences of the useful record types_that aré not used in the
current operation, and record the fact in the record-display-stack

(i.e., an LRU algorithm).

It is possible for the precompiler to make the assignment of -
_URImstacks and record-stacks to the storage for Elementary Data
Operations. . In this'case,'however, the precompiler has no means of
knowing the. sizes of remaining working spaces, which may lead to

inefficient management of working spaces,
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5.5 DML PRECOMPILER
The precompiler has the following major functions:

1. translate DML statements into a set of data declaration
statements and a sequence of run-time procedure call
statements ‘ .

2. check errors and issue error messages 1if errors are
' detected -

3. issue warning messages when possibly inefficient query
evaluation iz detected

An inter-record restriction operation is executed at the end of the

associated path expression. We need to keep track of which record

types are involved in inter-record restrictions.

Figure .5-8 gives the major data .structures of the DML at
translation—time except those for parsing. In Stranslating a bML
statement, it is rather straightforward to find a proper sequence of
run-time procedures. The target qode generated teitually follows the
structure of the DML statement. Figure 5~9 illUstfates a conceptual
algorithm for translating the main part of a selection expression. (
It does not include the translation of parentheses and set

operations. )

Generéting proper parameters for the procedures requires more
work. The system must Know the context: the target record types, the
record types involved in inter-record restrictions and the record

list type of the result from the last operation. We call these three
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! input | | variable |

i string | : { ‘table ]
-=>] stack | ; '

i | ——————e

| target | |  XRST |

| record | { record |
-=>} type | _ -=>1 type |

! stack | | stack |

current record |
type array |

definition tables

1
|
1
] R
1
I

Figure 5-8: Major Data Structures of Precompiler
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procedure evalrec ( EXP : selection expression )

begin : : . .
case exXpression-type of ' -

ne qualification : H
intra record

restriection : eval-irst;
/* write IRST(IRST-EXP), etc. */

path expressibn ¢ /% R1(P1)===>/L1/==—D>R2~==>....
: XRST-EXP 7
begin

push; - /% previous result */

evalrec ( R1 )

while not end-of-path do
begin .
evallink ( Li );
/% write EXT({ Li, ... ), etc. */
evalrec (Ri+1); -
i:=14+1;
end;

if exist-xrst then eval-xrst; )
/% write XRST(XRST-EXP), ete. ¥/

- POP;

evalQintersection;
/% write INTS %/

end
end

Figure 5-9: Algorithm for Translation
of Selection Expressions
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types of information context determining factors. The first two

factors must be saved when prbcessing nested path exﬁressions or set
operaﬁions cause the query evaluation floﬁ contrel teo branch out,
The two stacks .in .Figure 5-8 (target record-stack and record
restriction stack) are used for thié purposg. After evaluating the
nested path expressions or set operations, the systeﬁ must.restore

the previous context by updating those stacks.

The precompiler selects access paths by'looking up definition
tables, In general, a query represented in GDL ﬁill executé with
reasonable efficienCy because the.query répﬁésentation itself tells
the system which access paths to use.. One possible.source for poor
performance lies in intra-record restrictions. if;every attribute
. appearing in an intra-record restriction is neither a primary key nor
a search key, then the system must get all the record occurrences and
check their values. Unless the number of the record occurrences is
small, this will cause -poor performance. When the precompiler

detects this case, then it produces a warning message.

5.6 ACCESS PATHS AND OTHER ENVIRONMENT DEPENDENT FACTORS

We have up tb.this point been as abstract as possible so that
the system design is independent of execution environment details,
In this section, we discuss how the design can be mapped onto an
actual environment. Major factors which affect more detaileq design

are:
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1. available file structures: and file management system
supported by a given operating system -

2, target/host languages into which wuser's programs are
- translated '

3. storage management facilities of a given operating system
The file structure is the major determining factor for the-
performance of the DBMS. Thus, our discussion here is concentrated
on this subject. The target or host language obviously affects data
structures, procedure calls, program structures, ete, Since é DBMS
is a rather complex system, a language which supports structured

programming is desirable,

Locality of storage is also important to satisfactory system
performance, because_the DBM3 needs big working spaces. A storage
-management system that effectively supports locality will giﬁe better

performance,

We may use different file structures to store different types
of information. Figure 5-10 gives one proposal for file type
assignment. To store table definitions, it is convenient to have two

types of file:

1. a schema directory file for each user, or one centralized
schiema directory file

2. for each séhema. a file which contains all'the definition
tables and lists for the schema. ‘

The schema directory can use almost any random access file structure,



OBJECT STORED IN A FILE

i

schema directory

definition tables

record occurrence file
link occurrence file

key (access path) file

Figure 5-10:

FILE STRUCTURE

hash, B-tree, Bi-tree,
indexed sequential

sequential

B-tree, B¥-tree,
indexed sequential, hash

B-tree, B¥*-tree,
indexed sequential

B-tree, B¥-tree,
indexed sequential

Suggested File Structures
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The reason why we put the rest of deflnitions for a schema in
a single file is that the DBMS needs fo access most of the
information in this file when ¢translating GDL‘ statements, We
" therefore load the full definition tables for a schema at once. .A

sequential file structure is adequate for this file.

To‘seléct an'appropriate structure for a given file, we héed
to know its access patterns, It is éommon to access a record
occurrence file both randomly and sequentially. It is also common to
retrieve record occurrepces by using comparison operators such as >
and <. Thus, indexed éequential, -B—tree- or B*-tree type file
organizations are app?opriate for record occurrences. A Haéhed file
organization performs well if the file is accessed only.randomly. A
link occurrence file contains pairs of URI;tuples. We can choose
either B-tree, B¥-tree or ihdexed sequential file structure for a
link occurrence file,  Sinece the data .structure of the link
occurrence file does not differ from one linkrtype to another,_we can

store multiple link types in a single physical file.

A key file provides a secondary access path to the record
occurrence file, It might use simple. inversion for a 31ngle
attrlbute or more sophlstlcated key access for a combination of
attributes. A link occurrence file is similar to a record oceurrence

flle w1th respect to file structure selection,
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The final decision may depend on the-application of the.DBMS.
Although each object type may favor different file structures, the
DBMS may be impleﬁénted with fewer file stfﬁctures for uniformity and
overall efficiency,. B-tree, B?-tree or indexed sequential file
structure may be a reasonable choice if we have only a single

gtructure for record occurrence, link eccurrence -and key files.

5.7 QUERY PROCESSOR

The function of a query processor is more or less a union of
.the functions of a precompiler and a run-time system, Problems
particular %o the query processor are formatting and buffer storége
for record occurrences. Since the buffer is invisible to the user,.
the query processor must reserve a common buffer that is used f&r any
record type and must interpret it for each query. if the DBM3 allows
many data <types as attributes, buffer handliné-.becomes_ more

cumber some,



Chapter 6

A COMPARISON OF ACCESS PATH STRATEGIES

6.1 INTRODUCTION

This chapter compares the performance of a database
management system based upon GDL and a DBMS based on Ehe relational
data model in terms of effective use of access paths 1n query
proce531ns. Performance evaluatlon requ1res the specification of
storage’ structures. query proce531ng algorithms, sta;es of schemas
and the workload of queries to be proceSSed.‘ The specification of
stofage structures is given in terms of definitions for'recofd.'index
and link storage., The states of the schema is given in terms of a
set of parameters such as number of cceurrences, index selection and
_ selectivity'cn attributes, The workload is a set cf_one-, two- and
three-variable  queries. Yao's {81] cost model has embedded
definition of query processing algorithms and establishes the
relationships between storage, structures, schema statea and query
specifications, Yao's coat model uses accesses to external storage
as its cost metric. We have extended Yao's cost model to include the
algorithms necessary for processing Queries against a GDL based data

model,
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Design and evaluation of quer& processing algérithms has been
a major researéh topiec in the implementatipn of relational database_
management systems. The _problem érises from the fact that
relationships between recofd types. (relations) are imﬁlicitly
represented by values. The éost of joihs becomes.dependent on hidden

access paths,

The query oétiﬁization problem has Been iﬁvestigated af
seyéral lévels. and angles, from optimization of a sihgle‘ isolated
datébase operation to global optimizatibn of ﬁultiple quéries. We
give here é.brief summary of somé of the more.récent and significant
papers agd in .particular mention those papers which contain

performance comparisons of access strategies.

Yao [79] aﬁd- AStrahan et al, [2] studied the ' evaluation
algoritﬁmé of a‘-restriction opefatioﬁ; Gotliéb [35]- invéStigéted
.join algorithms and.évaluétéd their costs. Blasgen ana Eswaran [9]
proposed a model of-storage and access to a relaticnal system and
compared the costs of possible query evaluation algorithms of a two-
variable query by using their model. Yao [80, 811 synthesized a
model for database storage and access which encompasses most query
prpceséing algorithms in the relational model, Yao classified
algorithms for the evaluation of two—variable queries in the
relationai system and derived formulae to compute the costs of these

algorithms. - Rosenthal [57] has very recently proposed a two-level
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Yao's model assumes that secondary storage is organiied in
pages. The cost of each algorithm is computed in terms of the_number
of page accesses required to process a query given the specification '
of the schema state. Queries with three or more variables must be
decomposed by some other techniques such as [76j-and [9] before being

evaluated in this mddél.

The next section describes the extended model of query
evaluation algerithms and the assumed. storage structures, The
workload includes three types of queries. Section 6.3 contains the
comparisons of GDL-based and relatiohal—based systemé for these three

types of queries. The last section evaluates these results,

6.2 AN EXTENSION OF YAQ'S COST MODEL FOR QUERY EVALUATION ALGORITHMS

Query evaluation algorithms differ in the sequences of basie
operations Such as restriction, Join, record access and projeection,
and in the access paths used to execute these operétions. The

storage structures considered in cur model are as follows:

1. Record storage. Record occurrences are stored. in flat
files (record files). '

2. Indices, An ‘index consists of a tree structure file
(index tree file) and a flat file (index pointer file).
The first file contains pairs of a value and a pointer.
The second file contains pointers,

3. Embedded 1link storage.  The pointers to link record
occurrences are embedded in record files, Parent-to-child
and child-to-parent relationships are both represented.
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IA Index access

LA Link access

RA Record access

RS . 3can onh a record file

I8 Scan on an index file

L3 3can on a link file

Lpec Embedded parent=-to-child link access
Lep Embedded chlld-to-parent link access
T ' Sorting

P Projection

J - Join

Jp Join of pointers

c Concatenation

Cp Concatenation of pointers

Table 6-1:  Summary Of Operations Requlrlng
Secondary Storage Accesses

- hi ¢ link fanout which denotes thé average number of link
occurrences emanating from’ each occurrence of an initial
node record: type. -

-zl : tree degree of a llnk file, ‘i.e., the number of
entries in each node. '

Using these 'parameters, the cost .for. the access to
independent link storége cén-be wfitten: .

LACGIRLI,Fi%) = rit(log (IRi1.61) + hi/b1)
iRil is the number of occurrences of record type Ri. ri' denotes the
number of occurrences of the initial nodé record type to be accessed,
ti is the join selectivity of record type Ri. b1 is the page size of
link pointer files which can be used for ad justment of bhe length of
pointers, (Yac's model also uses b for b1.) The'first.term of the
parenthesized expressicn.is the cost for the search in the link tree
filé and the sécond- term is the cost for the access to the link

pointer file. The cost for the scan on the link pointer file is:
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b page size of record files _
b1 page size of index/link pointer files
zi index tree degree i
zl link tree degree
'Ri} number of record occurrences "
fi - record length
pi number of pages contalning the record file
el number of pages in the storage area
sik ' index selectivity of attribute aik (of record
type Ri)
ti join seleectivity
hi link fanout
S dyy =1 if R1 and R2 are clustered
0 otherwise
Pij expected number of page accesses for
the child-to«parent access
Pji _ expected number of page accesses for.
the parent-to-child access
Pi expected number of page accesses for
the twin access
cik = -1 if there is no index for attribute Aik
0 if there is a non-clustering index for Aik
1 if there is a clustering index for Aik
dd = 0 if the primary key is in the projection
1 otherwise
rr ~clustering index selectivity

non-clustering index selectivity
set of projection attributes
restriction indexing selectivity
restriction selectivity

number of values accessed for
attribute Ak

[~ L = o
N'LQ [}

Table 6-2: Parameters in Cost Model
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LSC(IRil) = IRi},.ti.hi/D1
To treat a real link traversal operation in a manner comparable with

a Jjoin operation, we assume:
hi = {Rjl.sjk

where |Rj! is the number of record occurrences of the terminal node

record type Rj and sjk is the selectivity of a join attribute of RJ.

The costs for the operations 1listed in Table 6-1 are
summarized in Tables 6-3 and 6-4, Also includéd is the record length
H éfter a projec£ion. Note that IA énd ch'arerﬁodified'to be more
accurate than in Yad'é model. The term for the numbér of.accesses in
én index treé Ifile in ﬁhe cost formula for IA is wriﬁten as
log,;(1/sik) in the éxtended model. Yao uses iRif in the place of
(1/sik). The latter.is, however, more accurate than the former as
the number_of distinet values for a given attribute. A3 the number
of child pointers in the cost formula for Lpe, we used hj instead of
'Ril.ti. Yao's formula assumes that every occurrence of a parent
record type is (if the occurrence is ever selected for the join
operation) connected to all the'oecurrences_of the child recqrd Lype
that are 'selected for the Join operation,  This assumption means
that, for example, if a course is taken by at least one student, then
this goursé is taken by all the students who take at least one

course.
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Schkolnick's [61] analysis on the expected numbers of page
accesses associated witﬁ the record storage and the embeddéd link
storage (i.e., Pij, Pji and Pi) are used fof the derivation of RA,
Lpe and ch.  The cost for sorting is computed for a n-way sort-merge
algorithm ( (471 and [10]). The total cost 6f a query evaluation
algorithm will be computed by summing up the cost of each storage

operation generated by the execution of the algorithms,

6.3 COSTS OF QUERY EVALUATION ALGORITHMS

A comparison of a GDL-bazed system with a.felétiqnalebased
system with respect to access path strategies is performed'for three

types of queriés:

1., one-variable query
._2. two-variable query
3. three-variable query
We are not concerned here with details of.syntax of data langﬁages.
Therefore, the queries compared here are diagrammatically expressed.
Query algorithms are also described by diagrams, similarly to the
notation used by Yao. The basic operations in Table 6-1 and other
supporting operations in Table 6-5 are possible components of query
evaiuation algorithms, Each algorithm is defined by selection of a

- sequence of these operations.




m
IACIRi}) = & uk(log,y(1/sik) + |Rii.sik/b1)
k=1 '

LACIR) = {Ri.(logzl(1/ti) + hi/b1)
RA(alpha,beta) = x + (pi - x).alpha.|Ri}.Pi/pi
where IRi! . bet
x = pi(1 - (1 = 1/pi)'R1" etay
if used after restricfibh: -
alpha = rr

beta = ee

if used after.join:

alpha = ti if the join has a clustering
' : index ' ~
4] otherwise

beta = ti - alpha

if used after restriction and join:

alpha = ti if the join has a clustering
index '
rr otherwise
beta = ee if the jJjoin has a clustering
index :

ee,ti otherwise

if used for relation scanning: )

alpha = 1 if .the scanning index is a
clustering index
0 otherwise

beta = 1 - alpha

Table 6-3: Cost Model of Query Evaluation

119
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RS(ei) ei

IsCiRiD) iRii / b1

LSCiRi})

iRil.ti,hi / D1

Lpe(q) leolRJl.tj(PJl + (hj.q - 1).Pi)

« (1 = d; .|Rj|.t:] (cik(1 + (h,} q - 1).Pi)
+ (1 = 01g) hj.q)
where cik is defined for the join attribute Aik
Lep(q) = dij.IRil.ti.q.Pij + (1 - dij)IRiI.ti.q
TORILFL) = 2.({R}.£i/b).log, ({RI.Fi/b) |

P(IRI)Y = TC(IR{,fi) + (dd/sik), T(|R|.Slk £i)
applicable before SORT

Pq(iR!) = (1/sik).T(IRi.sik,fi)
applicable after SORT

HCIRD) = MIN C(iRls ] (1/sik))
Akel
Record length after projection
JOIR],fi) = IR{.fi / b
Jp(iRi) = IR} / D1
C(IRI,fi) = IRi.fi / b
Cp(iRi) = IRi.ti.ni / b1

Table 6-4: Cost Model of Query Evaluation
(Continued)
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RF restriction fiiter

JF Jjoin filter
LF link filter
I intersection

Table 6=5: Supporting operations for query
evaluation '

6.3.1 One=Variable Queries

Evaluatibn of one-variable queries is straightforward. The
diagram of a one-variable query is given in Fighre'6-1. It states
"select record oceurrences that satisfy a given restriction predicate
for record type R1 and project them on attribute AJ.“ The rectangle

Wwith label R1 denotes a record type R1.

The evaluation'algorithms are given in Figure 6-2, if there
exist one or more indices on the attributes in the restriction
predicate, the indices are first accessed to get pointers. The
record occurrences are aécessed ‘using these pointers. The
restriction filter RF execqtes the rest of the expression of the
restrictign predicate, namely, the restriction on the attributes that
nave no indices, RF'does not, however, require access to secondary

storage., P is a projection operation,

.The_evaiuation of one-variable queries is basically identical

both in the relational system and in GDL., Its cost is expressed as:

COST(IR1)) = IA({R1}) + RA(rr,ee)
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: { .... RESTRICTION(R1)

PROJECTION{A1)
Figure 6~1: One-Variable Query

QUERY ALGORITHMS
~ In Relational System and in GDL:

IA-RA -RF-P
- Figure 6=2: Algorithms for One-variable Queries

6.3.2 Two-Variable Queries -

The evaluation algdrifhms- for 'twd;variéble 'quéries in the
relaﬁibnal systéﬁ 'haﬁe been .extensively studied by Yao [811]. He
claésified algorithms for evaluating a single record typé into seven
classes in terms of sequences of the basié three 6perations
(restrictibn, join and record access)., Within a elasé, algorithﬁs
differ upon where projection and concatenation operations tékewplace.
These differences within a class define versions of 'a. class.
Algorithms are called by numbers where the first and second digits

denote the class and version, respectivély. - The first version of

each class is used for comparison in this chapter. Figures 6-4 and

.
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6-5 summarize the_ strﬁcture of these algorithms.,. Evaluation
algorithms for two-variable queries are in_turn described by a pair
of algorithms, e.g. 21(31. The same algorithm can be used for two
variables such as 31/31 and %1/41. Certain combinations using Lpe
and Lep (e.g., 21/61 and 31/61) are not cbnceptually posaible because
Lpc and Lep require, prior to their_egecution, the poinfers to be

accessed.

Yao's analysis distinguishes 31 basic types of algorithms,
each. of which has many versions. With thé inclusion of the
independent 1ink.'storage, the number bf algorithms is in the
hundfeds. Furthermore, the algofithms actﬁally impleménted are often
variants of these algoriﬁhms. | It is impossible.-to exhaustively

analyze all the algorithms for all the possible combinations of

queries and schema states. We compare the c¢osts for several
realistic cases, Figure 6-3 shows a two-variable query to be
" analyzed.

Most of the algorithms discussed by Yao can be iﬁplemented in
GDL., (The exceptions ére those algorithms which ﬁse Lpe and Lep
operations, because we do not support embedded link-stdragé.) The
basic GDL algorithmé thch use independent 1link storage are
summarized in Figure 6-6. R1 and R2 in the figure are assumed to be
the initial node record type and the términal node record type of a

given link type, respectively,
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i | «... RESTRICTION(R2)

PROJECTION(A2)

Figure 6-3: Two-Variable Query

.. The cost formulae for GDL algerithms where both Jjoin and
restrigtion indices are. not élustered are summarized in Figures
6-7 and 6-8. The values of parameters are listed in Tables 6-6 and
_ 6-7. In these tables, sik for a restriction attribute Aik is denoted
by si since there is only one restriction attribute considered, c¢j

_is similarly defined for the index for a join attribute. The values

are selected so as to be realistic; they are also often seen in the

literatures on performance of query processing. Rothnie's_feedback

effects are taken into consideration in terms of F(gj) in the
formulae ( [58] and [81]),. The parameters are not necessarily
independent. -The_foilowing parameters are important in displaying

the effects of access path strategies on execution cost.

1., index selectivities: s1, s2

2. join selectivities: t1, t2

3. link fanout: hi, h2




125

CLASS 11:

IA-RA-RF -T~-JF=-C=P

CLASS 21:

IS-JF-RA-RF-C-P
CLASS 3%:

i=I-RA-RF-~-C-P

CLASS U1:
RS = RF = T = JF = C - P
Qr

IS-RA-RF - T -JF =C = P

CLASS 51:
RS - T~ JF-RF -C-~-P

or

IS-RA-T~«JF ~RF~-C-~-P

Figure 6-l4: Query Evaluation Algorithms
Classified by Yao
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CLASS 61:

Lpec — RF = C - P :

or ' -
Lep - RF - C - P

CLASS T71:

TA -~ I ~Lpe -~ RF = C — P

or

IA-I-Lep-RF =C =P

Figure 6-5: Query Evaluation Algorithms
. Classified by Yao (Continued)




G1:
IA -RA ~-RF =-LF-C--P

LA

IA-I ~-RA=-RF=-C=~P

G2:
" IA-RA-RF - LF = C = P
- ¥

i
LA

'
RA-RF -C=-P

G3: -
IA - _
44— I -RA-RF-C-P
LS ~= ]
JA-I-RA-RF-C-=-P
Gl:
g -
{~ T -RA~-RF ~-C =P
LS -= }
‘ RA - RF - C - P
G5

LS -RA~RF-C-P

IA~-I~-RA~RF-C-P

GbH:
LS — RA - RF -~ C =« P

i
RA - RBF - C - P

Figure 6-6:

Using a real link type

GDL Query Evaluation Algorithms
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4, whether there exist indices on restriction and join
attributes or not :
In the following case studies, we change only these parameters. We

also assume:;

- All the indices on restriction and join attributes, if any,
are non-clustered

- Every query has only one restrictidn attribute and one
value to be accessed, e.,g., RilAik="value']

- no eclustering among record types

These assumptions lead %to:

eei =.8i = qi = gi

If the indices on restriction and join attfibutes are clustered, the
performance will be bétter than otherwise, The effects of indices on
the costs of query evaluation are the same in both the relational
system and GDL. Table 6-8 quélitatively shows the chabacteristics of
the cases we evaluated, 1In thé table, A1 apd A2 are the attributes
appearing in the restriction predicates for R1 and ﬁ2, respectively,
In our comparison, we eliminate those algorithms which are obviously
not optimal, For example, if indices are available'and effective, we

select those algorithms which utilize the indices.



Definitions:

ri* = ri . gi

ri" = ri' | ti
ri'® =z riv |, F(gJ)

Flgd) = 1~ (1 =1/ gj )

Assumptions:

di' =0

ciJk 1

el x5 1

rri = 0

eei = si = qi = gi

Costs:
IACIR1}) + RACO,s1) + LA(r1') + C(rim,£1)
+ TIA(IR2}) + RA(Q, s2.t2.F(s1.t1)) «+ Cl{r2'" £2).

COSTg, =
IA(}BII) + RA(0,31) + LA(r1') + Ciri1v, 1)
+ RA(Q,t2.F(s1.81)) + C{r2'n £2)

COSTg3 =

IACIRTI) + LSCIR1).£1) + RA(O,s1) + C(ri™,£1)
+ TA(IR2}) + RA(0,52.t2.F(s1.£1))) + C(r2'",£2)

Figure 6~T:  Cost Formulae

129
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COSTgy =

IACIR1I) + LS(IR1}.t1) + RA(0,s1) + e(rin,£1) -
+ RA(0,t2.F(q1.£1)) + C(r2'", £2}

LSCIR1TI.t1) + RACO,t1) + C(ri",£1) + IA(IR2})
+ RA(0,82.t2.F(s1.t1)) + C(r2'",f2)

COSTGG =
LSCiR11.£1) + RA(O,t1) + C(r1™,£1) +
RACD,t2.F(s1.t1)) + C(r2'®,f2) ’

Figure 6-8: Cost Formulae (Continued)



131

b 1000

b1 100

zi 100

zl 100

- R1 R2

iRil 10000 10000
- fi 100 100

pi 1000 1000

ei 1000 : 1000

dij 0 ' 0

Pi] 1

Pjii 1

Pi .1 o1

dd 0 0

rr o 0

uk L] 1

Table 6-6: Characteristics of the Test Environments
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CASE 1
si .001 .01 ' _ ' .
ti 1 1
hi 10 10
el 0 -1 : _ ‘ -
¢ 0 c
CASE2 - - . CASE 3
81 .001 .01 ¥ .1
£i 1 1 .5 .5
hi 10 10 10 10
ci -1 -1 -1 -1
cj 0 0 -1 -1
CASE 1 : CASE 5
si . A .0001 1
£i .1 RS 1 1
hi 10 . 10 1 1
ci : o 0 0 0
e 0 0 0 0

Table 6-T: Characteristics of the Test Cases

6.3.2.1. Case 1

In case 1, there is an index on A1 but nqt on A2, The
selectivity of A1 is rather high, but that of A2 is low. There are
indices on the join atftributes. This type of query is oﬁe of the
most common simple queries, An example is to retrieve enrollments
taken by students identified by their names, for-courses which are

offered in a given department,

Among applicable algorithms, we select the following as being
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CASE 1. CASE 2 - CASE 3
seleectivity high high very low
of A1
selectivity . low - low very low
of A2
index on A yes no no
index on A2 no no no
index on join yes yes no
attributes :
CASE 4 CASE 5
selectivity very low very high
of A1 -
selectivity very low very low
of A2 _
index on A1 yes yes
index on A2 yes . yes
index on join’ ‘yes yes

attributes

Table 6-8: Characteristics of Cases Evaluated -
reasonable candidates fér optimality with respect to these parameter
sets,
11/21 31/21 modified G2 | | | ;
11/11 . : :

314 1423 144 143

GDPL-G2 algorithm outperforms othefs because algorithms 11721
and 31/21 require the scanning of the join attribute indices. Even
if a real link type is not supported, GDL gets the same cost by using

the index on the join attribute of R2, (This is the case of a
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virtual link type.) It is possible o obtain the same performance in
the relational system, by employing the _modified 11/11 algorithm,
That is, after scanning the record .oécurrences of R1, we get the
values of the join attribute; then, we'acceéé the index of the join
attribute of R2 for these values.-__A similar:appkoach.is taken in

SEQUEL [3].

6.3.2.2. Case 2

The only change from case 1 to case 2 is that there are no
indices on any attributes in the latter. Applicable algorithms here
are limited., In the relational3system. we consider E1/41 which scans
R1'and R? to get the regord occurrences, sorts them and executes a
join operation. GDL may emplpy G6 which scans-R1, restricts recprd
oceurrences, traver;es a link type from R1 to Ré, and executes a

restriction on R2. Estimations of the access costs are:

4t/ G6
2051 2100

We assumed that UY-way sort-merge algorithm is used for
sorting R1 and R2., The estimated cost for #1/41 is a little better
than that.of G6. If the iink fanout is rather Small, G6 perfdrms
better -than 41/41: if the;iink fanout 'is large, theﬁ B1/41 is bettér

‘than G6.
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6.3.2.3. Case 3
This case represents the situation where the selectivities of

restriction attributes are low. Since there are no indices for these

attributes, thbse algorithms'requiring indices'are_not considered.

41/41 G6

3900 3100

The result is similar to case 2.

6.3.2.4, Case 4

This repreéents the. case that £here are indices on
restrictionrattributes but that their selectivitie; are low. Note
that such a situation occurs infrequently because indices are usually‘
'coﬁstruéted on. highly selective attributes, Case ltrmay provide,

however, apprdximation for the case where uk is larger than 1.

31/31 Gl G3

642 oy 342

31/31 and G3.are essentially similar algorithms, The reason why G3.
is better than_31/31 is the number of accesses to recofd oceurrences
of R2 is reduced in G3 due to the feedback effect from the
restriction on R1. G1 does not perform well because of the number of
repeated accesses to the link files, This can be alleviated if the

system 1is smart enough to sort pointers to avoid repetition. The
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estimated cost for this case is 1244, Such a phenomenon occurs for
index accesses, too. 1Index and link access paths are not useful if
there are many record occurrences %o be retrieved. Scanning is

better than accessing through these access paths,

6.3.2.5. Case 5

This case represents a highly selective query. | An example
may be retrieving the address of a given student identified by a
unique key (SNO) when addresses are stored in a separaté record type,
The estimated costs are: o
11/21 11/41 3t/ 3 . modified G2
- 11/11

205 1004 1515 8 8

This case i3 similar to case 1, The cost differences are more

significant than case 1,

6.3.3 Semi-joins

A distinct advantage of the use of GDL real link types is the
case where there exist semi-joins in a query. Suppose AT, the set of
attributes for the projection of R1, is empty. it is not necessary
to access record occurrences of R1 if the restriction operation on R1

can be executed only by index accesses., For example, G1 becomes:
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IA ~-

A

_— -

IA - I - RA - RF - P

6.3.4 Three~Variable Queries

In the relational' system, the cost of the exécution of a
three-variable quéry depends on.how tﬁe Query is decomposed. The
techniqﬁes for 6§£imél.decomposition‘have.been sﬁudied by‘[féj, (91,
etc; In GDL, seiection of - access pgths among record types (i.e,, the
sequence of jqins) is determined by the wuser utilizing real or
virtual link' types. To compare algorithms on the same basis, we
aSSume that é giveﬁ three—variable query in the relational system is
decomposed into a sequence of two-variable queriés that is equivalent
to the path exXpression in GDL to be compared. Once we choose the
Same access path fbr the relational systeﬁ'and GDL, the costs vary in
the same manner as for two-variable queries. This is Erﬁe not only
for three-variable queries but also for queries with more than three

variables,

- The query expressed in Figure 6-9 is, for example, decomposed
into two queries as in Fiéure 6-10., Record type T is a temporary
record type that is produced by the first query after decomposition..

We assume that no indices are constructed for'the temporary record
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type T. We cannot use the algorithm 31 for T, because this algorithm
is applicable when there are indices on the attributes in the
restricetion predicate. Let us employ the algorithm 41 for T, which
uses a record scan operation., The guery é#aluatiqn using algorithms
31 and 41 is shown iﬁ Figure 6~11. Also shown is the thrée—variable
version of algorithm G1 in GDL. The cost for the evaluation of the
three-variable query is the summation of the costs for these two
queries, For the quéry and. schema étate characterized by the

parameters (Table 6-G), we have the following result:

1. 31/31 followed by #1/31:. 855
2. GDL - G3 followed by G3: 384
R1

| i <e». RESTRICTION(R1)

? PROJECTION(CAT)
Re
o | «s.. RESTRICTION(RZ2)
—--_?-—;ESJECTION(AE)
R3 i

t | «s.. RESTRICTION(R3)

PROJECTION(A3)

Figure 6~9: Three-Variable Query -
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R
C | ++.. RESTRICTION(R1)
_—_-E“-;ESJECTION(A1) |

R2 |
i*ﬂ-"__wﬂﬂﬂi .... RESTRICTION(R2)
——“-———;ESJECTION(AZ)

T
%--,—--n_-l

;

R3 :

Y il S A ol ke i i

i i +ees RESTRICTION(R3)

PROJECTION(A3)

Figure 6-10: Decomposed Queries

6.4 Conclusion

The following observations are made from our case 3studies.
First, prominent differences are seen for the cases where few record
occurrences are retrieved. The use of link btypes distinctly reduces

the cost.

Second, in the case that mahy record occurrences are
retrieved as the response to a given query, the existence of a link

type does not reduce the cost, This is because the cost for scanning




140

Algorithm 31/31-41/31:

o Q——

31 l= I =RA=RF = C = P
IS = JF -
IS - JF —-

31 }= I ~RA -RF = C = P
IA =memmm :

49 RS - RF - T - JF - C - P

IS - JF —

31 ‘e T ~RA-RF=-C=-P
) —

Algorithm G3-G3:

IA -

_ {1 -RA-RF-C-P
LS -~ |

IA-I -RA-RF-LF-C-P

1
|

LA

1
|

IA-I~-RA~-~RF -C =P

Figure 6-11: Query Evaluation Algorithms for

Three-Variable Queries
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R1 R2 R3
si .1 .1 .1
ti o1 o ' o1

hi 10 10 10
ci . Q 0 4]

Table 6-9: Characteristics of the Test Three~Variable
Query and Schema State

files becomes comparable to or even smaller than the cost for using

link or index access paths.

Third,-some accesses to record occurrences can be eliminated
in certain cases of semi-joins, if link types are supported. = Many

_simple queries contain semi-joins.

In practice, most queries seem to be simple; hence, the cost

reduction by link access is useful.

This model does not consider the following factors:

- CPU time

- The effects of the underlying operating system such as
buffer management and device scheduling '

If root pages of index and link tree files are kept in core by
buffering, the costs for IA and LA will be‘ considerably reduced.
This fact does not, however, significaﬁtly affect relative costs
between the relational and GDL algorithms, _It'changes the threshold

where algorithms using scanning record files, index pointer files and




142

link pointer files (RS, IS, L3) becomes better than ones using

index/1link tree files (IA, LA).

In this chapter, we concentrated_qn the costs of retrieval
operations, The costs for storage operations are obviously higher if

we have index and link storage than otherwise.

Since we have not completed the implementation of GDL, we
cannot quantitatively,compare the time used for precompilation which
executes parsing, optimization and code generation; It is, however,
fair to say that GDL will be more efficient at the precompilation
stage since access paths are mostly prédetermined. Chamberlin et al.

[14] showed that optimization of a query (one-variable and two-
variable) - takes a few times more time than parsing and code

generation in System R,



Chapter T

CONCLUSIONS

7.1 CONTRIBUTION

A Graph Data Model (GDM) is proposed as a practical solution
to the problems from which other data models suffer, The basic

concepté'déveloped in GDM are:

- directed graphs as the formalizable basis for data
representation structuring and operations

=~ logical representation of access paths in terms of links
(arcs)

- algebraic definitions of operations on a graph 1nclud1ng
powerful link operators (operations on linka)

~ = concept of record lists to allow the unifiéd manipulation
of records and links during a query processing time

Founded on GDM, a Graph Daté Language ({(GDL) .is designed,
This language demoﬁstrates that set-at-a-time query representation in
terms of operations on a graph is powerful, This is natural becaﬁse
a set of re;ations is_a degenerate case of a graph., Link operators_
smeothly accommodate transitive closure, numerical quantifiers and
grouping. Set-at-a-time query fepresentation is also used to

deseribe integrity constraints and views. This approach requires
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only minimum extension of the system in order to support these

facilities in addition to the advantage of system uniformity.

By interpreting links as iogical access paths, we reduce the
bqrden on the system to determine the ac?ess paths that brovide low
cost execution of data operations. | The user has flexible controi
over performance by dynamic_éreation and deleﬁion of link types. GDL
requires that a query be represented as a connected graph, which
makes it possible to aioid.disastrous query processing. We do not
mean that GDL gives. an optimal execution. The efficiency still
depends on the wuser's query _fdrmulation,_ but should _be within an

acceptable range.

Data independence, which is crucial +to rthe ease of
maintenance of data and programs, is practically'achieved; a user can
cfeate and - delete record types and link.types even after data. are
1oéded; operations in GDL allow creation of any record type and any

link type that are expressible in GDL.

This dissertation is limited %o thelpreliminary design of GDM
and GDL. Chapter 5 de#cribed a design of a prototype implementation.
It proved that the implementation of GDL is rather straightforward,
although GDL has to deal with two kinds of objects (records and -
links) while the relational model handles a single type of object_

(relations).
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A comparison of access path strategies using an extension of
Yao's cost model showed that GDL access path strategy gives éxcellent
performance for those queries where cardinalities of resultant record
types are rather small. Since this is the case of most queries, GDL
query evaluation is effective even without global query optimization.

Semi-joins are also efficiently evaluated by using links.

7.2 FUTURE RESEARCH

Since the design of GDL is at a breliminary sfage, there are
many aféas to be investigated. Enhancements of GDL. should be
qénsidergq tq a}low aggregate and arithmetic opera;ions, and access
control, _The aggregate_and arithmeticIOperationé on target record
types in DML statemeﬁts can be easily implemented. To allow these
operations anywhere in DML statements, though conceptually ;imple,
requires the modification of run—time procedures, specifically IRST
énd XRST. To design an access control feature.lﬁe need to analyze.
the granularity of access control, The provision of a multi-user

environment requires careful design of concurrent accesses on

databases,

The definitions of views .and integrity controls are‘expreéséd
and stored as DML statements in GDL. These are executed whenever
storage operations are executed., This approach is simple and can be

improved,
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Parallel computation can be utilized in the design of run-
time procedures to improve the response time of query processing.
This is also true for the translation of DML statements into calls to

run-time procedures.

A design of a graph-driven interactive query interface is
useful and interesting as we mentioned in Chapter 4, How easily the
language is mapped onto GDL will be one of the measures of usability

of GDL in the future,

Mapping of GDL to other data languages is an iﬁterésting
proBlem. GDL can be used to implement other data models such as the
relaﬁional. model and the network model, It. might be ar power ful
candidate for a conceptual schema data model in the three-level
schema system [11. The entitywrelationship modei [17]1 can be
naturally midpped onﬁo GDL. | Semantic network data models [39, 591

also can be implemented on top of GDL.




Appendix A.

BNF GRAMMAR OF GDL

Items enciosed by curly brackeﬁs are optional,

{statement> = <DDL'statement:-> :‘<DML stafement)
<DDL statement> ::= {define schema> | <desftroy schema> |
.  <updéte def) H <definé view> | <destroy view>
<define.schema> ::= define schema <schema hame) {rec def
list> { <link def list> } { <constraint def list> }

{schema name> ::z= <identifier>

<rec def listd ::= <rec def listd>

<record definition> | <record definition>
<{record definition> ::= record <reccrd name> <attr def.
list> {<clustering key def>} {<seafch key def>}
{ <unique key def>}
<{record name> ::= <identifiler>

<attr def list> ::= <attr def list> <attribute

definition> | <attribute definition>

<{attribute definition> ::= attribute <attribute name>
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{attribute type>
<{attribute name> iz <{identifier>
<attribukte type> ::= integer {<length>} | char <{length> |
real {<length>, <length>} 7 ' -
<length> ::= <number> | |
<{clustering key def> ::=z clustering key <key attributes>
<unique key def®> ::2 unique key <key attr list5
<{search key def> ::= szearch key <key atir list>
<key attr list> ::= <key atﬁr list> , <key attributes> H
<{key attribuﬁes?
{key aﬁtributes)I::= {attribute names i <key attributes>7 

and <attribute name>

<1ink def list> ::= <link def 1ist> <link definition> |
<link definition> _ }

<link definition> ::=.link <link name> {<inverse link>}

<{1link type def>
{invrel se link> 1= + $link name>
{link type def> ::= <real link> | <virtual link>
{real link> ::= <node def>

{virtual link> ::= <{node def> virtual <attribute name>

{ecomparison op> <attribute name>
{comparison op> ::=:< P> <= o= =1 X

<node def> ::= ( <record name> , <{record name> )}

<link name> ::= <identifier>
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<constraint def list> ::= <constraint def list>
{constraint def> | <constraint def>

{constraint def> ::= <rec constraint def> | <link
constraint def > |

<rec constraint def> ::= constraint record <record name>
{constraint mode> { upon <operation type> }
<se1ec£ion exﬁression>. |

<link constraint def> ::=z constraint link {link type spec>
<constraint mode> <network expressioh>

<constraint mode> 1= nevér‘l always

<operation mode> ::= addition | deletion

<update def> ::i= <add def> | <delete def> |

| {replace def> |

<add def> f:: add <record definition> in schema
<schema name> { from <sel rec> } |
| add <link definition> in schema
<schema name> { from <link clause> }

<delete def> ::= deléte <record name> in schema
{schema name> | delete <link name>
“in schema <{schema name>

<replace def> ::= replace <{record name> in schema

| <s§hema name> by <record definition>

{ from <sel reec> } |
replace <link name> in schema <schema_name>

by <link definition> { from <link clause> }
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<define view> ::= define view <view name> on schema
<{schema name} <view definition list>

{view definition list> ::= <view definition 1list>
{record view list> {<link view list>}

{record view list> ::= <{record view list> <record
view>. | <record view>

{link view list> ::= <link view list> <link view}
i <link view>

<record view> ::= record <record name> { ( <attr def
list> ) } from <sel rec>.

<iink view> ::= link <link name> { <node spec> }
from <link clauseS |

{destroy schema> ::= destroy schema <{schema name>

<destroy view> ::= destroy view <view name>

<DML statement> ::= <gelect record> | <séleet link> |
<{connect link> | <add recéfd) ' <add link> |
<delete record> | <delete link> | <remove record>
| <remove link> | <replace record> | <reconnect
link> | <open> | <close> | <variable declaration>
i <sort> | <procedural statement>
| <define volatiles

{define volatile)I::= define volatile <{volatile rec def>
i

| define volatile <link definition>

{volatile rec def> ::= record <record name> <attr def




list>

<{select record> ::= select record <record name> :=
<zel rec>

<sel rec> ::= <record list> { [<{selection expression>]
{<projection spec>} { <sorting> }

<record list) ii= <record. list> , <record name> |
<record name)

<pr§jection spec> ::= (<attr spec list>)

<attr spec listﬁ ::% <attr spec list>, <attr spec> |

B <attr spec> |

<attr spec> ::= <attfibute name> | <a;tribute name> :=
<attribute name> | <attribute name> :=
{rec and attr> | <attribute name> := <{value>

<sorting>.::=.sorted by <record aﬁtribute list>

<record attribute list> ::=_<regord'attribute list>
'(record attribute name> i <rec:and attr>

{selection eipression) 3= Lintra record

expression> | <network expression®

{intra record expression> ::s <intra record expression>

<set op> <intra rec term> ; <intra rec term>

{set op> iz +} -1 n

<intra rec term> ::= <intra reec factor> | ( <intra record

expression> )
{intra reec factor> ::z <{attribute name> <compari$on op>

<value> | <attribute name> <comparison op>
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{attribute name>

<value> ::= a value of a defined data type | null value

<{network expression> ::= <{network expression> <{set op>
<{network factor> | <network factor>

<network factor> ::= (<{network expression>) | path
{path expression> { : <inter record expression>}

{path expression> ::= <{path expression> <linkage> <record
clause> | <path expression> <linkage> ('<récord 
clause> ) | <record clause> <linkage> <record
clause> | <record clause> <linkage> (<record
clause>)

<iiﬁkage> 11z <existential link> | <negaﬁivé existential
link> | <numerical 1link> | <transitive link?

<existential link> 11z —-> / <link name*> / {<grouping>}
—=> |===> {<grouping>} / <link name*®> / --->

<negative existential link> :iz ——-> / ~ <link name*> /
{ <grouping> } ===> | —==> {<grouping>} / ~
<link name*> / —-> |

<numerical link> ::¥ ———> {<grouping>} // <q> <link-
name*> // { <grouping>} ---=>

<transitive 1link> :iz ==~> \ {@> <link name*> \ ——=3

<link name®> ::= <link name> | % <link name>

<g> ::= { <comparison op> } <nﬁm>

<num> ii= 4+ | <number>

<number> ::= 1 } 2} 3! ....



<inter.record e#pression) 1:= <inter record expression>
<set op> <inter record term> | <{inter record term>
{inter record term> ::= (<inter record expression>) |
<rec-and attr> <{comparison op> <{rec and attr>
- Lrec and attr> i:= <recofd name> . <attribute named>
{record clause> ::¥.<record name> - | <record'name>
[ <selection expression> ]

{ (Krecord name> [<selection expression>])

{select link> ::= select link {link name> := <link
clause> |
<link clause> ::= <link name> H <link type spec>
[ <network expreésion)]
<link type spec>.::= <link name> f <1link name> <node Spec>

<node spec> ::= ( <record name> , <record name> )

<connect link> ::= connect link <link name> := ( <record

| clause> , <record clause> ) [ <link creation
condition> ]

<link creation condition> ::= * | <inter record
expressiond>

{add fecord) $i= add record <record name> to <record name>

<add link> :;:= add link <link name> to <linklname>

{delete record> ::= delete record <record name> from

{record name>
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<delete 1link> ::= delete link <link name> from <link name>"
{remove record> ::=z remove record <record clause>

{remove link> ::= remove link <link clause>

(replace record> ::= replace record <{record clause>
{ <rep1§ce_a£tribute list> )
<replace attribute list> ::= <replace attribute list> ,
<replace attribute> | <replace attribute>
<{replace attribute> ::= <attribute name> := <valued
<reconnect link> ::= reconnect link <link clause>
<reconnedt node>
<reconﬁect node> ::= initial node := <record clause> .

i terminal node := <record clause>

<open> ::z open schema <schema name> |

open view (view name>
{elosge> 1:= close schema <schema name> |
close view <view name>
{variable declaration> ::= variable <record name> :

<record list>

<sort> i:= sort <record name> by <attr name list>

<attr name list> ::= <attr name list> <attribute name>
i <attribute name>
<procedural statement> ::= <{get firstd> | <{get next> |

<get previous>
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{get first> ::=z get first <record name> {<number>}

{ <ordering link> } <cursor designationd>
Lordering link> ::= by <1link name>
{eursor designation> :;:= with <cursor name)l
{eursor name> ::i:= <identifier>
<get next> ::: get next {<{number>} with gcursor name>
{get previﬁus> 1:= get previous {<number>} with

<cursor name>




Appendix B.

SPECIFICATION OF RUN-TIME SYSTEM

This appendix deseribes a prototype implementation design of

a GDL run-time system which consists of the followings: file
structures, parameters, and procedures (functions). The global data

structures are described in Chapter 5.

B.1 File Structures

Each file 13 organized into pages. The following file

structures are used in our run-time system:

1. linear file with fixed-length records

2, Bh~tree file |
The occurrences of a record type are stored in a linear file,
clustered by the clustering.key attribute(s). Each primary key is

provided with an index, Search keys are also supported by indices.

An index is implemented by a B¥-tree file and a linear file,
The key of the B¥*-tree is a primary key attribute or a search key
attribute. The second file contains URIS, Each entry in the leaf

nodes of the B*-tree points to the starting location in the second
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file where URIs for the record oceurrences containing %Lthe key value

are stored,

A link type is similar in design to an index. The key for
. the B*-tree is a URI for the initial node. The corresponding linear

file contains pairs of URIs for an initial node and a terminal node.

The URI is a page number concatenated with a unigque number

within the recofd_occurrences of the same Key value,

B.2 Parameters and variables

The "i" appearing in the folldwing’parameter names denotes a

number,
RTYPi a record type - identified by a location type (a
: record occurrence file, a volatile record type, and a
record list type) and its id
Ri an ocecurrence of RTYPLi - specified by URI
LTYPi a link type - identified by a location type (a link
occurrence file, and a volatile link type) and its id
Li _ ~an occurrence of LTYPi
AL an attribute of RTYPi - identified by an offset in
RTYPi
X value of Ai

RSTEXP - a restriction expression



CONSTi
RESTYP

MODE

DEST

IDXLST

PRJLST

LNKLST
RECLST
IDX

NO

BF

PTR

OPERAND-RLTYPi
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a constant value
a resultant record list type

a mode of 1link operators -~ neutral, downward or
upward

a comparison operator used in numerical and
transitive link operators :

a destlnatlon data structure name (volatile object
name)

a list of indexed attributes

a list of pairs of a record type name and an
attribute name : R

a list of link types

a list of record types

an indexed attribute

a.nﬁmber

a name of a B¥*-tree file

a pointer Fo a record occurrencé ~ specified by a UﬁI

a URI-array (designated as one of the operands or a
result) pointed by the i-th slot of OPERAND-DISPLAY-
STACK
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B.3 IRST procedure
PURPOSE To execute an intra-record restriction
PARAMETERS  RTYP1, RSTEXP, IDXLST, RESTYP

ON ENTRY RTYP1 is an element of OPERAND~RLTYP1. RTYP1 is either
' in the corresponding database or in OPERAND=-RLTYP1.

ON EXIT OPERAND-RLTYP1 contains the resultant record list type.

ALGORITHM

ASGNRL;

IF INDEX-IS~-AVAILABLE THEN _
{evaluate RSTEXP using GETIDX }
ELSE
{ GETREC;

evaluate RSTEXP }

RLPROJ; :

/% RLPROJ takes two URI~ARRAYs (OPERAND-
RLTYP1 and OPERAND-RLTYP2) as operands,
and returns its result in OPERAND-RLTYP?.
%/

CALLED FROM MAIN

CALLS ASGNRL, GETIDX, GETREC, RLPROJ

B.4 XRST procedure

PURPOSE To execute an inter-record restriction

PARAMETERS RTYP1, RTYP2..RSTEXP, RESTYP

dN ENTRY RTYP1'and'RTYf2 are élements of OPERAND-~RLTYP1.

ON EXI? OPERAND-RLTYP1 contains the resultant record lis£ type.

ALGORITHM
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FOR RTYP1 DO GETREC:

FOR RTYP2 DO GETREC;

ASGNRL; - _ ,

FOR. EACH OCCURRENCE OF OPERAND-RLTYP1 DO
{ evaluate RSTEXP }:

. RLPROJ;

CALLED FROM

CALLS

MAIN

ASGNRL, GETREC, RLPROJ

B.5 EXT procedure

PURPOSE

PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To execute an existential link operator
LTYP1, RTYP1, RTYP2, MODE, Ai, RESTYP

RTYP1 is an element of OPERAND-RLTYP1. LTYP1 is defined
as a link type from RTYP1 to RTYP2, Ai specifies a
grouping on either node which is determined by MODE. It
can be null,

OPERAND-RLTYP1 contains the resultant record list type.

GETLNK intoc OPERAND-RLTYPZ2;
IF GROUPING-EXISTS THEN

{ PUSH; GETIDX; UNI; POP 1}
UNI; POP; ‘
RLPROJ;

MAIN

GETLNK, GETIDX, PU3H, RLPROJ, POP. UNI




161

B.6 NEGEXT procedure

PURPOSE
PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To execute a negative existential link operator .

LTYP1, RTYP1, RTYP2, MODE, Ai, RESTYP

RTYP1 is an element of QPERAND-RLTYP1. LTYP1 is defined
as 'a link type from RTYP1 -to RTYP2. Al specifies a
grouping on either node which is determined by MODE. 1t
can be null,

OPERAND-RLTYP1 contains the resultant record list type.

ASGNRL; ' '
copy RTYP1 or RTYP2 to OPERAND-RLTYPZ2
depending on MODE;
PUSH; .
GETLNK into OPERAND-RLTYP2;
IF GROUPING-EXISTS THEN
{ PUSH; GETIDX; UNI; POP };
DIF; POP;
RLPROJ;

MAIN

ASGNRL, GETLNK,.GETIDX, RLPROJ, DIF, PUSH, POP, UNI

B.7 NUM procedure

PURPOSE
PARAMETERS

ON ENTRY

To execute a numerical link Operatqr
LTYP?, RTYP1, RTYPZ2, A1, AZ, MODE, RTYP. Q

LTYP1 is defined as (RTYP1, RTYP2). RTYP1 is an element
of OPERAND-RLTYP1. A1 and A2 specify groupings. A1 is
an attribute of RTYP1 and A2 is an attribute of RTYP2.
A1 and A2 can be null,




ON EXIT

ALGORITHM

CALLED FROM

CALLS
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OPERAND-RLTYP1 contains the resultant record list type.

IF GROUPING—EXISTS-ON—RTYP1 THEK DO
. { GROUP;
FOR EACH GRQUP DO SORT };
IF GROUPING-EXIST3-ON-RTYP2 THEN Do
{ GROUP;
FOR FACH GROUP DO SORT};
FOR EACH GROUP OF RTYF1 DO
{ GETLNK to TEMP ;
check the number of link occurrences };
ASGNRL: .
store the result to QPERAND-RLTYP1:
RLFROJ;

MAIN

ASGNRL, GROUP,SORT, GETLNK, RLPROJ

B.8 TRN procedure

PURPOSE

PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

To execute a transitive link operator
LTYP1, RTYP1, MODE, Q

LTYP1 is a recursive link type. RTYP1 is an element of
OPERAND-RLTYP1.

The resultant record 1list type is in OPERAND-RLTYP1.

/% If Q is "<=n" #*/

ASGNRL;

FOR N TIMES DO GETLNK:

RLPROJ

/% Similar in the other cases */

MAIN
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ASGNRL, GETLNK, RLPROJ

B.9 LNKCRT procedure

PURPOSE

PARAMETERS |

ON ENTRY
ON EXIT

ALGORITHM

CALLED FROM

CALLS

To execute a link creation operation between two record
types '

RTYP1, RTYPZ, RSTEXP

RSTEXP can be null, In this case, a Cartesian product
will be constructed between two record types.

A" link type from RTYP1 to RTYP2 1is constructed in
OPERAND-RLTYP1. :

FOR RTYP1 DO GETREC;
FOR RTYP2 DO GETREC;
ASGNRL;

~FOR ALL COMBINATIONS OF RI IN RTYP1 AND

R2 IN RTYP2 DO evaluate R3TEXP;
DELRL;

MAIN

ASGNRL, GETREC, DELRL

B.10 PROJ procedure

PURPOSE
PARAMETERS
ON ENTRY

ON EXIT

To execute a projection from a current record list type
PRJLST, DEST
PRJLST may involve more than one record type.

DE3ST c¢ontains the occurrences of a new record type
specified.
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ALGORITEM
o GETREC into DEST;:
FOR EACH OCCURRENCE OF OPERAND-RLTYP1
DO copy values of attributes specified : "
by PRJLST into DEST;

CALLED FROM MAIN

CALLS GETREC

B.11 FETCH procedure

PURPOSE To retrieve the occurrences of a given record type - a
degenerated case of a projection

PARAMETERS DEST

ON ENTRY The source is in OPERAND-RLTYP1
(ON EXIT . DEST contains the values of a specified record type.
ALGORITHM

GETREC into DEST;
CALLED FROM MAIN

CALLS GETREC

B.12 UNI, INTS, DIF procedures

PURPO3E To  execute a set operation (union, intersection, and
: difference) '

i

PARAMETERS none

ON ENTRY - OPERAND~RLTYP1 and OPERAND-RLTYP2 contain operands.
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ON EXIT OPERANDwRLTYP1 contains the resultant record list type.

ALGORITHM
ASGNRL;
perform the set operation;
/* The result is in OPERAND-RLTYP3. %*/
DELRL(2);
/* OPERAND-RLTYP3 becomes QPERAND-RLTYP1., ¥/

CALLED FROM MAIN, EXT, NEGEXT

CALLS ASGNRL, DELRL

B.13 RADD procedure

PURPCSE To add record occurrences

PARAMETERS  RTYP1, RTYP2, IDXLST

ON ENTRY RTYP1 and'RTY?2.mu3t be compatible. RTYP1 is a volatile
‘ record type and RTYP2 is a resident record type.

ON EXIT The occurrences of RTYP1 are added to RTYP2, The search
keys (indices), if any, are added to the index files.

ALGORITHM
FOR EACH OCCURRENCE OF RTYP1 DO
{ ADDREC;
FOR EACH ELEMENT OF IDXLST DO
ADDIDX }; '

CALLED FROM MAIN

CALLS ADDREC, ADDIDX
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B.14 RDEL procedure

PURPOSE

PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FRCM

CALLS

To delete record occurrences and the associated 1nd1ces
and link occurrences

RTYP1, RTYP2. IDXLST, LNKLST

RTYP1 ié compatible with RTYP2. RTYP1 is a Qolatile
record type., RTYP2 i3 a resident record type.

The occurrences of RTYP1 are deleted from RTYP2. The

- link occurrences incident with the occurrences of RTYP1

are deleted. The indices for RTYP2, if any, are also
updated, '

FOR. EACH OCCURRENCE OF RTYP1 DO
{ DELREC; ,
FOR EACH ELEMENT OF IDXLST DO
DELIDX;
FOR EACH ELEMENT OF LNKLST DO
DELLNK 1};

MAIN

DELREC, DELIDX, DELLNK

B.15 LADD procedure

PURPOSE
PARAMETERS

ON ENTRY

ON EXIT

To add link occurrences

LTYP1, LTYP2

LTYP1 must be compatible with LTYP2. LTYP1 is a
volatile link type. LTYP2 i3 a resident link type. The
incident record occurrences must exist as resident.

The occurrences of LTYP1 are added to LTYP2,.
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ALGORTTHM o o o
FOR EACH OCCURRENCE OF LTYP1 DO
* ADDLNK;

CALLED FROM MAIN

CALLS ADDLNK.

B.16 LDEL procedure
PURPOSE To delete link occurrences
PARAMETERS  LTYP1, LTYP2

ON ENTRY LTYP1 is cgmpatible'with-LTYP2. LTYP1 is a volatile
link type, LTYP2 is a resident record type.

ON EXIT The occurrences of LTYP1 are deleted from LTYP2,

ALGORITHM o .
FOR EACH OCCURRENCE OF LTYP1 DO DELLNK;

CALLED FROM MAIN

CALLS DELLNK

B.17 PUSH procedures

PURPOSE To execute a push.opefation on the.URI-STACK.
PARAMETERS  none

ON ENTRY The Qperand is in OPERAND-RLTYP1.

" ON EXIT OPERAND~-RLTYP1 is pushed onto the URI-STACK.




ALGORITHM

CALLED FROM

CALLS
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push OPERAND-RLTYP1 to URI-STACK;
DELRL;

MAIN, EXT, NEGEXT

DELRL

B.18 POP procedure

PURPOSE
PARAMETERS
ON éNfBi
ON EXIT

ALGORITHM

CALLED FROM

CALLS

To execute a pop operation,
none
The URI-STACK should not be empty.

The top of the URI-STACK is moved to OPERAND-RLTYP1.

ASGNRL; :
pop the URI-ARRAY at the top of URI-STACK
"to QPERAND-RLTYP1; :

MAIN, NEGEXT

ASGNRL

B.19 RLPROJ proeedure

PURPOSE

PARAMETERS

OM ENTRY

To execute a record list projection
RECLST

RECLST is a specification of which elements are to be
projected, OPERAND-RLTYP1 and OPERAND-RLTYP2 contain
the operands, o




ON EXIT

ALGORITHM

CALLED FROM

CALLS

ASGNRL;
FOR EACH OCCURRENCE OF OPERAND~-RLTYP2 DO
- FOR EACH ELEMENT OF RECLST DO
eopy corresponding URI into
OPERAND-RLTYP3;
DELRL(2)%

IRST, XRST, EXT, NEGEXT, NUM, TRN, NTRN

ASGNRL,’DELRL

B.20 GETREC procedure

PURPOSE
PARAM#TERS
ON ENTRY
ON EXIT

ALGORITHM

CALLED FROM

CALLS

To get record oceurrences ‘into a working area

RTYP1, DEST

DEST contains the occurrences of RTYP1.

IF DEST-IS-NULL THEN ASGNREC;
/% In this case, a RECORD-ARRAY newly
allocated is the destination., %/
IF RTYP1-IN-RECORD-STACK THEN
{ FOR EACH OCCURRENCE OF RTYP1
DO { copy it to DEST } 1}
ELSE _
{ FOR EACH OCCURRENCE OF RTYP1
DO {- SRCHTRE; copy it to DEST } }:

IRST, XRST, LNKCRT, PROJ, FETCH, GROUP

SRCHTRE
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OPERAND-RLTYP1 contains the resultant record list type.




3.21 GETIDX procedure

PURPOSE

PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To get indices (URIs) of given value(s)

IDX, CONST1, CONST2, DEST

CONST1 and CONST2 must be in the domain of IDX.
CONSTZ2 is mnot null, then - a range search will

executed,

The result is stored in DEST.

IF DEST-IS-NULL THEN ASGNRL:
/* In this case, a RECORD-ARRAY newly
allocated is the destination, %/
IF CONST2-IS-NULL THEN SRCHTRE
ELSE _
{ FOR CONST1 TO CONS3T2 DO
SRCHTRE 1}

IRST, GROUP, EXT, NEGEXT

ASGNRL, SRCHTRE

B.22 GETLNK procedure

PURPOSE
PARAMETERS

ON ENTRY
ON EXIT

ALGORITHM

To get link occurrences'for given initial nodé(s)-
LTYP1, RTYP1, DEST
RTYP?1 is the initial node of LTYP,

DEST contains the result,

IF DEST-IS-NULL THEN ASGNRL:
FOR EACH OCCURRENCE OF RTYP1 DO
{ SRCHTRE; copy values to DEST }:

70

If

be
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CALLED FROM EXT, NEGEXT, NUM, TRN

CALLS ASGNRL, SRCHTRE-

B.23 GROUP procedure
PURPOSE To group a record type

PARAMETERS  RTYP1, A1

ON ENTRY . A7 is an attribute of RTYP1.
ON EXIT RTYP1 is grouped by the value of A1,
ALGORITHM

IF A1-IS-INDEXED THEN ]
{ group occurrences using GETIDX }
ELSE . ' :

{ GETREC; SORT; group them }:

CALLED FROM NUM, TRN

CALLS ASGNREC, GETIDX, GETREC, SORT

B.24 SORT procedure
PURPOSE - To sort a record type

PARAMETERS  RTYP1, A1

ON ENTRY A1 is an attribute of RTYP1,
ON EXIT RTYP1 is sorted by the value of A1l.
ALGORITHM

sort RTYP1 BY A1;
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CALLED FROM GROUP, MAIN

CALLS none L | )

B.25 ASGNRL procedure

PURPOSE To asszign a location for storage of OPERAND-#LTYPT.
PARAMETERS none

ON ENTRY At least one of the URI-STACKs has unused space.

ON EXIT A URI-ARRAY 1is allocated for " record list ‘type
(OPERAND-RLTYPi) storage.

ALGORITHM
find the URI-STACK which does not contain
OPERAND-RLTYPi and has the smallest used
Space;
update OPERAND-DISPLAY-STACK'

CALLED FROM LNKCRT, RLPROJ, GETIDX, GETLNK, IRST, XR3T, NEGEXT, NUM,
TRN, UNI, INTS, DIF, POP

CALLS none

' B.26 DELRL procedure
PURPOSE To delete a given number of OPERAND-RLTYPs., . : o
PARAMETERS NO

ON ENTRY NO contains the number of URI—ARRAYS {OPERAND-RLTYP=) %o
‘be deleted, '

ON EXIT OPERAND-DISPLAY-STACK is updated,




ALGORITHM

CALLED FROM

CALLS

B.27 ASGNREC
PURPOSE
PARAMETERS
ON ENTRY..

ON EXIT

ALGORITHM

CALLED FROM

CALLS
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delete a given number (NO) of entries
from QPERAND-DISPLAY-STACK:

UNI, INTS, DIF, RLPROJ, PUSH, LNKCRT

none

procedure
To assign a RECORD-STACK to a given record type

none

The RECORD-STACK that has the smallest used space is
assigned to storage of a record type.

If the RECORD-ARRAY pointed by the top
element of RECORD-DISPLAY-STACK is no%
useful, then discard it;
IF { there is unused space in either
RECORD-STACK } ‘THEN
{ allocate the one with more unused space }
ELSE
{ overwite circularly };
update RECORD-DISPLAY-STACK:

GETREC

none




B.28 ADDREC procedure

PURPOSE

PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To add a record occurrence into a.database
RTYP1, R1, IDXLST
R1 is an occurrence of RTYPI1.

R1 is added to RTYP1. 1Its Indices are updated.

NOOFREC := SRCHTRE:

determine a URI for R1:

store R1 with the URI in the sequential
file; _

put the pointer in the B¥*-tree;

FOR EACH INDEX DO ADDIDX;

RADD

SRCHTRE, ADDIDX

B.29 DELREC proce&ure

PURPOSE

PARAMETERS
ON ENTRY

ON EXIT

ALGORITHM

To delete a record occurrence
RTYP1, R1, IDXLST, LNKLST
R1 is an occurrence of RTYP1.

R1 is deleted from RTYP1. 1Its indices are deleted.
link occurrences incident with R1 are also deleted.

DELTRE;
FOR EACH ELEMENT OF IDXLST DO DELIDX;
FOR EACH ELEMENT OF LNKLST DO _

{ IF SRCHTRE % O THEN DELLNK }
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The
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CALLED FROM RDEL

CALLS DELTRE. DELIDX, DELLNK, SRCHTRE

B.30 ADDIDX procedure
PURPOSE To add a pointer to R1 in an index file

PARAMETERS  IDX, R1

ON ENTRY IDX is an index of the record type which R1 belongs to.
ON EXIT The pointer to R1 is added to IDX,
ALGORITHM

compute the value V of IDX for R1;
IF SRCHTRE = O THEN ADDTRE _
ELSE { add it to the linear file };

CALLED FROM ADDREC

CALLS ADDTRE, SRCHTRE |

B.31 DELIDX procedure
PURPOSE To delete an index

PARAMETERS  IDX, R1

ON ENTRY IDX is an index file of the record type which R1 belongs
to, ' .

ON EXIT The pointer to R1 is deleted from IDX.

ALGORITHM

compute the value V of IDX for R1;



CALLED FROM

CALLS

IF SRCHTRE = 1 THEN
{ DELTRE with V and URI of Rt }
ELSE
{ delete R1 from the linear file };

RDEL

DELTRE

B.32 ADDLNK procedure

PURPOSE
PARAMETERS

ON ENTRY
ON EXIT

ALGORITHM

CALLED FROM

CALLS3

To add a link occurrence

LTYPt, R1, R2

(R1, R2) is in the domain of LTYP.
(R1, R2) i3 added to LTYP.
IF SRCHTRE(LTYP, R1) X O THEN

f add R?1 in the linear file }-
ELSE ADDTRE(LTYP,R1,R2);

LADD

SRCHTRE, ADDTRE

B.33 DELLNK procedure

PURPOSE

PARAMETERS

ON ENTRY

To delete a link occurrence
LTYP1, R1, R2

(R1, R2) is in the domain of LTYP.
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ON EXIT

ALGORITHM

CALLED FROM

CALLS

B.3§ SRCHTRE
PURPOSE
PARAMETERS
ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS
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The link occurrence (R1, R2) is deleted from LTYP,

IF SRCHTRE(LTYP, R1) = O THEN ERROR
ELSE
{ IF R2-IS-NULI, THEN DELTRE{LTYP,R1)
ELSE { delete R2 from the linear list }
b - : '

LDEL, RDEL

SRCHTRE, DELTRE

function

To search a B*-tree

BF, X, PTR

X is a value to be searched_in BF.

If X is found in BF then the value of this function is
the number of pointers to record occurrences (URIs).
Otherwise, it is 0. PTR contains the first pointer.

search the tree from the root until ¥ is
found or the tree iz exhausted:

GETREC, GETIDX, GETLNK, ADDREC, ADDIDX, ADDLNK, DELREC, .
DELIDX, DELLNK

none




B.35 ADDTRE procedure

PURPOSE
PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To add a peinter to a B¥#-tree
BF, X1, PTR

X1 1s a key value of the B¥-tree BF.
to be stored in BF.

PTR is stored in BF.

make a new entry of X1 with PTR in BF;
ADDREC, ADDIDX, ADDLNK

none

B.36 DELTRE procedure

PURPOSE
PARAMETERS

ON ENTRY

ON EXIT

ALGORITHM

CALLED FROM

CALLS

To delete an item from a B¥*-tree
BF, X1
The entry of X1 must exit in BF.

PTR with X1 is deleted from BF,

delete an entry of X1 from BF;
DELREC, DELIDX, DELLNK

none
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PTR is a pointer
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