A COMPLETE CHARACTERIZATION OF A MULTIVERSION
DATABASE MODEL WITH EFFECTIVE SCHEDULERS

Gael N. Buckley
A. Silberschatz

Department of Computer Sciences
University of Texas at Austin

Auystin, Texas

TR-217 March 1983

A COMPLETE CHARACTERIZATION OF A MULTIVERSION
DATABASE MODEL WITH EFFECTIVE SCHEDULERS?

Gael M. Buckley

A. Silberschatz
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

Most database systems ensure the consistency of the data by means of 3 concurrency control
that uses a polynomial time on-line scheduler. Papadimitriou and Kanellakis have shown that for
the most general multiversion database model no such effective scheduler exists. This difficulty
can be overcome by using different multiversion database models whose restrictions affect the
amount of concurrency available. It is thus important to formally define and characterize the
maximal concurrency allowed for multiversion models under different behavioral conditicns. In
this paper we focus our attention on an efficient multiversion database model previously proposed
by Reed and Silberschatz. ~We derive necessary and sufficient conditions for ensuring
serializability and serializability without the use of tramsaction rollback. This characterization is
used to derive the first general multiversion protocol that allows versions to be read as soon as
they are created, and which does not use transaction rollback as a means for ensuring

serializability.

3'1‘11%3 research was sapporied in part by the Office of Nzval Research under Contract N00D14-80-K-0087, and by
the National Science Foundation under Grant 81-04017. .

1. Introduction

User response time in database systems can be improved by concurrent execution of user
transactions. If each user transaction maintains the consistency of the database when executed
alone, the database system must guarantee that any allowed concurrent execution of a sei of
transactions also maintains the consistency of the database. A system which guarantees this for

any set of transactions is said to be serializable [1].

One recent method to increase comcurrency is the use of the multiversion data item concept.
This concept enhances comcurrency by retaining individual updates of 2 data item as separate
versions, and allowing 2 transaction to read one of several versions of a data item. The
concurrency control must ensure that the versions read and written maintain serializability. This
was used in the Honeywell FMS system [2], and has been formally developed and extended in the
work of Reed [3], Stearns et al [4], Stearns and Rosenkrantz [5], Bayer [6], and Silberschatz [7].
Complexity results and necessary and sufficient conditions for the most general multiversion
schemes were recently presented by Bernstein and Goodman [8] and Papadimitriou and Kanellakis
[0]. The result in [9] states that there is no polynomial time on-line scheduler that maintains
serializability and yet exploits maximum concurrency for the most general maultiversion database
model. This result makes study of the various multiversion models more interesting; for unlike
single version database, the several multiversion protocols existing are not even uniformly based

on the same database model.

Determining the amount of concurrency permitted by a database system is made more
_complicated if .fransactions may. be.aborted. by.. the. system..once . execution has begun... If the
__protocol. detects. that a. transaction.may . .not. be serializable . upon. transaction. completion, it
maintains consistency by removing some number of transactions from the system and restarting

them at a later time. This is termed transaction rollback, and is a common method for existing

multiversion protocols to maintain serializability and/or deadlock freedom [3,4,5,6]. Transaction
rollback must also be invoked due to process or hardware failure, however, this paper is concerned
only with rollback caused by deadlock or nonserializable sequences. The performance degradation
due to rollback is currently accepted, due to the small degree of concurrency in present database
systems. As new hardware technologies and network database systems are implemented, the
number of concurrent transactions can be expected to increase significantly. In such environments
it may become necessary to design protocols which do not depend on transaction rollback as 2
means for keeping the database consistent. To distinguish between these two types of protocols,
we term any serializable protocol as safe, and the serializable protocols that do not use

transaction rollback as progressive.

There is one existing progressive multiversion protocol [7], which is a variant of the tree locking
protocol [10]. This protocol is only applicable to databases modelled as acyclic graphs. The

progressive protocol developed in this paper is the first progressive multiversion protocol

applicable to an arbitrarily structured database, and contains the protocol of [7] as a storage
efficient special case. The behavior of the new protocol is easily comparable to previously

published protocols using the same restricted multiversion model.

The remainder of the paper is organized as follows. In section two we present the multiversion
model and argue why it is 2 useful model. The complete characterization for both safe and
progressive protocols is given in sectiom three. Section four contains several protocols which fit
this model, and presents and proves the optimal progressive protocol for this model. It also
compares the comcurrency available with protocols of this and other models, and presents

optimizations for read-only transactions and version discarding.

2. The Multiversion Database Model

Since there is no efficient method to maximize concurrency for the most general multiversion
model, we must develop and characterize models which have effective concurrency controls and
vet still make use of the availability of multiple versions of a data item. There are several

important considerations when designing a restricted model.

a} It is crucial that a transaction can easily and quickly determine which version of a data item
should be read.

b) Transactions should not be restarted often, if at all, and every transaction submitted to the
system should eventually complete.

¢} It is useful to have a number of readable versions of a data item available to allow interesting
variation in scheduling of read-only transactions.

The multiversion database model described below easily meets all these objectives, and the

behavior is discussed fully in the section on the new progressive protocol.

We now present the multiversice model. The database system is composed of dats items,
transaciions, and the concurrency control. Each of these entities are defined by the following
restrictions:

1. A tramsaction Ti consists of:

a. a2 time ordered sequence of accesses to data items, which may be either read or
write accesses. The items writien need not be a subset of the items read.

b. a static timestamp, denoted TS(T,). This is assigned by the database system
before or at the time a trapsaction accesses its first data item. If T, and Tj both
write data items, then TS{T;}#&=TS(T;).

2. A data item d has 2 sequence of versions <d,,...,d, > arranged in ascending order of
timestamp, where version d; has timestamp i. If transaction Tj creates version d;, then
3. A comcurrency control must satisfy the following eriferia:

a. At the first read access of a transaction Tj to data item d, it reads the version of

d with timestamp closest to but less than TS(TJ}. All future read accesses are to

the same version. {As a special case, a transaction that only reads data items
can read 2 version with a timestamp equal to its timestamp. This case is
explicitly covered in the proofs.}

b. A $ransaction creates af most one version per data item, and this version is
added to the sequence only when the transaction which created it will no longer
update its contents.

¢. The protocol cannot use a global dependency graph to detect possible
nonserializability. It must decide to accept or reject an access to d using any
information derivable from the transactions which have accessed or will access d
at some time, or derivable from the set of data items accessed by these
transactions.

Several concurrency comtrols [6,11] have the protocol maintain dependency graph of the active
transactions in the system. The protocol uses this graph to determine which version of 2 data
item to read, and also to maintain serializability. We believe that this technique is expensive and
slow when the number of interacting tramsactions in the system is large, and becomes
prohibitively expemsive when attempting to maintain 2 current global dependency graph in
databases distributed over a number of different sites. To eliminate the expense of such a graph,

by rule 3¢ we restrict the model to use information directly related to the access of a data item.

Finally, we present several definitions and notational conveniences that will be used throughout
the remainder of the paper. A version is uncommitted if it may later be removed due to rollback
of the transaction that created it; otherwise it is called committed. A transaction which only read
accesses data items is termed a read-only transaction; all other tramsactions are referred to as
update tramsactions. A history H is the trace, in chromological order, of a concurrent set of

transactions T = {Ty,Ty,... T}

We define a precedence relation ->> on a history H by writing T, -> Tj if and only if there
exists a data item d, accessed (ie., read or written) by T, and Tj; such that either one of the

following holds:

a) T; ereated version és’ and T, read or created versiond , m < j.

b) Tj read version d_ and T, created version d;, i < n.

We say that T, and ’i‘j interact in the system if they are related via the -> relation. H T;-> Tj,
then we say T, precedes Tj. A trapsaction can always access the value it has created for 2 data

item, and does not come under the restrictions of reading a data item as defined by our model.

3. A Complete Characterization _
Using the multiversion model above, we now present the necessary and sufficient conditions that
any protocol in this model must meet to be either safe or progressive. The conditions are simple

and are based only on the respective timestamps of the transactions accessing a single data item.

We first present the necessary and sufficient condition to ensure serializability for any set of

transactions executing in 2 multiversion database system model as described above.

S1: Let T; and T; be two transactions that interact in the system, where TS(T;) < TS(T;). We
shall say shat T, and T satisfy condition S1 if and only if the both of the foi!owmg
requirements are me%

a) I TS(T;) < TS(T;), then T; -> T;.

b) If TS(T;)=TS(T;), then without loss of generality, let T, be the read-only
transaction. (Recaﬁ that update transactions are reqmred to have umnique
timestamps.) Then either T, -> T on all data items accessed by both transactions,
or T -> T, on 2all data items accessed by both transactions.

Theorem 1: A database system that satisfies our multiversion database model is serializable if

and only if every pair of transactions satisfy condition S1.

Proofl:

When the set of tramsactions are arranged in increasing order of timestamp, S1 ensures
that any interaction always has the tramsaction with lower timestamp preceding the
transaction of higher timestamp. Among transactions with the same timestamp, there is
only ome update transaction with that timestamp, by rule 1b. From S1, all other
transactions which read a value can be placed either consistently below or above the
update transaction. There can be no precedence relations between transactions which
only read data items, and so the resultant acyclic dependency graph can be topologically
sorted into some serial execution of this set of transactions.

We show that ~S1 ==> ~serializable. Not S1 implies one of two alternatives. If
TS(T)=TS(T;) and T, is allowed to precede and come after T;, this results in the
nonsenahzab]e cycle of T,-> T,-> T;. The second alternative amphes that there exist
trapsactions T; and T;, where TS(T;) < TS(T) T; and T; interact, and yet T; -> T,

This resulis in one of thx’ee cases, depending on whlch transactlon created a verswn of the
data itern at which the two transactions interact.

a) If ’E‘ created » version d then T -> T, implies that T, read 2 version dm, where m
> j. Since we assumed 5>§, this comra{ilcm rule 33 of the maultiversion scheme, where
T, must read a version with 2 timestamp less than or equal to its own timestamp.

b} If T read version d and T created version d;, then T -=> T, implies that m <

i Ccnsgder the foﬂawmg case ef four transactmns operatmg on four data items, where
the timestamp of 3 transaction is the subscript of the trapsaction. At data item a, T,

creates version 1 while T, creates version 4. At data item b, T, reads version 0 and
T, creates version 1. At data item ¢, T, reads version 0 and T creates version 2.
And finally, T, reads version 0 and T3 creates version 3 of e. The history is

nonserializable, and vet any combination of the tramsaction sequences of the three
data items accessed by the two transactions at any one data item is linear, and cannot
be detected by the database under our scheme.

c) T; and T ereated versions i and j, which implies that T -> T;. But this contradicts
the defimtaon of the precedence relation.

Surprisingly, condition S1 is still necessary for databases using » precedence relation to determine

the order in which the data items should be accessed [10,12,13,14]. This can be seen by situating
the four data items in case {b} above 2s the leaves of a tree, and restricting the access to all other
data items in the tree to be read access. This yields no additional information to detect the

nonserializable sequence, and hence S1 remains a necessary condition.

Although S1 maintains serializability, it is possible to comstruct protocols fulfilling S1 which
require transaction rollback. Hence, we introduce a mnew condition S2, which together with
condition S1 preserves serializability without the use of transaction rollback. If no tramsaction
reads a data item, it is trivial to show that S1 is sufficient to ensure serializability without
rollbacks, since a version can be put in the proper place in the sequence of a data item at any
time. If there exists at least one transaction which reads the value of a data item, then we must
create a stronger condition than S1. As before, this new condition is necessary for both structured
and unstructured databases. To emsure that a protocol will not require transaction rollback, we
must enforce the following condition:

S2: Let T; and T; be two transactions which interact on data item d, where T; reads a version
of d and T, at some time creates the version of d with highest timestamp that is readable by

T a8 specmed by S1 and rule 3a. We shall say that T, and T satisly condition S2 if and
enly if Ty appends its version of d before the first access of T to d

Condition 52 implies that a transaction may need to wait to read the appropriate version of a
data item. Therefore we must prove both that 52 ensures deadlock freedom, and that S1 and S2

are necessary and sufficient for serializability without transaction rollback.

Lemma 1z A database system that satisfies our multiversion database model is deadlock free if

every pair of transactions satisfy S2.

Proof: Proof by induction on the value of the timestamp of 2 transaction, called TS.

1. TS==1. S2 states that the only time a tramsaction need delay is to wait to read a
version created by a tramsaction with a timestamp less than or equal to 1. If there
exists some such update tramsactiom, rule 1b states there exists no other update
transaction with 2 timestamp of 1. Hence both transactions will be deadlock free.

2. TS>1. S2 specifies a transaction need wait only to read a version created by a
transaction with a timestamp less than or equal to i. If there is a transaction with
timestamp equal to i, there is no other trapsaction creating updates with timestamp i
and hence this tramsaction need only wait on transactions with timestamps less than
i From the inductive hypothesis, trapsactions with timestamps less tham i are
deadlock free. Consequently, all transactions with timestamp less than or equal to i
are deadlock free.

Theorem 2: A database system that satisfies our multiversion database model is serializable
without transaction roliback if and and only if every pair of transactions satisfy conditions 51 and

82.
Proof: From Lemma 1, we showed that any protocol that fulfilled S2 was deadlock free.

We now must prove that S1 and S2 are necessary and sufficient to maintain serializability
without tramsaction rollback.

We first show that any operation dome by a transaction emsures serializability. This
results in three eases, depending on which transaction creates a version.

a) T; and Tj create versions i and j respectively, where i < j. The definition of
interaction specifies that T; -> Tj.

b) T; creates version i =and ’1‘5 reads version m. This contains the case where
TS(T,)=TS(T;) and T; -> T;. S2 specifies that T; must wait for transaction T to
append the version with the largest timestamp readable by T;. From S1 and rule 3a,
k < TS(T;), and since i <k, T;-> T;

¢} T, reads version m and T, creates version j. Since rule 3a states that m < i, and it
was assumed i < j, this implies that T, -> Tj‘

We now prove ~S2 =3>> ~serializable without rollbacks. If 52 is violated, let us
construct a scenario where T, appends . version i when it is the version with the highest

 ...4imestamp.- I «'I-‘j reads a version before version i,-then- by defini%ion-’?j ~>-T;;-which
violates S1.

4. The Optimal Progressive Protocol for this Model

Any progressive protocol in this database model must meet conditions S1 and 52. This implies
that a transaction T, must delay a read request of data item d until the version d, with
timestamp closest to but less than TS(T,) has been inserted. Since we do not require write access
to be a subset of read access, this may be well before all earlier versions have been inserted.
Hence, it is easy to see that this characterization makes use of multiversions by eliminating
entirely the need to delay for two of the three types of transaction conflict: write-write and read-
write. Only a restricted form of the write-read conflict requires delay; namely, when the
transaction with higher timestamp requires read access before the appropriate version has been

inserted. These savings are a significant gain in the use of multiple versions.

This exposition allows a simple development of the optimal progressive protocol {termed P1) for
this model, This new protocol enhances the amount of concurrency allowed in the system, mainly
due to the following two reasons.

. Each version may be read by another transaction as soon as it is created.

b. A transaction may potentially be delayed in the system only if a write-read coaflict
occurs,

We are now in a position to present our protocol.

It is necessary for a transaction to wait only for read access, and only until the transaction with
lower but closest timestamp has been inserted. To accomplish this, we associate the following two

data structures with each data item:

a. a sequence of versions of the data item, in ascending order of timestamp, and

b. a sequence of timestamps (in ascending order) of active tramsactions which create 2
version of this data item, but have not yet inserted the version into the sequence of
versions.

When assigning a timestamp to a tramsactionm, the model requires only that timestamps for
update transactions must be unique. To obtain the flexibility necessary for am optimal protocol,
we maintain an avail list of available timestamps. When an update transaction enters the system,
it chooses the smallest unmarked timestamp in the avail list if it issues read requests; otherwise it
can select any arbitrary unmarked timestamp. The transaction then marks the timestamp to
prevent duplicate issues, inserts its timestamp into the sequence of each data item in its writeset,
and then removes its timestamp from the avail list. A read-only transaction can select any
timestamp between 1 and one less than the smallest number in the avail list. After this
preprocessing is completed, a transaction begins execution. The rules to read or write a data item

d are as follows:

1. A transaction T; updates data iten d by performing its final write of d, inserting its
version with timestamp TS(Ti) into the correct order in the version sequence, and then
deleting TS(T,) from the timestamp sequence of d.

2. When transaction T, performs its first read of any data item it must wait until all
timestamps less than TS(T,) have been removed from the avail list. It then performs

its first read of data item d by finding the timestamp (denoted by j) in the timestamp
sequence of d closest to but less than TS(T;), if there is one. If none exists, then all

previous versions have been inserted, and T, may select the appropriate version by the
rule given in the concurrency control. If some timestamp j exists, then T, determines
if there is some version d, in the sequence such that j < k < TS(T,) (or
j <k < TS(T,)if T, is a read-only transaction), and which T, can immediately read,
by the given rule. O%%}ermse T, must wait until transactzon T with timestamp j
crestes the intended version.

Theorem 3: The multiversion protocol P1 is progressive; that is, it ensures serializability and

deadlock freedom without the use of transaction rollback.

Proof: We show that any precedence relation between tramsactions T, and Tj imply SZ.
Assume, without loss of generality, that TS(T;) < TS(Tj). We separate the proof into four cases,
the first three cases specify TS(T;) < TS(T;), and the last case has TS(T;) = TS(Ty).

1. T, and Tj both create versions of data item d. By the definition of the precedence
relation, T; -> T-.

2. T, reads a version of d, and T creates a version of d. By rule 3a, T; must read a
version with a timestamp less than or equal o its own timestamp, and so T, -> T
by definition of the precedence relation.

3. T creates 2 version of d, and T reads a version of d. The protocol states that T
mast wait until all smaller tnmestamps have been removed from the avail list, and

consequently T, had added its timestamp to the timestamp sequence of d. The
protocol delays Tj until some version dy has inserted its version, where i < k <
TS(Tj). This directly implies condition S2.

4. For the cases where TS(T;} = TS(Tj), rule 1b stipulates that only one transaction can
create versions. Without loss of generality we assume T, creates a version and Tj
reads a version, where Tj only read accesses data items. The protocol specifies that T,
does not read until T, removed its timestamp from the avail list, which is after it
added its timestamp to the timestamp sequence of data item d. Hence, Tj must wait
to access d until after T created its version, if T, consistently precedes Tj; or else Tj
consistently precedes T;.

Lemma 2: P1 is the optimal progressive protocol for this database model.

Proof: The delay incurred by the protocol is caused by two factors. The factor required by S2
is the wait for the tramsaction creating the appropriate version in the timestamp sequence to
actually append its version. This delay has been proven necessary in section three. We now show
that the assignment of timestamps to transactions provides the optimal range. Any transaction
which reads data items only incurs additional delay by choosing a timestamp remaining in the
avail list, since it must delay reading until all smaller timestamps have been removed from the
avail list. We therefore remove this wait for read-only transactions. Specifying that an update
transaction selects the smallest unmarked number in the avail list minimizes the delay; otherwise
it must delay an indeterminate time until some other set of transactions are assigned all smaualler
numbers. A transaction which only issues writes does not delay at all, and the latitude in

assigning a timestamp permits removal of this delay from the other active transactions.

We present a short example to illustrate the behavior of the new protocol. The database
consists of the data items a, b, and ¢, each with a base version available to read. There are two
update transactions, T, and T,, and one read-only tramsaction, T,. T, will read 2 and write a
version of b, T, will read 2 and b and write a version of ¢, and T, will read 2 and c. T, enters the
database, is assigned TS{TQ:——E, appends 1 to the timestamp sequence of b, and reads 2. T,
enters, is assigned a timestamp of 2, appends 2 to the timestamp sequence of ¢, reads a, and waits
for T, to insert its version of b. T, inserts its version and completes, and T, reads b. Ty enters,
and can select 3 timestamp of 1 or 2. T, can proceed without delay if it selects TS(T3)==1, or can
wait for more current results by selecting TS{T3)=2. it chooses a timestamp of 2, reads 2, and

waits until T2 inserts its version of ¢.

This very simple protocol avoids many of the performance drawbacks of other published
multiversion protocols. First, there is no wasted execution time or system overhead due to
transaction rollback. This absence of rollback guarantees completion of all transactions entering
the system, and also decreases the waiting time to read an individual version. This is due to the

fact that every execution completes, 50 once a transaction inserts a version it can be considered

committed and read immediately. This differs from most other multiversion protocols, where
either a transaction reads an uncommitted version and may be involved in cascading rollback, or
waits until the transaction creating a version has finished its execution. Finally, there is no need
to maintain a tramsaction dependency graph, nor use a cycle detection algorithm to determine

either serializability or selection of the appropriate version to read.

We now compare the mew protocol with the other two existing protocols using the same
multiversion database model. The first protocol is a safe protocol proposed by Reed [3]. The
protocol assigns unique timestamps to each transaction in the order they enter the database.
When a transaction issues a read request, it reads the version most current version less than its
own timestamp if the version is committed, otherwise it delays until the version is committed or
removed. A new version with timestamp t is installed after version p, whefe p is the largest
pumber less than t. Version t is installed only if no transaction with timestamp greater than t has
read p, otherwise the tramsaction creating version ¢ must be rolled back. However there is no

cascading rollback, since transactions are restricted to reading only committed versions.

We now contrast the performance of Reed’s protocol using the example given above. T, enters
the database, is assigned a timestamp of 1, and reads a. T, enters, is assigned a timestamp of 2,
and reads a and b. Now T, attempts to update item b, but is rejected due to the read issued by
T,. T, enters, is assigned the next unique timestamp (3), and reads a and ¢. T, now attempts to

update ¢ and must also be rolled back.

In general, Reed’s protocol allows read requests for transactions to be granted earlier than P1
only when it will indeed cause earlier transactions to be rolled back. This is due to the fact that
P1 only delays 2 read when a version will indeed be inserted. P1 also allows a version to be read
the transaction creating the version has completed. The disadvantages of P1 are that {imestamps
for update transactions can only be assigned in mutually exclusive mode, and that a transaction

must declare its writeset,

P1 can be easily shown to encompass the tree multiversion protocol in [7] as a special case.
That protocol operates in a database structured as a tree, where all update tramsactions starts af
the root, and are given timestamps in ascending order when each successfully locks the root of the
tree. Read-only transactions may begin anywhere in the tree. Update transactions issue only X
locks, and may overtake any read-only transaction’s S locks as it traverses down the tree, but
read-only transactions may only overtake X locks with higher timestamp. Hence, no transaction
with a higher timestamp intending to read some data item can overtake an update transaction
which may create a version of lower timestamp, and this behavior thereby maintains the write-
read delay required by $2. Consequently, all transactions with higher timestamps will follow the

update transactions of lower timestamp down the tree. Using this description of the multiversion

10

tree protocol, one can extend the performance in several small ways. Considered in the light of
P1, this progressive protocol is a special case that exchanges the time needed for the mutual
exclusion of the update timestamp assignment for the delay time of access to the lower portions of

the graph.

We now discuss two questions related to performance of P1. We first discuss optimal choices
when selecting a timestamp for a read-only tranmsaction. Since a transaction can select a
timestamp from a wide range of values, the transaction can avoid being delayed by selecting 2
timestamp less than the minimum value over all TM’s associated with the data items it accesses.
If the timestamp is much less than the minimum, the versions read may be quite old and have
been superseded by many more current versions. If the timestamp is the minimum value minus
one, this gives the desirable property of reading the most current version of any completed
transaction at the time the read transaction enters the database. Finally, if a read-only
transaction wishes to read the most current values possible, it would select the largest timestamp
assigned to an update tramsaction. Thus it would read the most current update of any
transaction currently active in the system. This may cause delay. However, since no update

transaction need be restarted, this delay may be acceptable for many systems.

The second issue involves the question of when old versions of a data item can be discarded.
This algorithm was previously presented in [7], and we present a short summary here. If the
concurrency comtrol can determine some minimum timestamp n that any active or future
transaction is assigned, it can delete all versions dy of d such that there exists some version d_|
with k < m < n. The minimum timestamp for an update transaction is the earliest active
transaction, since the timestamps are assigned in ascending order. This is easily found by keeping
a sequence of the timestamps of all active update transactions. The minimum timestamp
assigned to a read-only transaction must be artificially set by the system. The system must
determine when the active read-only transactions with smaller timestamp have finished; this can
be done using several counters counting the number of read-only transactions within designated
ranges that have entered and not yet left the system. When the value of the counters with ranges

Jess than n has gone to zero, n becomes the minimum active read-only timestamp.

5. Conclusion

This paper presents the first complete characterization for an efficient multiversion database
model. We demonstrated that this model has effective protocols that ensure both safety and
progressiveness. Using these characterizations, we developed the optimal progressive protocol for
the given model. This new protocol has useful behavior characteristics not offered by any other
protocol applicable to a general database system. The flexibility of assigning timestamps allows
performance tuning and algorithms for discarding old versions based only on the respective

timestamps of the transactions.

il

We reemphasize that the elimination of the use of transaction rollback in order to guarantee
serializability in the new protocol serves two important purposes. First, it eliminates the
bookkeeping overhead, the wasted processing, and the restart delays connected with roliback.
Second, it removes the restriction that a read must occur only on a committed version, since all
versions a transaction creates or reads will maintain serializability and deadlock freedom. Hence,
there is no need to delay access to a version until the execution of a transaction proceeds past a
certain point. Most other multiversion protocols in the literature require this in order to avoid

cascading rollback.

It should be noted, however, that rollbacks may still occur in the system due to such
circumstaces as hardware failure. Thus in order to ensure atomicity, a commit protocol must also
be used. In a previous paper [15], we have shown how a simple commit protocol can be effectively
constructed without interfering with the protocol that is used for ensuring serializability.

Aguments in support of progressive protocols were also presented in that paper.

10.

i1,

12.

13.

14.

15.

References

. Eswaran, K.P., Gray, J.N,, Lorie, R.A. and Traiger, LL. The notions of consistency and

predicate locks in a database system. CACM 10, 11 {Nov. 1976), 624-723.

. Honeywell File Management Supervisor, Order Number DBS54, Honeywell Information

Systems Inc., 1973,

. Reed, D.P. Naming and synchronization in a decentralized computer system. Ph.D. Thesis,

M.LT. Dept. of Electrical Engineering and Computer Science, Sept. 1978.

. Stearns, R.E., Lewis, P.M and Rosenkrantz, D.J. Concurrency control for database systems.

Proceedings IEEE Symposium on Foundations of Computer Science {Oct. 1976}, 19-32.

. Stearns, R.E. and Rosenkrantz, D. Distributed database comcurrency control using before

values. Proceedings ACm-SIGMOD International Conference on Management of Data
{April 1981).

. Bayer, R., Elhardt, E., Heller, H. and Reiser, A. Distributed concurrency controls in

database systems. Proceedings Sixth International Conference on Very Large Data Bases
{Oct. 1980), 275-284.

. Silberschatz, A.A Multiversion Concurrency Control Scﬁéme with No Rollbacks,

Proceedings ACM SIGACT-SIGOPS Symposium on Distributed Computing (August 1982),
216-223.

. Bernstein, P. and Goodman, M. Concurrency Control Algorithms for Multiversion Database

Systems, Proceedings ACM SIGACT-SIGOPS Symposium on Distributed Computing
{August 1982}, 209-215.

. Papadimitriou, C.and Kanellakis, P. On Concurrency Control by Multiple Versions,

Proceedings ACM SIGACT-SIGOPS Symposium on Principles of Database Systems {(March
1982}, 76-82.

Silberschatz, A. and Kedem, Z. Consistency in Hierarchical Database Systems. Journal of
the ACM 27, 1 (January 1980), 72-80.

Muro, §., Kameda, T., and Minoura, T. Multi-version Concurrency Control Scheme for a
Database System, Technical Report 82-2, University of Toronto, (February 1982).

Silberschatz, A. and Kedem, Z. A Family of Locking Protocols for Database Systems that
are Modelled by Directed Graphs. IEEE Transactions on Software Engineering 8, 6 (Nov.
1982), 558-562.

Yannakakis, M. A Theory of Safe Locking Policies in Database Systems. IJoumal of the
ACM 29, 3 (July 1982), 718-740.

Kedem, Z.and Silberschatz, A. Locking Protocols: From Exclusive to Shared Locks.
Journal of the ACM, to appear.

Silberschatz, A. A Case for Nobn-two Phase Locking Protocols. IEEE Transactions on
Software Engineering {to appear).

