A FAMILY OF MULTI-VERSION LOCKING PROTOCOLS
WITH NO ROLLBACKS

Abraham Silberschatz
Gael N. Buckley

Department of Computer Sciences
University of Texas at Austin

Austin, Texas

TR-218 March 1983

A FAMILY OF MULTI-VERSION LOCKING PROTOCOCLS
WITH NO ROLLBACKS!

Abraham Silberschatz
Gael N. Buckley

Department of Computer Science
The University of Texas
Austin, Texas 78712

Abstract
The multi-version data item concept is a method for increasing concurrency in a database
system. All previous database systems using this concept preserved consistency by use of
transaction rollbacks. These rollbacks require a considerable amount of overhead, which degrades
performance of the system. In this paper we develop a new multi-version locking protocol that is
based upon the non-two-phase guard locking protocol of Silberschatz and Kedem. The new

scheme ensures consistency and deadlock-freedom without the use of rollbacks.

LT his research was supported in part by the Office of Naval Research under Contract N00014-80-K-0987, and by
the National Science Foundation under Grant MCS 81-04017.

1. Introduction

Designers of large database systems have long realized that the response time of queries and
updates can be decreased by concurrent processing of multiple user transactions. If it is assumed
that each transaction when executed alone maintains the consistency of the database, then the
database system must ensure that a set of transactions when executed concurrently will also

maintain consistency of the database. A system that guarantees this property is said to emsure

serializability {1].

In order to ensure serializability, the system must restrict the interactions of the transactions
executing in the database. This can be done using locking protocols [2], atomic actions 13},
optimistic concurrency control schemes [4], or time-stamp ordering [5]. All these schemes were

devised to increase the level of concurrency allowed in the system.

One newly popular method for increasing concurrency is the multi-version data item concept.
This concept allows each data item to have a sequence of versions of different values, and a set of
rules that specify which version a particular transaction is to read. This concept has been used as
early as 1973, in a version of the Honeywell FMS system [6]. It was formalized by Stearns et al.
[7] in 1976, and was the nucleus of Reed’s atomic action scheme [3]. Recently both Bayer et al.
[8,9] and Stearns and Rosenkrantz [10] have presented various rules for ensuring consistency for
systems using the multi-version concept. Necessary and sufficient conditions for serializability of
multi-version database protocols, and hierarchies of multi-version protocols, are discussed by

Papadimitriou and Kanellakis [11] and Bernstein and Goodman [12].

Most previous systems which use the multi-version concept use transaction rollback as a means
to ensure consistency and deadlock freedom. Transaction rollback is used when the database
system has allowed a set of transactions to enter a deadlocked or potentially non-serializable
state. Serializability or deadlock freedom is reestablished by removing a transaction from the
system, which entails removing all versions created by this transaction and all system information
concerning this transaction. These rollbacks require a considerable amount of overhead, and
therefore degrade performance of the system. This performance cost has been acceptable in
existing database systems, since at most only a few transactions are concurrently active.
However, the number of concurrent transactions can be expected to rise dramatically, due to new
hardware technologies and the evolution of computing environments consisting of networks of
local machines accessing global databases. In such an environment, the overhead due to rollbacks

can be expected to increase significantly.

It is our aim here to develop a scheme that will take advantage of the availability of multi-
version data items, and at the same time will ensure consistency without the use of rollbacks.
Our proposed scheme is based upon the non-two-phase guard locking protocol previously proposed
by Silberschatz and Kedem [13,14].

2. Locking Protocols

Many database systems ensure serializability by dividing the database into entities, and
restricting access to an entity by use of a concurrency control scheme. The most common model
for such a system involves the notion of a locking protocol. Each transaction which executes in
the system must lock an entity before it wishes to access that entity, and unlock the entity after
all accesses are complete. A locking protocol may thus be viewed as a set of rules defining the
allowable sequences of lock and unlock instructions which may appear in a transaction. A
transaction may hold either an exclusive (X) or a shared (S) lock on a data item. An X mode lock
on a data item permits the transaction holding that lock to read and modify the item, while an S
mode lock permits only the reading of the item. For all protocols discussed in this section, we
allow a data item locked in S mode to have several simultaneous S locks on it, but restrict a data
item locked in X mode to only have one lock on it. The multi-version protocol introduced in the

pext section relaxes this restriction on the X lock.

The first useful locking protocol developed was the two-phase locking protocol [1], which states
that a transaction is mot allowed to lock a data item after it has unlocked any other item.
Eswaran et al. [1] have shown that for systems without restrictions on the order in which entities
may be locked, it is necessary and sufficient that all transactions be two-phase to ensure
serializability. The two-phase protocol has two drawbacks. First, it restricts the amount of

concurrency allowed in a system; second, it is not deadlock free.

Silberschatz and Kedem [15] have shown that if one has a priori knowledge as to how the
entities of the database are organized (logically or physically), one may design non-two-phase
locking protocols which assure serializability and deadlock freedom. Since then a number of new
non-two-phase locking protocols were developed which potentially allow meore concurrency than

two-phase protocols [16-20].

One of the more general non-two-phase locking protocols is the guard protocol [13], used for
databases modelled as directed acyclic graphs. By proper choice of sets of vertices in the guards,
all previously proposed non-two-phase protocols (e.g. tree [15], Majority [17], and DAG [18]) can
be obtained as special cases of that protocol. The basic protocol restricted a tramsaction to
employ only X mode locks. In [14], a general result concerning the extension of all protocols that
employ X locks only to also employ S locks was presented. Below, we apply this general result to
the guard protocol to produce a mew protocol, called heterogeous guard protocol. This new
protocol assures serializability and deadlock-freedom, and is the basis of the multiversion protocol

presented in this paper.

Definition 1: The database graph is a rooted acyclic graph G=(V,E), with V the set of data

items and E the access path between data items.

Definition 2: A database graph G is a guarded database graph if and only if for each vertex v €
V (except the root) we associate a non-empty set of pairs (subguards):
guard(v) = {<A}B{>, ... ,<AIBip}
satisfying the conditions:
LOEBIC ATC Y,
2.1fu € A}, then u is a father of v, and
3.A N BY # 0 for every i and j.

Definition 3: We shall say that a subguard (AY,BY) is satisfied by transaction T, if and only if T
currently holds a lock on all vertices in B, and it had locked (and possibly unlocked) all the

vertices in A}’ - B}’.

There are two types of transactions in the heterogeneous guard protocol, read-only transactions
and update transactions, denoted R; and U, respectively. An update transaction may only issue
X locks, while a read-only transaction may only issue S locks. These transactions operate on a

guarded graph G by the following rules:

1. Update transactions must start by locking the root of the DAG first. Read-only
transactions may lock any vertex first.

2. A transaction T may lock any subsequent vertex v only if T has not previously locked
v and there exists a subguard (A},BY) satisfied by T.

3. A vertex may be unlocked at any point in time.
Theorem 1: The heterogeneous guard protocol assures serializability and deadlock freedom.

Proof: The serializability proof follows from the fact that the guard protocol with X locks only
assures serializability [13], and by applying the general result given in [14] to that protocol. []

In order to prove freedom from deadlock, we must first establish several definitions and lemmas.

Definition 4: Let T; and T; be two transactions. We shall write T; N T; =0 if both T; and T;

access a common data item and one of them updated it.

Definition 5: We say vertex v; is above \f if there exists a path from v; to \f in the graph. An

acyclic graph admits a partial ordering of vertices, and thus the above relation is not reflexive.

Definition 6: Let T, be either an update or read-only transaction. We will denote the first vertex
locked by T; by F(i).

Lemma 1: Let T; and T; be two transactions such that T; N T; #8. If F(i) is above F(j), then
F(j) is the first vertex locked in T; N T; (by either transaction).

Proof: Assume by contradiction that some other vertex v #=F(j) is the first vertex locked in

T,NT. Uv=F (i), there must be a path from F(j) to F(i) (implied by the guard protocol),
which contradicts the assumption that F(i) is above F(j). If v is neither F(i) nor F(j), there exists
an A}' and B locked by Tj and T, respectively. But since the guard protocol stipulates AJY n By
##9, this contradicts the assumption that v was the first vertex locked in T; N Tj.]

Lemma 2: Let T; and T; be two transactions such that T; N T; B, F(i) is above F(j), and at
least one transaction is an update transaction. If T, locks some v € T; N Tj first, T, locks all v
€T, n Tj first.

Proof: By induction on the longest path from F(j) to a vertex v.
1. p=0. Trivial.
2. p>0. By the heterogeneous guard protocol, A}’ N BY #£0, where all vertices in B}

and AY are fathers of v. Since any path from F{(j) to a father of v is at least one arc
shorter than the longest path from F(j) to v, the induction hypothesis states that T;

locked all vertices in B N A_‘Y first. Since a transaction can only lock a data item
once, and X and S locks are mutually exclusive, T; must lock v first. M

Proof of theorem (deadlock freedom part): Assume by contradiction that a deadlock exists and

there is a cycle Tl’Tz’""TN’Tl’ where T, +1mod N waits for T; to release a data item. We will
show that this reduces to the case where th;—g'cle consists of update tramsactions only, each of
which claims to lock the root before the next transaction in the cycle. Indeed, for all sequences of
the form U,,U; T U, must have locked some vertex before U, v since U, +1 waits on U; to unlock
a data item. All other sequences must be of the form U, ,R,U;,,, since read-only transactions
need not wait on each other. Each of the three transactions in this sequence must lock F(i), by
Lemma 1 and the fact that the root of G is above all other vertices in the graph. Since U, , locks
F(i) before R, and R, locks F(i) before U;,,, U; , locks F(i) before U, ,. We now construct a new
cycle by removing all R, from the earlier cycle, so that each update transaction U, in this new
cycle has locked some vertex before U, ,, and by Lemma 2, locked all vertices in U; N U,
before U; . The existence of such a cycle (ordered by the time at which transactions lock the
root of G) contradicts the restriction of the guard protocol that each transaction can only lock a

vertex once. M

We now extend the heterogeneous guard protocol to database systems using the multi-version
concept. We enhance concurrency by allowing the possibility of read-only and update

transactions to access the same data item simultaneously.

3. The Multi-version Guard Protocol
The multi-version guard protocol (MVG) uses the heterogeneous guard protocol precisely as
described above, and adds concurrency by not requiring shared and exclusive locks to be mutually

exclusive. The protocol must still guarantee that each transaction reads the proper version of the

data item in question. This is accomplished by the use of a timestamp ordering on all entities of

the database system.

We affix a timestamp to each tramsaction R; and U, and also to each data item E. The
timestamps are assigned as follows:
1. U, is assigned timestamp TS, when U; locks the root of G. It may be generated in a

variety of ways, but must fulfill the conditions that TS; > TSj if Uj has unlocked the
root.

2. Data item E has a new version created by U; and appended to E immediately after U;
unlocks E. This version has timestamp k = TS;, and is denoted e,. The sequence of
versions of E are ordered by timestamp and are denoted <e,,....e, >.

3.R, is assigned timestamp MAX; when R, successfully locks F(i) with sequence
<f,,..fi>. MAX; =k, the timestamp of f,.
We note that by defining Max; in this manner we may have the undesirable possibility of having a
read-only transaction R, and an update transaction Uj such that Uj has already terminated, R; is
still executing in the system, and R; is before Uj in the serializability order. This is done in order
to simplify the presentation of our basic algorithm. In Section 5 we modify the way the value of

Max; is assigned to eliminate the above deficiency.

The availability of multi-version data items allows the possibility for transactions to have both
S and X locks on a data item simultaneously. We say X and S locks are compatible if they can be

held concurrently on a data item. More formally, given a set of locking modes, we can define

compatibility relations among them as follows. Suppose transaction Tj currently holds a lock of
mode B on data item E, and T; requests a lock of mode A on item E.If T,’s request can be
immediately granted in spite of the presence of the mode B lock, then we say mode A is
compatible with mode B, denoted by COMP(A,B) = true. Traditionally, the compatibility
relation among the S and X modes of locking is defined to be COMP(A,B) = true if and only if A
= B = S. This is the relation for the heterogeneous guard protocol in section two. For the MVG
protocol, we now extend the compatibility relation as follows:
Let T, be a transaction requesting lock mode A on data item E that is currently
being locked in mode B by transaction Tj, then COMP(A,B) is defined as follows:

COMP(X,X) = false
COMP(S,S8) = true
COMP(X,S) = true
COMP(S,X) = true & Max, < ’I‘SJ

Note that the delay time may be decreased because of the new, more lenient definition of
COMP(X,S) and COMP(S X).

Finally, we note that when a Read-only transaction R, tries to lock its first data item E, the
value of Max; is undefined. Thus if E is currently being held in X mode, R; can either

immediately lock E or wait until E is unlocked. Either option can be used in the protocol defined

below; the only difference will be in the value Max; will be assigned.

We can now extend the guard protocol with the multi-version data item scheme. The new

protocol can be summarized as follows:

1. Update transactions can only request X locks. Read-only transactions can only
request S locks.

2. Update transactions must start by locking the root of the DAG first. Read-only
transactions may lock any vertex first.

3. A transaction T may lock any subsequent vertex v only if T has not previously locked
v and there exists a subguard (AY,BY) satisfied by T.

4. A Read-only transaction R; that has successfully locked entity E, must read version e
such that g is the largest time-stamp < Max;.

g

5. An Update transaction U, that has successfully locked entity E, must read version €,
such that g is the largest time-stamp < TS,

6. A vertex may be unlocked at any point in time.

Note that rule five allows an update transaction to read its own version of entity E, even though

this version has not yet been committed and become part of the sequence of entity E.

4. Proof of Serializability and Deadlock Freedom

We now prove that MVG assures serializability and deadlock freedom. In order to do so we

must first introduce some standard definitions to be used in the remainder of this section.

Definition 7: A history H is the trace, in chronological order, of the concurrent execution of a

set of transactions T = {T,,..., T ,}-

Definition 8: We define a precedence relation — on a history H by writing T; — Tj if and only
if there exists an entity E, accessed (i.e., read or written) by T, and Tj, such that either one of the

following holds:
a. Tj created version e and T, read or created version e, m < j.
b. Tj read version e and T created version e;, i < n.

We shall say that T, and Tj interact in the system if they are related via the — relation.

Lemma 3: The MVG protocol assures serializability if and only if all allowable concurrent

.- executions of transactions produce-an-acyclic — relation.

Proof: We only note that a relation is acyclic if and only if it admits a consistent enumeration

(topological sort), namely can be embedded in a linear order. N

Lemma 4: Let E be a data-item locked by the Update transactions U; and Uj. TS < TSj,
then Uj successfully locked E only after U; unlocked E.

Proof: Since TS; < TS; it follows that U; must have locked the root before T; did. Since
COMP(X,X) = false, and since the transactions follow the guard protocol, the result follows. 1

Lemma 5: Let E be a data item locked by the Read-only transaction Ry and the Update
transaction U;. If TS; < MAXj, then R.i successfully locked E only after U, unlocked E.

Proof: By induction on q, the longest path from F(j) to E.

q=0: Let <ff,...[;> be the sequence when Rj successfully locked F(j). By our scheme MAXj
= k. Clearly k > TS,. If k = TS; then the result follows from the fact that f, is
inserted into the sequence only after U; unlocked F(j). If k > TS; then let U, be the
transaction that created f;. Since TS, > TS, by Lemma 4 it follows that U locked
F(j) only after U, unlocked F(j), and the result follows.

q>0: By the heterogeneous guard protocol, B? n AjE ##9, where all vertices in B? and AJE are
fathers of E. Since any path from F(j) to a father of E is at least one arc shorter that the
longest path from F(j) to E, the induction hypothesis states that U; locked all vertices in

BF N AEF first. Since a transaction can only lock a vertex once, and COMP(S,X) = false
if MAXj 'S, the result follows. O

Lemma 6: Let U; and Uj be update transactions that interact in the system. Then U; — Uj 2
TS; < TSj.

Proof:
=: From the definition of the — relation.
= Let E be any data item locked by U, and Uj. From Lemma 4, Uj successfully locked E
only after U; unlocked it. If U; created a version of E, the result immediately follows

from the definition of —. If Uj created a version of E, it was only after U; read a version
of E and hence the result follows. [}

Lemma 7: Let U; and Rj be update and read-only transactions respectively that interact in the
system. Then U; = R; & TS; < Max;.

Proof:
=2 By the definition of MVG, Rj can only read a version e, of data item Eif k < Maxj.
&= Let E be any data item written by U, and read by Rj. By Lemma 5, Rj locked some item
E only after U; unlocked E. Since MAX‘i > TS, Rj must have read version e, m > TS
and the result follows.]

Lemma 8: Let R; and Uj be read-only and update transaction respectively that interact in the
system. Then R; — Uj & Max; < TSj.

Proof:

=5 Assume by contradiction that Max, > TSj. By Lemma 5, any data-item read by R, and
written by Uj must have been successfully locked by R; only after Uj unlocked E. To

establish a precedence relation between R; and Uj, Uj created version e with g = TSj.
By the rules of MVG, R, must read version e, k > TS; and hence U; — R;, which is a
contradiction.

&= By the definition of MVG, R; can only read a version e, of data item Eifk < Max;. []
Theorem 2: The MVG protocol assures serializability.

Proof: The proof follows directly from Lemmas 3, 7, 8 and 9. The serializability order
corresponds to the time-stamp ordering of the various transactions in the system, where the Read-

only transactions are after the write transactions of the same number. d
Theorem 3: The MVG protocol assures deadlock freedom.

Proof: The proof follows from two facts. First, each transaction must follow the heterogeneous
guard protocol, which was proven deadlock free in Theorem 1. Second, the compatibility relation
between the S and X mode of locking for MVG has fewer delay conditions (i.e., an update
transaction can never be delayed by a Read-only transaction) than the one defined for the guard
protocol. [ja

5. Discarding Old Versions

Since no database system can keep an indefinite number of versions per data item on mass
storage {e.g., disk), there must be some method to discard older versions (i.e., delete them, or
move them to tape) when they will no longer be accessed by active transactions. In this section
we present such a method and show how this can be used in eliminating the problem we discussed

in Section 4 concerning the value of Max;.

All update transactions access only the most current version of a data item E, since all update
transactions lock all items in the order they lock the root of G, which is in ascending order of
timestamp. However, a read-only transaction Rj can access a version earlier than the most
current version of E, since no recent update transaction may have created a version for F(j). If
we can construct a number M such that all active R; have MAX, > M, then the system can
discard e, through g1 in the sequence <el,...,eg_l,eg,eg+1,...,ek> of data item E, where the

timestamp of e, < M and the timestamp of e, , > M.

To find such a number, the database system can scan the entire database to determine the data
item whose most current version has the smallest k. Since each MAX; > k, this fulfills the
requirement given above. However, this procedure is prohibitively expensive for any database of
reasonable size. Hence we will use the timestamps of the update transactions to force MAXJ- of
any read-only transaction past some precalculated value. In other words, we modify the way
MAXj is computed.

We can artificially assign M as the lower bound for the timestamp of any read-only transaction
entering the database, provided there exists no active update transaction which can create a new
version with timestamp < M. Intuitively, this follows from the fact that any update transaction
which later locks F(j) can only create a version with a larger timestamp than M, and hence will

preserve the ordering of transactions.

Definition 9: I Uj has the least timestamp of any update transaction presently active in the

system, then M = TSj.r

Definition 10: We redefine the way MAXj is computed to be the maximum(MXk), where M is
defined above, and k is the timestamp of f, in the sequence <f,,..f,> of F(j) at the time R;
successfully locked F(j).

This redefinition of MAXj requires the following alteration of each of the proofs of Lemmas 6, 8,
and 9. Since M < TSi for any active transaction Ui and each proof assumes MAXJ- > TSi, it
remains that MAXj = k. Therefore all the lemmas hold, and the redefined protocol is still

serializable.

We now present the algorithm to determine M using the timestamps of the update transactions.
The function to generate a timestamp for update transaction U, is denoted succ(Ui_l), where U, ,
is the update transaction which locked the root of G before U;. There is an ordered list A
containing all active update transactions in ascending order of timestamp, and is of size equal to
the number of active update transactions. The algorithm to determine the value of M functions

as follows:
1. Initialize. Set A to empty and M:=0.
2. When U, enters the system, append U; to the end of A.

3. When U leaves the system, delete U; from A. If TS; = suce(M), M must be updated.

If A is empty, M is set to the timestamp of the update transaction that last locked the
root of G, otherwise M is set to TS__,, where U, is the first element of A.

We present a short example to illustrate the operation of the algorithm. For simplicity, we
assume TS; = 1 and succ(TS;) = TS;+1. Transactions U,, U,, and U, enter the system, and are
appended to A in ascending order of timestamp. The value of M==0. Transaction U, completes
and is deleted from A. Since TS, #=succ(M), no action is taken to recompute M. At a later time
transaction U, completes, is deleted from A, and finds TS, = succ(M) = 1. U, is the first

element of A, so M is set to 2, the timestamp of U,,.

We finally must guarantee that all read-only transactions active in the database have MAXj >
k, for some number k. The scheme just presented divides the set of active read-only transactions
into classes, where each class is composed of transactions with MAXj > Mj, the value of M when

the transaction entered the database. In order to distinguish which class a read-only transaction

10

R belongs in, each R remembers both MAX and M These individual classes can be counted
separately, or grouped into two major classes around a particular value of M called CHANGE,
where the first class has M; > CHANGE, and the second class has M, < CHANGE. We present
the latter algorithm, where the first and second classes are counted in RC, and RC, respectively.

The algorithm functions as follows:
1. Initialize. Set RC,:=0, RCy:=0, and CHANGE:=0.

2. When the system decides to discard additional versions, set CHANGE: =M,
RC,:=RC;+RC,, and RC;:=0. This step must be uninterrupted by the arrival or
departure of any read-only transaction.

3. When R.i enters the database, set RC;:=RC,+1, Mj:=M, and MAXj:=max(M,k).
4. When Rj leaves the database, if Mj > CHANGE, set RC,:==RC;-1, else set
RC, :=RCy-1.

5. When RC,=0, the database may discard all versions <e,,...e, ;> of data item E,
given that the timestamp of e, < CHANGE and the timestamp of egr1 > CHANGE.

We illustrate the algorithm by extending the same example given above. The system begins
with M, CHANGE, RC,, and RC, set to 0. R, and R, enter, are assigned Mj=0, and set RC, to
2. RC, completes, finds M, > 0, and sets RC, to 1. Then update transactions U, and U, finish
and set M to 2. The system decides to discard versions, sets CHANGE to 2, RC, to 1, and RC,
to 0. R, enters, is assigned M;=2, and sets RC, to 1. R, completes, finds M, < 2, and sets RC,

to 0. The system finds RC,=0, and discards any appropriate versions.

8. Comparison

It is quite difficult to compare our locking protocol with other previously published schemes
using the multi-version concept. This is due to the fact that we are dealing with a diverse set of
mechanisms which do not seem to have a common ground for comparison. Nevertheless, let us
try to argue in favor of our scheme. In the sequel we refer to Reed’s scheme [3] as Al, Bayer’s et
al. scheme [8,9] as A2, and Stearns and Rosenkrantz scheme [10] as A3.

To simplify the comparisons, we first present the relevant portions of each of the three schemes.
All three schemes commit versions created by a tramsaction only at the time the tramsaction
completes and leaves the database. To test for serializability, both Al and A3 assign a timestamp
to each transaction in the database. Al uses the timestamp to restrict the sequence of operations
on a data item to conform to both the — relation (as defined earlier) and the increasing sequence
of timestamps, while A3 uses timestamps as a priority ordering to detect possible inconsistency
and deadlock, and to decide which transaction should be rolled back. A2 uses a global
dependency graph to detect both deadlocks and possible nonserializable sequences, where an arc in
the graph is the precedence relation between a pair of conflicting transactions on an individual

data item. We now compare the four schemes in each of four areas.

11

a. Inconsistency and deadlock - Both Al and A2 allow a set of transactions to reach
potentially nonserializable states. If Al cannot order the sequence of operations on a
data item to conform to — and still increase in timestamp number, the update
transactions with versions violating this criterion must be rolled back. In A2, a cycle
detection algorithm must be frequently performed to decide if a cycle exists in the
graph. Existence of a cycle implies deadlock or potentially nonserializable results, and
some transaction in the cycle is then removed. A3 decides if the possibility of
deadlock or inconsistency exists by using both the state of the conflicting transactions
and their respective timestamps. If such a possibility exists, the system rolls back one
of the conflicting transactions. Our scheme prevents deadlock and ensures
serializability by a partial order on the locking sequence of data items, and the
compatibility relations between lock modes. This precedence relation implies that
additional data items may need to be locked.

b. Reading a data item - If a read request is issued on a data item with an uncommitted
version, then Al, A3, and our scheme may need to delay the request until the
appropriate version has been committed. As mentioned before, commitment in Al
and A3 occurs only when the transaction has completed. In addition, A3 can grant a
read request of higher priority, which implies transactions with previously granted
write requests of lower priority may need to be rolled back. In our scheme,
commitment occurs at the moment when a transaction unlocks a data item, which can
occur well before the transaction completes.

In A2, a data item may always be read immediately. However, a cycle detection
algorithm must be performed for each read request to determine which version should
be read. Cycle detection algorithms are quite expensive, especially in a distributed
environment.

c. Writing a data item — In each of Al-A3, a transaction which issues a write request
may need to be rolled back to preserve consistency of the database. In Al, the write
request is granted if it preserves the ordered sequence of operations to the data item,
otherwise it is rolled back. A2 grants the write request immediately if there is no
conflicting active transaction, otherwise the cycle detection algorithm is invoked to
determine if the request should be granted or the transaction rolled back. In A3, the
write request is immediately granted if there is no conflicting active transaction. If
there is conflict, the priority numbers and states of the transactions are compared, and
either the request is delayed until the previous transaction has completed, or one
conflicting transaction is immediately rolled back.

In our scheme, a write is either immediately carried out, or the transaction is delayed
until the data item is unlocked. No rollbacks are necessary.

d. Termination — Of the four schemes, only A2 requires an additional termination
procedure. It checks comsistency at termination by invoking one final cycle detection,
and rolls back the transaction if a cycle is found.

Since the MVG protocol requires no special handling for termination, deadlock, or inconsistent
database states, it has a simple and efficient implementation without relying on rollback. The
main disadvantage is that additional data items may have to be locked because of the required
access ordering. However, the fact that this is a non-two-phase locking protocol reduces the
amount of time each data item is actually locked. Moreover, the new compatibility relation

between the S and X lock modes in our model are quite lenient, resulting in less delay time for a

12

transaction.

7. Conclusion

We have presented a new multi-version concurrency control scheme which guarantees
serializability and deadlock freedom without the use of rollbacks. Rollbacks degrade performance
both in the time required by the database coordinator to reset the database to an earlier state and
the computation time wasted by the individual transaction. This disadvantage becomes greater
as new computing environments increase the pumber of concurrently executing transactions,
where the increased probability of conflict increases the frequency of rollbacks. It should be
noted, however, that rollbacks may still occur in the system due to such circumstances as
hardware failure. Thus, in order to ensure atomicity, a commit protocol must also be used. In a
previous paper [22], we have shown how a simple commit protocol can be effectively constructed
without interfering with the protocol that is used for ensuring serializability. Arguments in
support of protocols that do not require rollbacks as a means for ensuring serializability were also

presented in that paper.

A possible disadvantage of our scheme is that additional data items may have to be locked.
However, since a non-two-phase protocol is used, the amount of time each data item is actually
being locked is reduced. Moreover, the new compatibility relation among the new S and X modes

of locking is quite lenient, which decreases delay time.

Finally, we note that the MVG protocol can be effectively utilized in either a centralized system
or a distributed system. The implementation in a centralized system is straightforward, simple
and efficient. This is due to the fact that locking decisions are made locally and deadlock

problems do not arise. In a distributed environment two types of systems need to be considered.

a. Non-replicated databases - in this types of system each data item resides in one and
only one site. A transaction in such an environment may be viewed as locus of
control, migrating from one site to another, carrying with it the relevant information
needed to perform its designated task. The access paths between and within the
databases at each site must be able to be modelled as a rooted DAG. In each site a
transaction accesses the data item residing there. In such an environment the
implementation of the MVG protocol is identical to the centralized system. Most
importantly the MVG protocol does not require the presence of deadlock detection
algorithms that are either expensive (searching for cycles in a wait-for graph), or
require transaction rollback even if no deadlocks occur (e.g., the kill/die scheme of
Rosenkrantz et al. [18]). Also note that although it appears that the root node will
create a bottleneck, this is not really the case. This is due to the fact that only
update transactions must lock the root node first.

b. Replicated databases - in this type of system a data item may be replicated in several
sites. A transaction thus must access a data item in its site, or if this data item is not
available at that site, the transaction must request a copy of that item from any of
the sites in which it is replicated. In such an environment, our locking scheme must be
modified. The simplest way of doing so is for each data item to designate one of the

13

replicated sites as the owner of that item [9]. Thus each data item has one and only
one owner. With this scheme our locking protocol simply requires that locking should
be done on the owner’s copy, resulting in a minimal amount of overhead in terms of
locking. However the reading and writing of a data item is carried out at the local
site (if it is replicated there). The writing to all copies of the data item must be
carried out before the item is unlocked.

Hence the MVG protocol can be implemented in both a centralized and distributed environment.

10.

11.

12.

13.

14.

15.

16.

17.

14

References

. Eswaran, K.P., Gray, J.N,, Lorie, R.A. and Traiger, 1L. The notions of consistency

and predicate locks in a database system. CACM 10, 11 (Nov. 1976), 624-723.

. Gray, J., Notes on database operating systems. Research Report, IBM Research Lab,

San Jose, Feb. 1978.

. Reed, D.P. Naming and synchronization in a decentralized computer system. Ph.D.

Thesis, M.I.T. Dept. of Electrical Engineering and Computer Science, Sept. 1978.

. Kung, H.T., and Robinson, J.T. On optimistic methods for concurrency control. ACM

Transaction of Database Systems 6, 2 (June 1981) 213-226.

. Bernstein, P.A. and Goodman, N. Time-stamp-based algorithms for concurrency

control in distributed database systems. Proceedings Sixth International Conference
on Very Large Data Bases (Oct. 1980), 285-300.

. Honeywell File Management Supervisor, Order Number DB54, Honeywell Information

Systems Inc., 1973.

. Stearns, R.E., Lewis, P.M. and Rosenkrantz, D.J. Concurrency control for database

systems. Proceedings IEEE Symposium on Foundations of Computer Science (Oct.
1976), 19-32.

. Bayer, R., Heller, H. and Reiser, A. Parallelism and recovery in database systems.

ACM Transactions on Database Systems 5, 2 (June 1980), 139-156.

. Bayer, R., Elhardt, E., Heller, H. and Reiser, A. Distributed concurrency control in

database systems. Proceedings Sixth International Conference on Very Large Data
Bases (Oct. 1980), 275-284.

Stearns, R.E. and Rosenkrantz, D. Distributed database concurrency control using
before values. Proceedings ACM-SIGMOD International Conference on Management
of Data (April 1981).

Papadimitriou, C. and Kanellakis, P. On Concurrency Control by Multiple Versions,
Proceedings ACM SIGACT-SIGMOD Symposium on Principles of Database Systems
(March 1982), 76-82.

Bernstein, P. and Goodman, M. Concurrency Control Algorithms for Multiversion
Database Systems, Proceedings ACM SIGACT-SIGOPS Symposium on Distributed
Computing (August 1982), 209-215.

Silberschatz, A., and Kedem, Z. A family of locking protocols for database systems
that are modeled by directed graphs. IEEE Transactions on Software Engineering (to

appear).

Kedem, Z., and Silberschatz, A. Locking protocols: from exclusive to shared locks.
University of Texas at Austin, Technical Report, 1980.

Silberschatz, A., and Kedem, 7. Consistency in hierarchical database system. JACM
27, 1 (Jan. 1980), 72-80.

Kedem, Z., and Silberschatz, A. Non-two-phase locking protocols with shared and
exclusive locks. Proceedings International Conference on Very Large Data Bases (Oct.
1980).

Kedem, Z., and Silberschatz, A. Controlling concurrency using locking protocols.

18.

19.

20.

21.

22.

15

Proceedings 20th IEEE Symposium on Foundations of Computer Science (Oct. 1979),
274-285.

Yannakakis, M., Papadimitriou, C.H., and Kung, H.T., Locking policy: safety and
freedom from deadlock. Proceedings 20th IEEE Symposium on Foundation of
Computer Science (Oct. 1979), 286-297.

Fussell, D., Kedem, Z., and Silberschatz, A. A theory of correct protocols for database
systems, Proceedings Seventh International Conference of Very Large Data Bases
(Sept. 1981), 112-124.

Mohan, C., Fussell, D., and Silberschatz, A. Compatibility and commautativity in non-
two-phase locking protocols, Proceedings ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems (March 1982), 283-292.

Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M. System level concurrency control
for distributed database systems. ACM Transactions on Database Systems 3, 2 (June
1978), 178-198.

Silberschatz, A. A case for non-two-phase locking. IEEE Transactions on Software

Engineering (to appear).

