ON MAPPING CUBE GRAPHS
ONTO LINEAR SYSTOLIC ARRAYS

I. V. Ramakrishnan
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-219 March 1983

ON MAPPING CUBE GRAPHS
ONTO LINEAR SYSTOLIC ARRAYS!

LV RAMAKRISHNAN

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712

ABSTRACT
Systolic algorithms for several impertant computational preblems have been
proposed for execution on two dimensional arrays (rectangular or hexagonal mesh).
However, practical considerations render linear systolic arrays more useful than
systolic arrays with higher connectivity in the context of existing computer systems.
This paper identifies the structure of a large class of systolic algorithms for two-
dimensional processor arrays and proposes a general methodology for mapping such

algerithms onto linear arrays.

l'i‘his research was supported in part by the National Science Foundation under Grants
MCS-8104017 and ONR Contract N00014-80-k-0087

1 Introduction

In |6, 7, 10] systolic arrays were proposed as a means of handling compute-bound
problems in a cost-effective and efficient manner. Systolic architectures generally
consist of a regular array of simple, identical processing elements which operate in
synchrony. The processor array can be of many forms, for instance a linear array, a
rectangular mesh, a hexagonal mesh, etc. These architectures are well suited for VLSI

implementation.

An algorithm executing on a systolic array comprises of several data streams.
Elements in distinct data streams move at different velocities (processors [cycle)
while all elements in a given data stream move at the same velocity. Every processor
in the array regularly receives data from each of the data streams, performs some
short computation and pumps the data out. The array has several input/output ports
through which external communication takes place, ie., elements in the data streams
are pumped in through these input ports and results of the computation are retrieved

through the output ports.

A basic goal of systolic architectures is to achieve more computations per time unit
from an existing system through the addition of am array of simple and identical
processing elements. A host computer drives the array as a peripheral. No major
changes to the existing system architecture should be required; thus the existing
memory bandwidth should remain constant and the device should be interfaced to an

existing system bus.

The constraints imposed on the structure of systolic arrays by the above goals make
linear array processors the most useful class of systolic arrays. Algorithms for 2
pumber of important computational problems fit very naturally onto a linear processor
array and many such algorithms have been designed [1, 3, 4, 5, 8, 11], and a few
general methodologies have been proposed for designing them [2, 15]. However,
algorithms for a number of other important computational problems fit naturally onto
two dimensional array processors (rectangular or hexagonal mesh) rather than a linear
array. These include algorithms for multiplication and LU-decomposition of matrices
[6], relational database operations [8], signal processing operations [9], etc. Such
algorithms are more complex in structure precluding a straightforward extension of

existing methodologies for designing linear-array systolic algorithms.

This paper proposes a systematic methodology to map a class of algorithms that
naturally fit on two-dimensional systolic arrays onto linear systolic arrays. The paper
is organized as follows. In section 2 we briefly describe the linear systolic array model.

In section 3 we provide a formal definition for programs that naturally fit onto two

tw

dimensional systolic arrays. In section 4 we provide a methodology to map such
programs onto linear systolic arrays, and in section 5 we illustrate the methodology by

devising new algorithms for matrix multiplication on linear arrays.

2 Linear Systolic Array
A linear systolic array is a 4-tuple Ar=<N)L, ¥, ,S,,> as follows.

1. N is a sequence of identical processors with indices ranging from 0 to |NJ-1.
2. L, ={l1, 2, ., Ik} is a set of labels.

3. Every processor in the array has k input ports and k output ports, with
each input port and output port assigned a unique label lj from L, . Each
processor in N is connected to its neighbors in the sequence through its I/O
ports. In addition the first and last processors may have input and output

ports connected to the host emvironment.

4. The array is driven by a single-phase global clock. In every clock cycle

each processor computes a k-ary function ¥, .

5. The control unit of every processor is a finite state machine having 2 single
state S, . Every processor in the array is in S, at the beginning of a clock
cycle and returns to it at the end of the clock cycle. Consequently the

processors in the array do not have any decison-making ability.

We will henceforth refer to a processor in the array by its index in the sequence
N. Let s be the index of 2 processor. Let sit=<si:,sif;..,sit‘> denote the k-tuple input
to processor s at time t where si{ is the value at the input port labelled [j of processor s

2

at time t. Let sot==<soz,sot,..,sof> denote the k-tuple output computed by processor

s at time t, i.e., ¥, (si,)=so0,.

The linear systolic array has the following communication features.

1. A neighborhood constant ng is associated with every label /j in L, such
that for any processor s its output port labelled [is connected to the input
port of processor s+n;. A processor in a linear array can only
communicate with its two neighbors and itself, and hence ny; is one of

{1-1,0}.

2 The elements in a data stream move at constant velocity and hesce a
delay constant d,j is associated with every label [j in L, such that for any
processor s, if so, is the output computed by s at iime t, then so{ appears

at the input port labelled [j of processor s+ at H’dl_g-

3 External communication takes place through certain designated

input/output ports namely,

a. if n;=1 then the input port labelled | of processor O and the outpui

port labelled [of processor |N|-1 communicate with the host,

b. if nj=-1 then the input port labelled ! of processor |N|-1 and the

output port labelled ! of processor 0 communicate with the host and

c. if =0 then a simple register in every processor serves as the
input/output port labelled I. No input/ouput ports labelled !
communicate with the host. A value is preloaded into this register
before starting the computation and the result value {the preloaded
value may be updated as computation progresses) is retrieved from

this register after the computation terminates.

Lemma 2-1: Let k be some integer. Let n; and d, be the neighborhood and delay
constants respectively of label I If x is the value at the input port labelled [of
processor s at time ¢ then it will reach the input port labelled ! of processor s+kXn, (

'+’ and ' X’ denote arithmetic plus and muliiplication operators) at time t+k Xd,.

Proof: Immediate consequence of the communication features of the linear array.

a

[Note : Depending on the function computed by the processors in the array, the

value x may change when it reaches the input port labelled ! of processor s+k><nl]

3 Program Model
A program G=<VEL;> isa labelled DAG where
i. V:VGUSOGUSI@ where V., 504 and Sl are three disjoint sets of
vertices with SO, the set of source vertices ,SI. the set of sink vertices
and V, the set of remaining vertices, which we shall call computation

vertices,

2. Lg is a set of labels. Let |[Lg [=k, and

3. every vertex in V has k incident edges and k outgoing edges, where each
incident and outgoing edge is assigned a unique label from L.

[Note: We will assume that G is connected]

Input edges and output edges in G are those edges that are directed out of and into

source and sink vertices respectively.

In any execution of G on a linear systolic array, every computation vertex in G is a
single instance of 2 function evaluation that is performed in a cycle by a processor in
the array. Hence we can view the k input edges and the k output edges of a vertex v
as representing the k-tuple input value and k-tuple output value computed by the

processor when v, is evaluated by the processor.

4 Mapping Programs on Linear Systolic Arrays

Intuitively, mapping is an assignment of computation vertices of G to processors in
Ar at particular times. Let T={O,c,2c,..} be a sequence of time steps where ¢ is the
clock time of the global clock that drives the linear array. A mapping of G onto a
linear array Ar is a 2-tuple <PA TA> where PAV~>N and TA:V~>T are
many-one functions mapping computation vertices onto processors and time steps

respectively. Let ¥ be the function represented by any computation vertex in G.

A mapping is syntactically correct iff ¥=¥, L,==L, and the communication

features of the linear array are preserved. Hence

1. for any label l€L, , il there is an edge labelled ! directed from v, to v
then PA(vy)sz(vanl and TA(v)=TA(v,)+d,, and

b

2. since the processors do not have any decison-making ability, no two
input/output values can appear at the same input port of a processor at

the same time.

A program is correctly executed on a linear array iff

1. the mapping is syntactically correct, and

2. for any computation vertex v, that is mapped on to a processor s, il the
vertex v, has an input edge(output edge), then the value denoted by the

input edge (output edge) must be kept invariant until it reaches s from the

port of external communication (until it reaches the port of external

communication from s).

5 Cube Graphs

In this section we provide a formal definition of program graphs that naturally fit

onto two-dimensional systclic arrays.

Definition 5-1: For any label [in L, a major path labelled [is a directed path
from a source vertex to a sink vertex such that the label of all the edges in the path is

L

We will refer to the value represented by a source (sink) vertex or input {output)

edge as input (output) value.

Definition 8-2: Let G=<V,EL,> be a program graph with its label set
LG:——-{ll,le,l:B}. Then, G is a Cube Graph iff there exists a one-one function F:V, —->
[x I, X I, where:

1. Vg is the set of computation vertices in G and I}, I, and I, are sequences

of integers ranging from 0 to (h,-1), 0 to (h,-1) and O to (hy-1) respectively,

2.F,, Fp and F, are three projection functions of F, ie, if

F(v)=<c ,cpes> then Fyy(v J=c,, Fo(v J=c, and Fpa v,)==c,,

3. for any label lEL(, and for any v, and vy in V,, there exists a major path

3

labelled ! passing through v and vy such that the distance from v to vy i

4 iff Fi{v,)=F (v)+d and VIELG-{1}, F\(v,)=F(v,).

A Cube Graph is an object in Euclidean 3-Space and we will refer to the 3 axes as
llth, 1224 and 137 axes. hl, h2 and h, are the maximum dimensions along ll”h, jond
and 379 axes respectively. If v isa computation vertex in a Cube Graph then we will
refer to F;,(v,), Fip(v,) and Fialv,) as [11th) 1274 4pd 1374 coordinate respectively and

denote them by X, X;o, and Xy respectively.

Let H={1-1} X {11} X ({1,-1} be the cartesian product of the set {1,-1}. Let
w== KWy, Wy, wy>€H.

Definition 5-3: A Diagonalization of a Cube Graph i3 a pair <D,w> with the
following properties.
1. D={D,, D,, -, D,} is a family of ordered sets of computation vertices and

D,UD,U.UD, =V

2. For any Dp in D, if v, and vy are in Dp then W, XX +W, XX+ Wy X Xpg =

Wy XYW XY p+Wa Xy 3.

3. Let T}, denote the indexing function associated with the ordered set D. For
any pair of Dp and Dq in D, if v, and v, are in Dp and Dq respectively then
Tp(D,) < Tp(Dy) iff Wy XX W XX+ We X Xpg <
Wy XYt W XY pt Wy Xy s

We will refer to w as the Diagonalization Factor of the Cube Graph. Let w, denote

the weight of the diagonal Dp in D, ie, if v, is a vertex in Dp then

Wy XXy FWy X Xppt Wy XX g==Wp.

Definition 5-4: For any pair of diagonals Dp and Dq in D, Dq 18 the immediate

successor of Dp iff there exists no diagonal D, in D such that w, <w, < W

Let suc,'c(Dp) denote the immediate successor D(1 of Dp. The assignment of indices to

the diagonals in D is done as follows.

1. Assign index 1 to the diagonal with the least weight.

2. For any diagonal Dp, if Dp is assigned index i then aasign index i1+1 to

sacc(Dp).

Henceforth we will be assuming the following:

1. G will refer to a Cube Graph and [1, {2 and {3 will refer to the three labels

in its label set L.

2. The subscript of a diagonal will refer to its index, i.e., if Dp is a diagonal in

D then its index is p.

Drefinition 5-5: A Mesh Graph is a Cube Graph with iLGl::Z, i.e., cardinality of the

label set is 2.

Let I€L,. Let MG::{MGI, MG,, ., MGh} be the disconnected components formed
by removing all the edges labelled ! from G. Clearly, for any MG; in MG, the label set
MG,; 1s Lg-{1}.

Theorem 5-1: MG is a Mesh Graph.

Proof: Follows immediately from definitions of Mesh and Cube Graphs.

We next combine the disconnected components in MG into classes as follows.

Let SG={SG,, SG,, ., SG,} be a family of sets of disconnected components such
that SG={MG_ | if v, is a computation vertex in MG, then Fv =i} (ie,
components in the set SG, have the property that the I coordinate of the

computation vertices in these components is i}.

[Note: Fl is F‘,1 if [=={1 or th if I=I2 or Fzs if 1==13. Aslo the I*® coordinate is [1th

coordinate if I=I[1 or 1284 coordinate if [={2 or 13" coordinate if I=I3]

6 Mapping Algorithm

We now describe the algorithm to map a Cube Graph onte a linear array . Let
Ar=<NL, ¥,.,5,,> denote the linear array onto which G is mapped. Let
SG={SG,, SG,, -, SGD} be the family of sets of Mesh Graphs formed by removing all
the edges that are labelled [. Without loss of generality, let I==I3. So the label set of
any mesh graph within any set in SG is {l{1, I2}. Let ¥ denote the function

represented by a computation vertex in G.

Choose some Diagonalization Factor w=<w,, w,, w,> from H. Let D be the set of
diagonals obtained for this w. Let |D|=m. Choose the number of processors in N to be
m, ie., let |[N|=|D|=m. Let ¥, =¥ and L, =L Let D={D, D,, .., D} denote the
ordered set of diagonals in D and let {1,2,..m} denote the sequence of processor

numbers in N.

We are now in a position to describe the algorithm that maps G onto Ar. The
algorithm is explained in three phases. In the first phase we show how to choose the
neighborhood constants n;y, n;, and n;, for the labels [1, {2 and [3. We also show how
to construct the function PA that maps computation vertices of G onto processors in
Ar. In the second phase we show how to choose the delays d;, and d, for the labels /1
and [2. We also show how to map Mesh Graphs in SG in this phase. In the third phase
we show how to determine the delay d;, for label {3. We also show how to construct
the function TA that maps computation vertices onto time steps by composing the

mappings of the Mesh Graphs constructed in phase two.

Phase One

1. if w 741 then choose n) =w,, n,=w, and n;=w,,
if w ==-1 then choose n;==-w,, ny==-w, and n==-w,

2.if wl#-l then for every computation vertex v _ in diagonal D,

let

PA(v,)=i, ie, map the computation vertices in the i*h diagonal onto

processor i,

if w,=-1 then for every computation vertex v, in diagonal D, . let

PA(v,)=i.

Phase Two

1. set djj=1.If njp=1 then set d;,=2 else set d;,=1,

2. for every SG; do the following:

a. let v, denote the computation vertex whose coordinates are <0,0,i>.

Let TA(v;)=t, (we will show in phase three how to determine t;),
b. if v, is a computation vertex in any mesh graph in SG;, let TA(v)=
ti+xy Xdjy+Xpe X djy.
Phase Three

We first show how to determine d,.
1. if nj=n, then

a. if hy-hy+n;; >0 then choose dj;==h,+2n,,
b. if h;-h,+n;,; <0 then choose djy==h,+n,,

2. if nj;7#n;, then

a. if h2~hl+n1320 then choose d;;==2h,-1-+n,,

b, if h2—h1+n[3<0 then choose dlsthl-l-nm.

Once d;; is determined, we compose the mapping of the mesh graphs in SG; by

In the Appendix we have shown that this mapping is syntactically correct.

Phases one, two and three performs a syntactically correct mapping of a Cube Graph
onto a linear array. However to demonstrate a correct execution of the program
represented by the Cube Graph some semantic information about the function
represented by the computation vertex in the graph needs to be used as we show in the

following example.

Example 1: Consider multiplication of two matrices A and B as shown below:

lay; 250 Ibyy by, bsl feyy €yp €5l

lag, agel Ibyy byy byl legy €gg €yl

A program for computing this multiplication is given by the following recurrence:

&) = éki)j4aikxbkj 1<i,k<, 1<j<s.

This program is converted into the program graph shown in Figure 1. In Figure 1, Py
and q;; denote computation vertices. The horizontal, vertical and oblique incident
edges of p;; are labelled {1, I2 and I3 respectively. Similarly the horizontal, vertical and
oblique outgoing edges of py; are Iabelled 11, 2 and [3 respectively. If the horizontal,
vertical and oblique incident edges of Py or gy represent the values a, b and ¢
respectively then the horizontal, vertical and oblique outgoing edges of Py OF
represent the values a, b and c+aXb respectively. In Figure 1, the oblique input edge
incident on Pij represents the value cg) which is 0. The oblique cutgoing edge from a5

reresents the final (output) value cg’) of Cips ie., a; Xb13+ai2xb2j.

The program graph in Figure 1 is a Cube Graph as illustrated in Figure 2. The Cube
Graph is shown without the source and sink vertices for purposes of clarity. The
maximun dimensions of [1*8 (289 and 137 axes is 3, 2 and 2 respectively, ie., h =3,
h,==2 and hy=2. We next map this graph onto a linear array using the mapping

algorithm of the previous section.

Let w=<W,, Wy, w3>x<1} 1, 1>. It can be verified that for this choice of w, the
set D of diagonals is comprised of {D,, D,, Dy, D, Dy} where D={p,,}, D,={p,,,
Poy Qi1 b D3={Pi3 Paz. G2 9y } Dy={Poy, 3 a2 } and Dy={a,; }. Since |D|=5,
the linear array has 5 processors indexed from 1 to 5. Each processor is comprised of 3

pairs of input/output ports labelled {1, {2 and {3 respectively.

Let si%, sif and sif denote the inputs at the input ports labelled {1, {2 and [3
respectively of processor indexed s at time t and let so:‘, sof and so‘;‘ denote the
é= %,so;":sif and sof == sif + siéXsiE.

outputs computed by s at t. Then, so,==si

From phase one, we obtain n“z}, n12=1 and n£3=1. Also all the computation

vertices in D, are mapped onto processor i.

n,=1 and so from phase two, we obtain d;;==1 and d;,=2 as the delays for {1 and
[2. The mapped Mesh Graphs SG, and 5G, { SG, and SG, are obtained by removing
all the edges labelled 3 from the Cube Graph } are shown in Figure 3.

10

Now nj,==n;, and h-h,+1n;3>0 and so from phase three, we obtain
d132h1+2“13:3+2=5 and hence t,==t,+5. The composed mapping for the entire
graph is shown in Figure 4. In Figure 4, I,, I, and I, are the input ports labelled (1, {2
and I3 respectively of processor 1. O,, O, and O, are the output ports labelled i1, 12
and [3 respectively of processor 5. These are the ports of the linear array through
which external communication takes place. The elements of the matrices A, B and
and C are pumped into the array through the ports I, I, and I, respectively. The

computed values of matrix C emerge out of the port O,.

Lastly, we must show that:

1. for any i and j, if PA(pﬁ)zs {i.e., if s is the processor onto which Py is
mapped) and s > 1 then the input value cgjl) does not change as it travels

from 1, to the input port labelled I3 of s,

2. for any i and j, if PA(q-u-)zs and s < 5 then the ouput value c(u?) does not
change as it travels from the output port labelled I3 of s to O,.

An element pumped into I, travels at a velocity of 0.2 processors [cycle
(1 / djj. Hencelif PA(pﬁ)ms and s > 1 then by using lemma 2-1, we can compute
the times at which the input value C(U-” appears at the mput ports labelled {3 of
processors indexed 1,2,..,S-1. Similarly if PA(qﬁ)zs and s < & then we can compute
the times at which the output value cg’) appears ai the input ports labelled I3 of
s+1,5+2,..,5. This is shown in Table 1. Consider some row - say row 5 in Table 1. The
entries t,-11, t,-6 and t;-1 in columns 1, 2 and 3 denote the times at which the input
value cg“,{) appears at the input port labelled [3 of processors indexed 1, 2 and 3

respectively.

Consider row 5 again. If the value 0 appears on any of the other two input ports of
processors 1, 2 and 3 at times t,-11, t,-6 and t,-1 then the value represented by 6%13) is
preserved. An element pumped into I, travels at the rate of 1 processor | cycle
(1 / d;). Using lemma 2-1, it can be verified that if 0 is pumped into I, at times
t,-11, ¢,-7 and t,-3 then C will appear at the input ports labelled [1 of processors 1, 2
and 3 at times t,-11, t,-6 and t -1 respectively.

For every entry in Table 1, we compute the times at which 0 must be pumped into I,
snd this is tabulated in Table 2. Consider some row in Tabie 2, say row 6 The entries
t,-3 and t,-4 in columns 1 and 2 indicate that for 0 to appear at the input port
labelled 1 of processors 1 and 2 at time t,-3, 0 must be pumped into I, at times ¢;-3

and t;-4.

11

From Table 2 we observe that it suffices to pump 0O into I, between t,-11 and t,-3

and also between t1+8 to tl+16.

EXAMPLE 2: Consider again, multiplication of matrices A and B of example 1 for
a different choice of w. Let w=<w,, w,, w3>z<1,1,—1>. For this choice of w, the
set D of diagonals is comprised of D,={ q;; }, Do={ Py, Q2 901 } D,={ pys Psy>
1y dzo }» Dy={Py3 Poz dos b Ds={ P23 }-

We use |D|==5 processors indexed from 1 to 5. The neighborhood constants for labels
I1, 12 and [3 are n,;=1, B=1 and nj=-1. The vertices in Di are mapped onto
processor indexed i. The delays for the labels 1, I2 and {3 are d;==1, d;p=2 and
d;;=1. The resulting mapping of the entire Cube Graph is shown in Figure 5. In
Figure 5, [, and 1, are the input ports labelled [1 and {2 respectively of processor 1 and
0, is the output port labelled I3 of processor L. Similarly O, and O, are the output
ports labelled {1 and 2 respectively of processor 5 and 1, is the input port fabelled I3

of processor 5. These are the ports of external communication.

Constructions similar to those used for Table 1 and Table 2 are used to construct
Table 3 and Table 4 respectively. From Table 4 we observe that it suffices to pump 0

inte I, between t,-7 and t,-2 and also between t,+3 and t;+8.

7 Conclusions
We presented a methodology for mapping Cube Graphs onto linear systolic arrays.
Cube Graphs are the syntactic structure of program graphs that are naturally

executable on two-dimensional systolic arrays.

We illustrated the methodology by synthesizing linear array algorithms for matrix
multiplication [13]. Another application of this methodology for synthesis of linear

array algorithms for another important problem appears in [14].

The methodology can be generalized to map Hypercube Graphs (i.e., Cube Graphs in

Euclidean K-Space where K. > 3} onto linear systolic arrays. The details appear in
[12].

8 APPENDIX
We show that the mapping is syntactically correct. We begin by first showing that

the mapping preserves the neighborhood constant of the labels.

Theorem 8-1: Let [€L, and let n; and d; be its neighborhood and delay constants
respectively. Then, il e=<vx,vy> is the directed edge from v, tov and its label is [

Y
then PA(vy)zPA(van[.

Proof: Let v and vy be the vertices in diagonals Drp and D(a respectively and w, and
W be the weights of Dp and Dq respectively. So,
Wy XX Yy XKty X X5=W,
and v, X7, %9 XY ;303 XY 37

Let [==[1. Since e=<vx,vy> and label of e is {1 it follows from definition of cube

graph that y, =x;+1, y;,=Xpo and y ;==X;,. Consequently, wqowpzwue{i,~1}.

(1): Let wj,=1. We show that D is succ(Dp),Suppose D is not

g

succ(Dp). Let D, be a diagonal distinct from D and D such that w < w < w..

p’
w w22, But wew =w, and w =1 — a contradiction. So D is suce{D) and index

Since w_, W, and w, are integers, it follows that wr-prI and wq»wrz_d and hence

of Dq is p+w;, when w; =1

(2): Let w;==-1. We show that D is succ(Dq). Suppose D is not
succ(Dq). Let D be a diagonal distinct from D and D, such that w, < w < w.
Since Wo Wp and w, are integers, it follows that wr-wq;zl, w5
But w;;=-1 -— a contradiction. So Dp is succ(Dq} and index of Dq is p+w;, when

-w.>1 and wq-pr—Q.

wuz—L

The mapping algorithm maps vertices in Dp onto processor p and those of Dq onto
processor p+w, and hence PA(Vy):—*PA(vx)+w“€{1,-1}. Also from the mapping
algorithm n“r—::ﬁv“. So the theorem holds for I==I1. Similarly we can show that the

theorem also holds when [==I[2 and |=I[3.

O

We next show that the mapping preserves the delay constant of every label {.

Theorem 8-2: Let IEL and let n; and d, be its neighborhood and delay constants
respectively. Then if e==<vx,vy> is the directed edge from v to vy and its label is {
then TA(vy)zTA(vx)+dl.

Proof: {A): Let le{i1,i2}. Clearly, v, vy and e are all in the same mesh

13

graph within the same set in SG say SG,. So y;-x;3=0 and from the mapping
algorithm, TA(vy)—TA(vx):(yu-x“)du—f(ym-x,.z)dlg
1. Let the label of e be /1 and so y;,-X;,==0 and y;-x;,=1 and hence,
TA(vy}‘TA(vx)=d“

o Let the lIabel of e be [2 and so y,~x,=0 and y,-x,=1 and hence
a 127742 '

TA(, FTAW,)=dy

(B): Let the label of e be [3. So y ,-x;;=1, YaX1o=0 and y,;-x;,==0. Let
v, be a vertex in a mesh graph in SG; Clearly, vy must be a vertex in some mesh
graph in SG; . From phase 3 of the mapping algorithm it can be shown that
T:”\(Vy)‘TA(Vx)::dls.

From (A) and (B) above the theorem follows.
il

Lemma 8-1: Let [EL, and let P be a major path labelled [. Then the input value
represented by the source vertex of P and the output value represented by the sink
vertex of P can never appear simultaneously at the input port labelled [of any

processor.

Proofilet v be the first? computation vertex in P. Let v_ and v; be the source and
sink vertices respectively of P. Let k be the number of computaion vertices in P. In
any major path k>1. Let PA(v }=s and TA(v,)=t. So the output value represented
by v, gets computed in processor s+k and this value emerges at the output port
labelled [of s+k at time t+(k+1)Xd;. The input value represented by v travels upto
the input port labelled ! of s and reaches it at time t+kxd;. Clearly, the lemma

follows.

O

Lemma 8-2: Let I€L, and n€{1-1}. Let P, and P, be two distinct major paths
Jabelled [and let v, and vy be the first computation vertices in P, and P, respectively.
Let PA(v)==s;, PA(v }=s,, TA(vy)=t, and TA(v)=t,. If the input/output values
represented by source and sink vertices of P, and P, appear simultaneously at the

input port of a processor and if s, > s, then (tymt Ju==(s,-5,)d;.

Proof:Assume without loss of generality tha the input values represented by the
source vertices of P, and P, appear simultaneously at the input port of processor

s. Also assume withot any loss of generality s, > S,

2
“ihe vertex that is the immediate successor of a source vertex in any major path

14

Let n=1. The input port labelled [of processor 0 is the external input port
through which the input value represented by source vertices labelled ! are
fed in. The input value represented by the sources of the major paths P,
and P, pass through intermediate processors ranging from 0 to s, and 0 to
So respectively. s is one such intermediate processor. Let t be the time at
which both the values appear at the input port labelled [of s. The time
taken by the input value represented by source vertex of P, to reach the
input port labelled I of s, is (s5,-s)Xd;+t which is TA(v,). Similarly the
time taken by the input value represented by the source vertex of P, to
reach the input port labelled [of s, is (s,-s)Xd;+t which is TA(vy) and
hence,

t,-t,=(8,-8,) Xd,

(t,-t,) Xn=(8,-8,) Xd

2. Let n;=-1. The input port labelled [of processor N-1 is the external input
port. So the input value represented by source vertex of P, travels from
INJ]-1 to s, passing through the intermediate processor s and the input
value represented by source vertex of P, travels from [NI-1 to s, passing
through s. Let t be the time at which both these input values reach
s. Time taken to reach s, by the input value represented by source vertex
of P, is t+{s-s,)Xd; and the time taken to reach s, by the input value
represented by source vertex of P, is t+(s-s,) X d; and hence,

t,-t = (8,-8,) Xd,
(t,-%,) Xn=(8,-8,) X4,

From (1) and (2) the lemma follows.
n

We next show that the mapping ensures that no two input/output values appear

simultaneously at the input port of any processor.

Theorem 8-3: Let [€{[1,12,(3}. Let P, and P, be two distinct major paths labelled
I. The mapping ensures that the input/output value represented by the source/sink
vertices of P, and P, never appear simultaneously at the input port labelled ! of any

Processor.

ProofiLet [=I1 and v_ and vy be the first computation vertices of P, and P,

respectively. From the mapping algorithm we obtain,

PA(v,) -PA(VI’{):AP#1 X oy +ky X ng*ky X0y
TAY) -TA (¥,)= AT=k, X djy+Kky X kg X g

where k, =(y;-x,) and -(h~1)<k, L(h-1), ky==(y-xp) and (1) Lky <hy-1),
ky=(y5x3) and ~(hg-1) S (by-1).

Withot loss of generality assume AP > 0. Also assume that the input/output value
represented by the source/sink vertices of P, and P, appear simultancously at the
input port labelled [of a processor. By lemma 8-2,

d; AP=n;, AT *
We next show that (*} cannot be satisfied.
1. Let n“=nl2=1 and so by the mapping algorithm, d;;==1 and d,=2.
a. Let h-h,+n;,;>0. So dp=h+2n,; and (*} reduces to
ky X (hy+0y)+ky,=0. Now k;=k,7#0 as P, and P, are distinct major
paths labelled L. Also hy<h +n;, and -(hy-1)<k,<(hy-1) and so *)

cannot be satisfied.

b. Let hjhy+n,<0 and so dj=h+n; and (*) reduces to
k, X h,+k,==0. Besides k,<h,-1 and so (*) cannot be satisfied.

2. Let nj,7%n,. without loss of generality, let n;;=1 and nyp=-1. So d;;==1
and djp=1.

a. Let hyh,4+n;>0 and so dj=2hy-l-n,. So {*) reduces to

2k2+k3><(2h2-1)=0. But k,<h,-1 and so 2k,<2h,-1 and so *)

cannot hold.

b. Let hyh,+n,<0 and so dj=2h-l-n; So (*) reduces to
2kyt+ky X (2h -2hy-1)=0. Now hy<h,-nj, and so 2h,<2h;-2n,;. Also

ky<h,-1 and S0 2k, <2h,-2 and s0
2k, < 2hy-2< 2h-20y3-2 < 2h -2 p-1 and consequently {*) cannot
hold.

A similar proof can be used to show that the theorem holds for [==12 and [=Ii3.

(5]

(8]

9]

[10]

[11]

16

REFERENCES

T.C. Chen, V.Y. Lum, 2nd C. Tung.

The Rebound Sorter: An efficient Sort Engine for Large Files.

In Proc. of the 4B Intl Conf. on Very Large Data Bases, pages 312-318. |
1978.

D. Cohen.
Mathematical Approach to Computational Networks.
Technical Report ISI/RR-78-73, IS], Univ. of Southern California, 1978.

M.J. Foster and H.T. Kung.
The Design of Special-Purpose VLSI Chips.
IEEE Computer 13(1), January, 1980.

L.J. Guibas, H.T. Kung and C.D. Thompson.

Direct VLSI Implementation of Combinatorial Algorithms.

In Proe. Conf. Very Large Scale Integration: Architecture, Design, Fabrication,
pages 509-525. California Institute of Technology, January, 1979.

L.J. Guibas and F.M. Liang.

Systolic Stacks, Queues and Counters.

In Proc. Conf. Advanced Research in VLSI, pages 155-164. MIT, January,
1982.

H.T. Kung and C.E. Leiserson.
Systolic Arrays (for VLSI).
In Sparse Matriz Proc. 1978, pages 256-282. SIAM, 1979.

H.T. Kung.

Let’s Design Algorithms for VLSI Systems.

In Proc. Conf. Very Large Scale Integration: Architecture, Design, Fabrication,
pages 65-90. California Institue of Technology, January, 1979.

H.T. Kung and P.L. Lehman.
Systolic (VLSI) Arrays for Relational Database Operations.
In Proc. SIGMOD, pages 105-116. , 1980.

S.Y. Kung.

VLSI Array Processor for Signal Processing.

In Proc. First MIT Conf. Advanced Research in Integrated Circuits. ,
January, 1980.

H.T. Kung.
Why Systolic Architectures.
IEEE Computer 15(1):37-46, January, 1982.

C.E. Leiserson.

Systolic Priority Queues.

In Proc. Conf. Very Large Scale Integration: Architecture, Design, Fabrication,
pages 199-214. California Institute of Techoology, January, 1979.

1.V. Ramakrishpan.

Characterization of Programs Correctly Ezecutable on a Model of VLSI Array
Processors (in preparation).

PhD thesis, Department of Computer Sciences, U.T. Austin, 1982.

17

[13] LV.Ramakrishnan, D.S. Fussell and A. Silberschatz.
Systolic Matrix Multiplication on a Linear Array.
In 20th Annual Allerton Conf. on Computing, Control and Communication.
QOctober, 1982.

[14) P.J. Varman, LV. Ramakrishnan, D.S. Fussell, and A. Silberschatz.
Robust Systolic Algorithms for Relational Database Operations.
Technical Report , University of Texas at Austin, 1982

[15] U. Weiser, and A. Davis.
A Wavefront Notation Tool for VLSI Array Design.
In H.T. Kung, R.F. Sproull, and G.L. Steele, Jr. {editors), VLSI Systems and
Computations, pages 509-525. Computer Science Press, 1981.

I

FIGURE -1

FIGURE- 2

<0,0,0> <1.00> <2,0,0>
P !
ak 4 P
VAT / 12 13
/s
Ve
i/ #
/ //
/’/ /
/ /
/ /
<0,1,0> - /ZLI,0> A({2l_ >
o e
92‘ Y 23
Y
<g,<1,1:~»x <‘,0J>; <201>
s g %
e qi'i l//quQ q13
/ d
//
e
/ e
i Y
< 011> <1,1,1> >
b‘%/ Lo ,é, <2"4‘
993 922 923

FIGURE-3

Iz ey
| K —

FIGURE- 4

e . .] 04
Igor—> i . 2 # 3 o 4 . 5 =029
03“‘—-—»'——- o5 s d—-.-...,]:s

FIGURE -5

INPUT-OUTPUT .

VALUE

TIME STEPS

—

PROCESSOR INDEX

1 2 3 4 5

NeY) -

(1) - -
€13 ty=8 . £-3

(1) -
c5 ty 3

(L - -
C22 tl 7 tl 2
c§d) b=11) t=6 | t-1

(3) .
c1] tl+10 t1+15 t1+20
cf3) £g+11} £y+16
(P -

3) , .
c§3 £,+12| £y 417
oD o)

TABLE 1
PROCESSOR INDEX
J 2 3 4 5

tl—il tlwll
tlﬂé tl—:?
tl-4 tlma
tl""B t1-3 tl"‘é}
t1+10 z;1+8
tl+ll t1+8
ty+12 T ty+7 | t+8
t;+13 t,+9
£y+15 | +12
ty+l/ £y+13

TABLE 2

INPUT-OUTPUT
VALUE

TIME STEPS

l

% PROCESSOR INDEX

¢} 0
P e i
P bt et et

Sovet” o

S

[g]

[¢]
o U o T A Vo NI S P N
g

8]

Y L
p g

N

[

S’

o]

0
o~
M

(o]
P

L Ml W Www W
e’ e

¢)
N~

1 2 3 4 5
tl~1 t1~2 t1~3
il tl*l
t1+1
t1+1 tl
| t1+2
!
|
tl+3
t1+5 t1%4
tl+&
i l+6 ti+5
Ept8 | BT | ngte E
L. | -l
TABLE 3
PROCESSOR INDEX
1 2 3 4 5
- e
2 S
tl"g tl—s
t 1"3 = 1"‘{*
t1°2 tl—)
Ll+3
cl+5 tl+&
t1+6 C1+4
SN
L t1+8

TABLE 4

