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Abstract

Consider networks of two communicating finite state machines that exchange messages over two
unbounded, one-directional, FIFO channels. The communication progress problem for these networks is to
decide whether the communication of an arbitrary network is bounded and/or free from deadlocks and
unspecified receptions. This problem is known to be undecidable, even if the two machines exchange only
two types of messages. However, the problem becomes decidable if the two machines exchange only one
type of message. In this paper, we sharpen this boundary between the decidable and undecidable cases,
and examine the class of networks where only one of the two machines sends one type of message {the
communication in the other direction is not constrained). We show that for this class boundedness can be
decided, and each reachable deadlock or unspecified reception state can be identified. Furthermore, we
show that these decision problems are nondeterministic logspace complete and thus boundedness, freedom
from deadlocks and unspecified receptions can all be decided in polynomial time. Lastly, using similar
techniques, we are able to give optimal (providing PTIME #% PSPACE) decision procedures for the
general case of two machines, where one of the two channels is known a priori to be bounded.



1. INTRODUCTION

Many communication protocols can be modeled as a network of two finite state machines that com-
municate by exchanging messages over two unbounded, one-directional, FIFO channels [1,2,5,11,15,16,17}.
{Generalizations of this model permit any number of communicating finite state machines, each pair of
which communicate as above.) Each machine has a finite number of states {called nodes} and state tran-
sitions (called edges). Each state transition of a machine is accompanied by either sending one message to
the output channel of the machine or receiving one message from the input channel of the machine.
(Formal definitions are presented later.}

As an example, consider the network of two communicating finite state machines M and N, shown
in Figure 1. M is a sender that sends data messages to a receiver N; N responds by sending acknowledge-
ments to M. The communication proceeds as follows:

1. M starts by sending 2 sequence of two data messages, data, followed by data,.

2. N responds by sending an acknowledgement. Based on this acknowledgement, M performs one
of two actions: if the acknowledgement is totally negative or totally positive, M sends a se-
quence of two messages, data, followed by data,. (If the acknowledgement is totally negative,
then this sequence is a repeat of the previously sent sequence; otherwise, it is the next sequence
of data messages.) If the acknowledgement is partially positive (indicating that data; has been
received correctly and that only data, needs to be retransmitted), then M sends data,.

3.1t is possible that after N receives data,, it discovers that this message needs to be
retransmitted. In this case, N sends the acknowledgement right away without waiting for
data,. If M receives this acknowledgement before sending data,, then it must go back and

resend data,.

4. For i==0,1, each data; message consists of the following characters:
one S, (for start of text) character,
zero or more T; (for text) characters, and
one E; (for end of text) character.

Notice that M sends six types of messages namely S;, T, E,, S,, T,, and E, while N sends one type
of message namely A {for acknowledgement}.

One advantage of modeling a communication protocol by a network of communicating finite state
machines is to detect many protocol design errors. Three of these design errors which have been discussed
extensively in the literature are unboundedness, deadlocks, and unspecified receptions {cf. [1,2,4,15,16-18]).
In this paper we give nondeterministic logspace algorithms to detect these three design errors {plus others)
for the class of networks where one of the two machines sends only one type of message (the communica-
tion in the other direction is not constrained). (Note that the network shown in Figure 1 is in this class.)
Moreover, we are able to show that each reachable unspecified recepiion {deadlock) state can be identified,
within this bound. Furthermore, we show that these decision problems are nondeterministic logspace com-
plete and thus boundedness, freedom from deadlocks and unspecified receptions can all be decided in

polynomial time|3].

These results are important for two reasons:

i. It has been shown earlier|2,5] that detecting any of these design errors is undecidable for the
class of networks in which each machine is allowed to send two fypes of messages. It has also
been shown earlier [4,8,9,10,12,16,17] that detecting any of these design errors is decidable for



networks where each machine sends one type of message. Therefore, the current result {ills the
gap in a positive way between these two undecidable/decidable results. Moreover, by showing
that the given decision procedures are polynomial, the current result generalizes the result in
[16] where only deadlock detection is shown to be polynomial for a special class of networks
where the two machines exchange one type of message.

ii. The current result can be used to prove that s general network of two machines M and N that
exchange any number of messages is {ree from the above design errors. First, abstract M and
N into two machines M; and N, where M, sends only one type of message, by considering
each message sent by M (and received by N} as the same. (The communication in the other
direction is left as is.) Then use the decision procedure in this paper to prove that M, and N,
are free from the above design errors. Second, abstract M and N into two machines M2 and
N,, where N, sends only one type of message. Then use the decision procedure in this paper to
prove that M, and N, are free from the above design errors. It is straightforward to show that
if M, and N, are free from the above design errors and if M, and N, are free from these
errors, then the original machines M and N are also free from these same errors. The converse
need not be true, of course. An example to illustrate the abstraction procedure is given in
Figure 2.

In [2], a partial procedure was given to determine, for 3 network consisting of an arbitrary number
of communicating finite state machines, whether any unspecified reception or deadlock states were reach-
able (as well as whether the network had any nonexecutable receptions). The procedure in [2] was shown
to terminate for the class of communication networks consisting of two finite state machines in which the
communication was bounded in at least one of the channels. The algorithm can also be modified slightly in
order to determine whether the remaining channel is bounded. Thus, for the case of two machines the
above three design errors can be detected by a decision procedure if one of the two channels is known a
priori to be bounded. The time complexity of the procedure is not discussed in [2], however, one can show,
that it must be a function not only of the size of the network, but also of the known channel bound. Using
the techniques presented in our paper, we give a different decision procedure for this same problem and
show that the time complexity of our procedure is the best that can be achieved, unless

PTIME=PSPACE.

Although in this paper we discuss only the detection of three design errors {namely unboundness,
deadlocks, and unspecified receptions), it can be shown that other design errors {e.g. nonexecutable recep-
tions, and stable states [2,18]) can be detected as well using the same decision procedures.
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2. COMMUNICATING FINITE STATE
MACHINES

A communicating finste state machine M is a directed labelled graph with two types of edges,
namely sending and receiving edges. A sending (receiving) edge is labelled send(g) (receive(g)} for some
message g in a finite set G of messages. A node in M whose outgoing edges are all sending (all receiving)
edges is called a sending (receiving) node; a node in M whose outgoing edges include both seading and
receiving edges is called a mized node. One of the nodes in M is identified as its initial node; each node is
reachable by a directed path from the initial node. A node which a directed edge indents from (or to) is
called the source {destination) node of the edge.

Let M and N be two communicating finite state machines with the same set G of messages; the pair
(M,N) is called a network of M and N. A state of network (M,N) is a four-tuple [v,w x,y], where v and w
are two nodes in M and N respectively, and x and y are two strings over the messages in G. Informally, a
state {v,w,x,y] denotes that the executions of M and N have reached nodes v and w respectively, while the
input channels of M and N have the message sequences X and y respectively.

The initial state of network (M, N} is {vo,wo,E,E] where v and w, are the initial nodes in M and N
respectively, and E is the empty string.
Let sz[v,w,x,y} be a state of network {M,N); and let e be an outgoing edge of node v or w. A state

s’ is said to follow s over e iff one of the following four conditions are satisfied:

i. e is 2 sending edge, labelled send(g), from v to v’ in M, and s'=[v',w,x,y'|, where y'=y.g (=% is
the string concatenation operator).
ii. e is a sending edge, labelled send(g), from w to w’ in N, and s'=|v,w'x"y], where x'=x.g.

iii. e is a receiving edge, labelled receive(g), from v to v’ in M, and s'==[v’,w,x’y|, where x==g.x".

iv. e is a receiving edge, labelled receive(g), from w to w’ in N, and s'=|v,w’ x,y’], where y=g.y’.

Let s and s’ be two states of network (M,N), s’ follows s iff there is a directed edge e in M or N such

that s’ follows s over e,

Let R be a set of states of the network (M,N), and let s and s’ be two states of {(M,N). Then s’ is
reachable from s (within R) iff s=s’ or there exist states s,,...,5, such that s=s,, s'==5, and Sip1 follows s,

for i=1,...,r-1 (and s,,...,5_ are in R}.
A state s of network {M,N) is said to be reachable iff it is reachable from the initial state of {(M,N}.

The reachability set of network {M,N) is the set of all reachable states of {(M,N). Note that if R is
the reachability set of (M,N), then a state of the network is reachable iff it is reachable within R.

A finite computation of a network is a sequence of states sg,...,s, in which s, is the initial state of
the network and s, follows from s;, 0<i<r-1. An infinite computation is such a sequence but with

infinite length.

The communication of network (M,N} is said to be bounded by k, where k is a nonnegative integer,
iff for every reachable state [v,w,x,y] of (M,N}, [x|<k and |y|<k where |x] is the number of messages in
%. The communication is said to be bounded iff it is bounded by some nonnegative integer k; otherwise it

is unbounded.
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A state [v,wx,y]| of network (M,N)} is a deadlock state iff (i) both v and w are receiving nodes, and
(ii) x==y=E (the null string}. If no reachable state of network (M,N) is a deadlock state, then the com-
munication of (M,N) is said to be deadlock-free.

A state [v,wx,y] of (M,N} is an unspecified reception state iff one of the following two conditions is

satisfied:
i x=g,.8,. ... . (k>1); and v is a receiving node and none of its outgoing edges is labelled
receive(g, ).
i y==g, 85 . -8 {k>1); and w is a receiving node and none of its outgoing edges is labelled
receive(g,).

If no reachable state of network (M,N) is an unspecified reception state, then the communication of {M,N)
is said to be free from unspecified receptions.

A state of network {M,N) is a nonprogress state if it is either a deadlock state or an upspecified
reception state.



3. DECISION PROBLEMS

In this section we show that polynomial time decision procedures can be constructed, to determine
whether the communication is unbounded and whether the network can reach a deadlock and/or un-
specified reception state, for the following two classes of communication networks:

C;: The class of networks consisting of two finite state machines in which each machine sends
only one type of message to the other machine, i.e. G only contains a single message.

Cy: The class of networks consisting of two finite state machines in which at least one of the
machmes sends only one type of message to the other machine, i.e. each edge labelled by 2
send (in one of the machines) mentions the same message of G. (Note that C, is properly

contained within C,.)

In fact we prove a slightly stronger result, which is that all three of these problems are nondeter-
ministic logspace complete for both C, and C,. Thus it follows from results in |3] that these problems are
solvable in polynomial time. (See [6] for motivations and definitions of nondeterministic logspace hard,
nondeterministic logspace complete, etc. See also [7,14].) This generalizes results in [16,17], where such
problems were considered for subclasses of C;. Our approach is to first show that, to determine whether a
network is unbounded and/or whether it’s reachablhty set contains a deadlock state, is nondeterministic
logspace hard for the class C,. {(Note that unspecified reception states do not exist for C, networks.)
Then we show that all three problems can be decided in nondeterministic logspace for the class C,. To
determine, whether the reachability set of an arbitrary C, network contains an unspecified reception state,
is also nondeterministic logspace hard. Although we do not explicitly show this, it follows using a similar
construction as the one presented in Theorem 1.

We need the following problem which is known to be complete for nondeterministic logspace with
respect to logspace reductions [13]. The ®"graph reachability problem® is, given a directed graph with
vertices {1,...,n}, determine if there is a path from 1 to n in G. We are now ready to show the following

easy result.

Theorem 1: To determine, for an arbitrary C, network, whether the network is unbounded and/or
whether the network’s reachability set contains a deadlock state, is nondeterministic logspace hard.

Proof: We show how to construct a logspace transducer W that, when given an arbitrary directed graph
G=(V,E) {let V=1{1,...,n}}, produces as output a network (M,N} in C,, whose communication is un-
bounded (has a deadlock) iff there is a path from 1 to n in G. The comstruction of M is trivial and is
shown in figure 3a. The construction of N depends on the graph G. N has nodes labelled 1 through n that
correspond to the vertices of G, in addition to other nodes. The node labelled 1 is the start node. Sup-
pose that vertex i of G, for i<(n, has directed edges to vertices iy,..i. Then the portion of N correspond-
ing to vertex i of G, is shown in figure 3b. The portion of N corresponding to vertex n of G, is shown in
figure 3¢ (3d), for the case when we are concerned with whether the network is unbounded {whether the
network has a deadlock). The reader can easily see that G has a directed path from 1 to n iff the network
(M,N) is unbounded {has a deadlock). The details of the construction of the transducer W are left to the
reader. []

The reader should note that the metwork constructed in Theorem 1 has no mixed nodes. Thus, the
result also holds for the subclass of C, considered in [16]. In order to prove the results concerning the
class C,, we need some preliminary work. Let (M,N) be an arbitrary network in the class C,. Without
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loss of generality we assume that N sends only one type of message to M. Let R{M,N} (hereafter denoted
by R) be the reachability set of the network. Define R'(M,N}={s| s in R and if s=[v,w,x,y] then |y|<1}
{denoted simply as R’}, i.e. R’ is the set of reachable network states in which the input channel to N either
contains zZero of one message. We now prove the following lemma about R’,

Lemma 1: R'={the set of states that are reachable within R’}.

Proof: Clearly {the set of states reachable within R’} C R’. Consequently we need only show the
reverse, Let s be in R'. Since s is reachable by definition within R, there exists a2 computation of the
network sg,...,s, such that sy is the initial state of the network and s ==s. Consider separately, but in
order, the sequence of moves made by M and N in this computation. These moves are interleaved to form
the computation of the network indicated by the sequence sg,...,s,. One can construct another computa-
tion of the network utilizing exactly the same two sequences of moves, but interleaving them in a different
way such that the same state s is eventually reached and each intermediate state is in R’. This can be
done by always choosing to execute the next move of N (if one remains to be executed), instead of the
next move of M, whenever the input channel of N contains a message and the next move of M, to be
executed, sends a message to N. The details of this construction are left to the reader. []

Corollaries 1,2, and 3 now follow almost immediately from Lemma 1.
Corollary 1: If a deadlock state sisin R, then s is in R".

Corollary 2: If an unspecified reception state s=[v,w x,g.y| is in R, then there exists an unspecified
reception state s’={v’,w,x’,g} in R’, for some node v’ in M and some siring x’ over G.

Corollary 3: The channel from N to M is unbounded iff R’ is infinite.

Proof: If the channel from N to M is unbounded, there is an infinite computation of the network in
which the contents of the input channel of M become arbitrarily large. Reordering the moves of M and N,
in this computation, as prescribed in Lemma 1, does not decrease {and in fact may increase) the contents
of this channel at any point in the computation. Consequently, R’ is infinite. [}

From Corollaries 1 and 2, we find that to determine whether the network (M,N} has a reachable
deadlock or unspecified reception state, it is sufficient to consider only those states which are in R'.
Likewise to determine if the channel from N to M is unbounded, it is sufficient to determine if R’ is
infinite. We are almost ready to prove our next theorem, but in order o do so, we require the following
definitions.

A deterministic one counter automaton (doca) is a deterministic pushdown automaton (see [6]) with
a stack alphabet of just one symbol {besides the bottom-of-stack marker). It is the case here that we can
restrict ourselves to those doca’s that do not utilize e-moves and where each move can change the stack
height by at most one. Formally, a doca W is a 7-tuple <Q,Z,T,8,q5,Z¢,F >, where Q is a set of states, X
the input alphabet, I ={Z;,B} is the stack alphabet (note that the bottom-of-stack marker Z, can neither
be written nor erased), & Q@ X L X I' — Q X {-1,0,4+1} is the transition function, qq is the initial state,
Zg is the bottom-of-stack marker and F is the set of accepting states.

A configuration ¢ of W is described by 2 pair (g,i) where qeQ and i is a nonnegative integer
representing the contents of the counter {or stack). A computiation ¢ ¢’ is a sequence of moves specified
by the transition function &, that leads from ¢ to ¢’, and which in the process causes W to read the input
word « in I*. {Note that in our case the number of moves in the computation is |, the length of the



string «.) A computation is positive if no intermediate configuration in the computation has a zero
counter. We are now ready to prove our next theorem.

Theorem 2: For the class C,, the following three decision problems are solvable in nondeterministic
logspace:
1. Decide whether the reachability set of the network contains a deadlock state.

2 Decide whether the reachability set of the network contains an unspecified reception state.

3 Decide whether the channel through which only one type of message can be sent, is un-
bounded.

Proof: Let (M,N) over the message set G, be in C,. Let v, (wo) be the initial node in M (NJ.
Without loss of generality, we assume that N only sends one type of message to M. Let R and R’ denote
the sets of reachable states as indicated above. Let ¢==(|M|+|N|}*(|G|+1). Notice that the total number
of possible moves that can be made from any network state is no more than £. Hence, the possible moves
of the network can, for any network state, be indexed by 1,....¢L. One can now easily construct from {M,N)
a doca W=<Q,Z,T,6,q9,Z,.F > with input alphabet X={1,...,¢}, whose reachable configurations coincide
with the states in R’. The construction of W is as follows. Q={r,a,a’} U {(v,w,g) | v (w) is a node in M
(N) and g is either a message in G or E (indicating that the input channel of M is empty}}. The initial
state of W is (vy,wg,E). The state 2’ is the accept state, i.e. F={a’}. The state r is a reject state, i.e. no
moves can be made from the state r. The contents of the counter are used to store the number of mes-
sages contained in the input channel of M. The moves of W (as long as W has not already determined
that the input will be rejected or accepted) are essentially the moves of the network, restricted such that a
state in R-R’ is not encountered. Hence, in state {v,w,g) with input i, W will simulate the ith move of the
network (from this state) if such a move exists; otherwise W will reject the input. Whenever g7E and the
ith move from (v,w,g) is a move of M that sends a message to N, then W also rejects the input. When
simulating 2 move, W updates the internal state to reflect the new state of the metwork, as well as the
counter contents if the move of the network altered the channe! contents of M’s imput channel. If W
ascertains that it is in a deadlock state or unspecified reception state, depending on whether we are inter-
ested in the first or second decision problem, then W on any input can enter state a. {Note that W must
actually be in a deadlock (unspecified reception) state for this transition to occur.) W, in state a, empties
the counter and enters state a’, the accepting state. {The first definition of acceptance should be used for
the third decision problem.) We leave it to the reader to establish that there is a logspace transducer that
when given a network (M,N) in Cz» can produce the desired doca W. Clearly then R’ contains a deadlock
{unspecified reception) state iff W accepts some input string.

Now we need that W accepts some input string iff it accepts some short input string (ie.
polynomial in |Q|, the number of states in Q). We now show that this short string need be no longer that
2*IQJ4. (Notice that the pumping lemma for pushdown automata would yield the existence of a short
string, but it’s length may be exponential in |Q].) Call a computation c;,...,Cy, in which ¢, and c, are in
the same state of Q, a *loop®. Now suppose that there is an accepting computation of W. We will show
that there is another accepting computation, in which the counter contents never exceed 2¥|Q[3. Consider
now any accepting computation of W (e.g. the one represented in figure 4). Let b be a point {time) in the
computation, in which the counter value exceeds 2*!Q!3. Let point a be the most recent time before b in
which the counter value was exactly !Qig. Let ¢ be the next time, after time b, in which the counter value

is again |Q°.

Define intervals (a;,b;), (b';,c;), 0<i<|Q|-1 where a, = the last time before b that the counter value
was |Q[3+i*|Q], b; = the first time after a; that the counter value was |QIP+(i+1)*|Q], b’, = the last time
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before ¢ that the counter value was |[Q[*+(i+1)*|Q|, and ¢; = the first time after b’; that the counter
value was |Q|?+i*|Q|. Now between times a; and b (b’ and ¢;), W must have executed some loop, say ¢
{¢'.) in which there was a gain (loss) in the counter value of between 1 and |Q]. This must be the case,
since during the interval (a;, b;), the counter gained |Q} in value and at least [Q] steps were executed.

Now there are |Q|? such loops between points a and b. Hence there must exist a k, 1<k<|Q|, such
that there are at least |Q| loops with a gain in the eounter contents of k. Likewise, there must exist a J,
1<j<|Ql, such that there are at least |Q] loops with a loss of j. Let u,v be such that k¥u = the lowest

s
common multiple of k and j = i*v (1<u,v<|Ql). Let 4 - g, 1<i<u, be the first u loops in
1 1

{50,...,6]@2_1} that have a gain of k. Let e, Ee’i, 1<i<v, be the first v loops in {€’0,...,€"Qi2_i} that have

a loss of j.

Now from the given computation, we can create a shorter computation by removing the a;'s
{(1<i<u) and the 7;’s (1<i<v) from the appropriate positions of the input, so as to avoid executing the
associated loops. Note that the resulting computation is also an accepting computation, since the total
increase in the counter contents caused by the s is exactly offset by the total loss caused by the 7;’s.
This process of shortening the computation can then be repeated until there is no time during the result-
ing computation in which the counter value exceeds 2¥%|Q)3.

Consequently, if there is an accepting computation we can find an accepting computation in which
no configuration is repeated and in which the counter value never exceeds 2*}Qt3. Hence, the length of
such 2 computation cannot exceed 2*!Q!‘5. Thus, whether a doca accepts some input string, can be
decided in nondeterministic logspace.

We now turn our attention to the third problem. Clearly, R’ is infinite iff the number of distinct
reachable configurations of W is infinite. This can only be the case if there exists a computation of W:
CgrnnCy Where ¢= {a;b;), 0<Li<n and h >lql. To see this, suppose that cg,...,c, is the shortest such
sequence. Let m be the largest nonnegative integer less than n such that h_=0. Clearly, -m>|Ql.
Hence there must exist i and j, m<i<j<n such that 9;=q;- Let i and j be the least such i and j. Thus

j-m<|Q|. Suppose hsghi. Then one can construct a shorter such computation: cg,...,ci,c’j,...,c’n, where

¢i=(Q 0By H(bi7y)

for 1<k<n-j. This cannot happen since hi-hjzﬁ. Thus it must be the case that hj>hi. Now then in a
similar {ashion as before one can "pump® the loop determined by the computation CipernnC; to produce an
arbitrarily large counter value in some computation of W. Notice that in the above computation that
j~-m<|Q|. Since the counter in configuration ¢, through ¢_ is no greater than |Q] (and each configuration

is distinct), we have m<|Q|?%. Thus in the above computation i<2*|QJ%. This then yields an easy way to
show that the third problem can be decided in nondeterministic logspace. Such an algorithm would non-
deterministically look for a computation: ¢g,...,.Cpp,-..,C, Where n<2%QJ?, ¢;=(q;h;) and where,

Loc ety is a positive computation and
2. q,=q, and h >h .

Clearly this can be done in nondeterministic logspace. i

It is easy to see from the proof of the previous theorem the following:
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Corollary 4: The detection of the specific deadlock and unspecified reception states can be ac-
complished in nondeterministic logspace.

Corollary 5: Let (M,N) over the message set G be in C,. If N only sends one type of message to M,
then M’s input channel is bounded iff it is bounded by 2*(]M|*|N[*(|G|+1)+3)°.

Now we turn our attention to deciding for an arbitrary network (M,N) in C,, where the channel
constrained to a single type of message is bounded, whether the remaining channel is bounded.

Let (M,N) be in C, and let the channel from N to M {the channel constrained by 2 single type of
message) be bounded by k. Let [M|=m and |N|=n. Then we claim that N’s input channel is bounded iff
it is bounded by n*{(k+1). We prove this by showing that in any computation of the network, in which {at
some instant) N's input channel exceeds n*(k+1), that M during the computation traversed a cycle in
which all edges were labelled by sends. Consider such a computation of the network, sg,...s; where
sp=[u,v,x,y] and [x|>n*(k+1). One can construct from this computation another computation s'y,...s"p
by interleaving the identical sequences of moves made by M and N in such a way as to always execute
next a move of N (if one remains to be executed) instead of the next move of M, unless the next move of
N is a read move and the input channel of N is empty. Clearly, sy==s’y. Also there must be an
i<(-(n*(k+1)) such that each move in the computation from s; to s, utilizes a move from M and
si=[u‘,v’,E,y’]. In this computation there are at least n*(k+1) messages sent to N, but at most k mes-
sages to read. Consequently, M must have traversed a cycle in which all edges were labelled by sends.
Thus from the discussion above and the proof of Theorem 2, we have the following lemma.

Lemma 2: Let (M,N) over the message set G be in C,. Let [M|=m, [N|=n 2nd [G|=k. Let the
channel from N to M be constrained to a single type of message. Then the communication of (M,N} is
bounded iff M's input channel is bounded by 2*(m*n*(k+1)+3)* and N’s input channel is bounded by
p¥(2*(m*n*(k+1)+3)%+1).

Clearly then from Theorem 2 and Lemma 2 we have:

Theorem 3: For the class C,, the problem of deciding whether the communication is bounded, is

solvable in nondeterministic logspace.

The reader should note that Lemma 2 can be generalized somewhat for the class of networks con-
sisting of two finite state machines where one channel is (known to be} bounded (no other restriction is
necessary). An algorithm to detect freedom from deadlocks and unspecified receptions for this class of
networks was presented in [2]. Let (M,N) be such a network over G. Let k be the bound on M’s input
channel. Then N’s input channel is either bounded by (k+1)*{|N|} or there is a computation of the net-
work in which M traverses a cycle in which each edge is labelled by a send. Thus one can construct a
deterministic e-free finite state automaton (see [6]) with O(IMJ*|NJ*(|G|+1)k*1) states, that accepts some
input string iff the network has a reachable deadlock {unspecified reception) state. The finite state
sutomaton remembers at most one message in N's input channel, as it simulates a move of N (instead of
M), whenever the next move of M is a send and the channel is not empty. This provides an easier proof
of the decidability results presented in [2].

As a result then, we have the following theorem.

Theorem 4. Let C, be the class of networks over G {IG|>2) consisting of two finite state machines
where one channel is known to be bounded. Then boundedness (of the remaining channel), freedom from
deadlocks and unspecified receptions is decidable for C,. Furthermore, if (M,N) is such a network where
the known channel bound is k, the algorithm runs in space O(k*log(|M[*|N}}).
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Lastly, we show that the above problem cannot be solved in time polynomial in [M], |N| and k
unless PSPACE=PTIME. To show this we provide a reduction from the acceptance problem for
(nondeterministic) linear bounded automata, which is well known to be PSPACE-complete. (See 6] for
the definition and motivation of the term PSPACE-complete.)

Let W = <Q,Z,T,6,5,@,8,F> be a linear bounded automata (LBA) where

Q is a (finite) set of states,

F C T is the (finite) input alphabet,

T is the finite set of allowable tape symbols,

& is the transition or next move function,

qq is the initial state,

@,$c L are the left and right endmarker respectively, and
F C Q is the set of accepting states.

Let @a,,...,a;$ be an input to W. Without loss of generality, we assume that W accepts an input iff
W halts for that input. Let ®#" be a symbol not in T'. Then one can construct a network {M,N} over the
message set QUTU{#}, that will in some sense simulate the execution of W on @a,...3,;$. Furthermore,
the network will have each of the following three properties:

(1) boundedness
(2) freedom from deadlocks
(3) freedom from unspecified receptions

iff W does not accept @al...aﬁ. in addition, M’s input channel will be known to be bounded by [+3.
Basically, the network will simulate W using the channels to contain the contents of the storage tape. M
first sends the sequence of messages Qq, a,..a,$ to N. Thus, the initial configuration of the LBA is
represented in the channel. The machine N has only a single function. It can receive any message in I UQ
and then send the same message back to M. M then can simulate W by receiving a sequence of messages
that represents a configuration of W and transmitting the sequence as it would be after the next move of
W. That is, M receives and sends 2 sequence of message corresponding to the tape contents of W each
time a move of W is simulated. If during the simulation an accepting state of W is entered then M can
(nondeterministically) make additional moves that will result in the metwork becoming unbounded or
reaching a deadlock or unspecified reception state. That is, M will, upon receiving a message qeF, have a
choice of either entering a loop that sends only the message *#°® to N or a loop that only receives mes-
sages. The aforementioned properties of the network are now clear, since N is not specified to receive the

message "#°.

Clearly then, the size of the network (M,N} will be polynomial in |Q], [T | and {. Consequently, if the
algorithm given in Theorem 4 can be made to operate in polynomial time, then the acceptance problem
for LBA’s can be decided in polynomial time. But this implies that PSPACE=PTIME.
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