ROBUST SYSTOLIC ALGORITHMS FOR
RELATIONAL DATABASE OPERATIONS

P. J. Varman and 1. V. Ramakrishnan
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-220 March 1983

ROBUST SYSTOLIC ALGORITHMS FOR RELATIONAL
DATABASE OPERATIONS*

P. J. Varman
I. V. Ramakrishnan

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

Systolic algorithms for relational database operaticns that are robust in the face of
production flaws are presented. These algorithms execute on an underlying host
network which is organized as a mesh array of simple processors. One processor in
the network serves as the I/O port, through which all external communication occurs.
Each processor consists of a comparator and shift registers. By appropriate
interconnection of the shift registers, the processors of the host network are
configured so that all non-faulty processors accessible from the I/O port can be
utilized. Irrespective of the structure of the fault-free portion of the network
obtained due to the random fault patterns, the behaviour at the I/O port is
unchanged. The I/O bandwidth is independent of the problem size.

*This research was supported in part by the National Science Foundation under Grants
MCS-8104017 and ONR Contract NG0014-80-k-0987

1 INTRODUCTION

Advances in integrated-circuit technology have stimulated research on designing
algorithms for solving specific computational problems directly on silicon. In [4, 5]
systolic architectures were proposed as an atiractive approach to solving compute-
bound problems in a cost-effective manner using VLSI technology. A systolic
architecture consists of a regular array of simple, identical processors which operate
in synchronization to perform a single algorithm. The processors can be arranged in
many forms, for instance a linear array, a rectangular mesh, a hexagonal mesh etc.
The array is interfaced with the system bus of a host computer that drives the array
as a peripheral.

Recently, Kung and Lehman [6] have proposed algorithms for relational database
operations using a mesh array of systolic processors. However, the failure of a single
link or processor in the mesh array, caused by production faults in the manufacturing
process, would cause all these algorithms to fail. Since the probability of a fatal
production flaw increases exponentially with the size of the circuit on the chip [9],
building a sufficiently large mesh array as a single device for these algorithms
becomes infeasible.

Several approaches to the problem of dealing with faults in VLSI arrays have been
previously considered. An attempt to extract a fault-free mesh from a larger mesh
with randomly distributed faults was considered in [8] and shown to result in the
wastage of a large number of non-faulty processors. In [1, 2, 3, 8] various solutions
for growing a linear array in a mesh with faults were presented. All of these
solutions make relatively inefficient utilization of the fault-free area on the silicon. In
this paper we present robust algorithms, based on the approach in [11}, for
implementing the various operations required in a relational database system.
Robustness is achieved by these algorithms due to their ability to execute efficiently
on any connected set of non-faulty processors in a faulty mesh array. No complicated
addressing schemes are needed and the algorithm does not change with the topology
of the fault-free component.

The remainder of the paper is organized as follows. In section 2, the network model
on which the algorithms operate is described. Section 3 contains a description of the
algorithms along with examples. In section 4 we consider some performance and
implementation aspects of the algorithms. Proofs of correctness of the various
algorithms are presented in the Appendix.

2 Network Meodel

The underlying host network is a set of identical modules arranged in the form of
a two-dimensional mesh as shown in Figure 1{a). Each module consists of a processor
and three tie-points each of which is the intersection point of a horizontal and

[S+

vertical wire as shown. One module serves as the I/O port and all communication
with the host computer driving the machine is done via this module.

During the manufacturing process some subset of the modules and communication
links in the mesh will be faulty. We assume the existence of a testing mechanism that
identifies all such faulty elements. The remaining modules in the host network that
are accessible by some path from the I/O port are the ones that can be potentially
utilized in performing the algorithm. Following the testing phase, these fault-free
modules in the mesh are configured as in Figure 1(b) to obtain the computational
structure on which our algorithms operate. This structure can be visualized as a one-
dimensional pipeline 'wrapped’ around the periphery of an arbitrary spanning tree
that connects the non-faulty modules in the mesh. Algorithms for efficient
configuration of such pipelines may be found in {11]. Communication links that are
not part of this configured structure may be fused after the testing phase [7].

Each inter-module link in the mesh passes through a clocked shift-register that
delays data passing through the link by one cycle. Note that the pipeline obtained
by the configuration step discussed above differs from the 'standard’ systolic array in
that data passing through the pipeline encounters a variable delay (depending on the
structure of the pipeline) in passing between logically adjacent processors. For
instance P and P, in Figure 1(b} are separated by 1 clock delay while P; and P are
separated by 4 clock delays. Since the pipeline structure depends on the fault
distribution and the configuration algorithm, the exact delays between processors is
not known a-priori. However, the algorithms described here have the property that
irrespective of the pipeline configuration obtained, the behavior of the machine as
observed by the host is always the same, although the internal workings of the
machine may differ.

We now describe the individual processors in the network and their interconnection
for the database operation algorithms. A conceptual model of a processor P; is shown
in Figure 2(a). PE is a processing element that performs the same computation in
every cycle using the elements at its inpué-ports, IfA IffBand Iicand places the results at

the corresponding output-ports 02 %and Oic The computation performed by a PE
in every cycle depends on the type of the relational database operation. B; and
C;[1..k] are buffers (shift-registers) of size '1’ and 'k’ respectively. The value of 'k’
depends on the problem and is explained {urther in Section 3. The input to the buffer
B, is the output of the buffer });}. in the inter-module link between P, and its
immediate predecessor Pj in the configured pipeline. The output of B; is the input
port IiBOf P;, and the output port Oigis connected to the buffer by in the inter-module

link between P; and its immediate successor Py in the configured pipeline. Analogous

connections are made for Ci[1..k], icand Oi‘(;. If,,kis directly connected to the buffer a

in the preceeding inter-module link and Of‘\ta the buffer a; in the succeeding inter-

module link. Figure 2(b) is a schematic of the machine corresponding to the pipeline
configuration of Figure 1(b).

The operation of the machine is as follows. In every clock cycle each element in a
buffer moves forward to the next buffer in its path. Also in every clock cycle
elements that are at the input ports of PEs are transformed and their new values
clocked into the buffers connected to the output ports. This transformation depends
on the type of database operation.

3 Algorithms

Herein we describe the algorithms for the various relational database operations.
We assume some familiarity with the fundamentals of relational database theory (see,
for example [10]).

A relation is a set of tuples. Each tuple consists of an ordered sequence of elements.
It is these elements that are fed into the systolic array. The tuples in a relation,
however, are not necessarily ordered in any particular fashion.

‘We will be using notations similar to that used in [6]. Relations are denoted by
capital letters: A, B, C. Tuples that are members of these relations are denoted by
subscripted lower-case letters. The ith tuple of A is denoted by a, or by a; ¢ A, to

indicate membership. In turn, elements in tuples are double subscripted: a; is the
kth element of a; and the whole tuple can be exhibited as a, = <a,, a,, ..,a; > Let

[C] represent a Boolean matrix that contains the result of logical operations. The
(i,j)t? entry of [C], ¢y 18 used to denote the result of a comparison between the ith

and the jth tuples of the relations A and B respectively. Li; denotes the cumulative
result of comparing k elements of the ith and j“‘ tuple. cg and cg”al denote specific
instances {the first and last) of af‘; {We will use ¢ to refer to c% for any k when no
confusion thereby occurs). Finally the notation x; is used to designate the result of

some logical operation on all of the members of the it row of [C], for example the
OR or AND of ¢; for all j.

3.1 Comparison Algorithm

Let A and B denote two relations with q attributes each and having cardinalities of
p and r respectively, where p > r. Then the result of a COMPARISON operation on
A and B which we denote as A * B is a pxr Boolean matrix [C] where ¢;; == True iff
Vk such that 1<k<q, aik:‘:bjk*

The algorithm for the comparison operation follows. WC is a wild-card symbol that
matches any element in the relations. The basic unit of time is a clock cycle. Time
instants are denoted by ’t’, and the algorithm begins at t = 0.

The number of processors used by the algorithm is N = p+q+r-2. The length of
~ the 1-bit wide buffer C[1..k] is p+1. The I/O port with the external host computer
will be denoted as Port-A, Port-B and Port-C (for input) and Output-Port-A,
Output-Port-B and Output-Port-C (for output) for the elements of A, B and [C]
respectively.

Algorithm 1

1. Initialize all buffers C,[L..p+1] ,k=1..,N and ¢, k==1,..,2N to False.
2. ViandVjsuchthat 1 <i<p,1 <j<rdo
Pump ¢;; (value True) into Port-C at t = (p+1)(j-1) + p(p-1).
(At all other time instants pump False into Port-C).
3. ViandVjsuchthatall1 <i<p, 1< < qdo
Pump a; into Port-A at t = (p+1)r + p(p-1) + (p+1)(j-1) + (i-1).
4. ViandVjsuchthat 1 <1 <r, 1 <] < qdo:
Pump by, into Port-B at t = p(p+r-1) +p(j-1) + (i-1).
5. Pump WC into Port-A for all 0 < t < r(p+1)+p(p-1) (which is the time when the
first value of the relation A is pumped into the port) and for all

t > (p+1)(q4r-2) (which is the time when the last value of the relation A is pumped
into the port).
6. Viand Vjsuch that 1 <i<p,1 <j<rdo

A i1 3 o final
At t = (p+1)(-1) + p(p-i) + (p+q+r-2)(p+3), extract ¢g"* from Output-Port-C.

At every cycle, the PE in each processor Py performs the following actions.
— 1k
Of=1}
Ok — Ik
Ok = I Al Ik IB) where {(X=Y) is a Boolean value equal to True iff X==Y.

An example for the Comparison Algorithm described above is presented below.

Example 1{a)

a5, Ay b, by, ‘i1 ‘12 13 Clal

a1 22 B= 1 Py Py oo | 21 S22 fo3 €24

AT T T by by Sl oS3 G33 S
B 41 342__ €41 42 %43 “ua

p=4, ¢=2, r=3.
The number of processors used in the computation is p+q+r-2 = 7. The size of the
buffer C[1..p+1] is 5. We shall illustrate the operation of the algorithm on the

[o#2]

machine shown in Figure 2(b}, but the algorithm would be unchanged for any other
seven processor machine. Note that although the actual time steps at which values
are computed in various processors would change depending on the machine
configured, the behavior at the I/O port (i.e the times at which elements are fed into
and removed from the array) would be unchanged.

Tables 1.A, 1.B and 1.C below, specify the behavior at the I/O port. The time-
instants at which ay;, bij and ¢jj values are fed into and extracted from the array are
obtained from Algorithm 1, and displayed in Tables 1.A, 1.B and 1.C respectively.
The upper number in Table 1.C represents the input and the lower number the
output time for the corresponding Cijr

1 2 j 1 2 3 i 2 3
i i
LY
1 27 | 32 1 24 1 28 1 12 17 22
61 66 71
2 28 1 33 2 25 1 29 2 8 13 18
57 62 67
3 29 | 34 3 26 1 30 3 4 9 14
53 58 63
4 30 1 35 TABLE 1.8 4 0 5 10
49 54 59
TABLE 1,A

TABLE 1.C
Pump W€ into Port-A

for Oﬁ t <27 and t»35,

We will trace the history of a particular element {say c,;) from the time it enters
the array till it leaves. Snapshots of the computation are shown in Table 2. The
explanations for the various columns is as follows. Column 1 (T} is the time instant
of interest. Column 2 (Present-at) is the location of ¢,; at that time and Column 3
(Value) is the value of the variable c,; at that time. Column 4 (i) gives the index of
the processor at whose input port c,; is present at that time instant, and Columns 5

and 6 {Igand IiE), indicate the elements present at the I, and I ports of processor P; at
that time. Finally, Columns 7 and 8 (T,, T}) are the time instants at which the

elements which are at Igand I}_))at that instant, entered the array.

11

12

39

40

45

46

Present-—

TABLE 2: Snapshots of the Comparison Algorithm

at Value

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

TRUE

N
ke e

o]

e S AR
et

[

@]

A

WC

WC

WC

WC

WC

10

15

20

30

35

T Comments

28

Remove from

1/0 Port.

3.2 Intersection

Let A and B be two relations having q attributes each and cardinalities of p and
r respectively. The result of INTERSECTING A and B which we denote as ANB s a
pX1 Boolean vector X such that Vi such that 1 <1 < p, x; = True iff a; = by for
some k such that 1<k<r.

Using the notation developed for Comparison, x; = (‘i/ cg“al,
=1
For clarity in exposition we will assume that each processor is augmented with
additional data paths to carry the values of the vector X. Specifically, we expand the
processor model shown in Figure 2(a) to contain additional input and output ports IiX

and Oix respectively and allow a buffer x; identical to the buffers a; used earlier.
Furthermore, we assume that there are ports Port-X and Output-Port-X at the I/O
port, for input and output of the X-vector values. In practice the values of vector X
can be appended as a 1-bit field to the a;; values of Relation A and use the same data

paths. However, for notational clarity we shall be assuming an independent set of
data paths as explained above.

The computation performed on the x values in the PE of processor P_ is given by
O%= IV [IgA (= T})]
Note that the expression in the square brackets is the ¢ value computed by the
comparison array at P_.

Algorithm 2

(Steps 1-6 of Algorithm Comparison).
7. Visuch that 1 < i < p do:
Pump x? (value False) into Port-X at t = (p+1)(p+q+r-2) - (p-i)

8. Extract x{i“ai from the Output Port-X at t = (p+3)(p+q+r-2) - (p-i)

An example of the operation of the algorithm for the relations A and B of Example
1{a) is presented below. The machine on which it is executed is assumed to be that
“of Figure 2(b) as before.

The time instants at which the X values are fed into Port-X and extracted from
Output-Port-X are given in Table 3. Snapshots of a trace of x, from the time it
enters till the time it leaves the array are given in Table 4.

- “3

= AR RS a = ’ o= g =
X TRUE 4iff (ai bl) V (di bz) v <di b3>

Table 3: Input-Output times of x values {(from Algorithm 2)

Input Time Output Time
Xy 32 Xy 46
X, 33 X, 47
X, 34 x4 48
X, 35 %, 49

Column headings are similar to those in Table 2.Column 1 (T) is the time-instant of
interest, Column 2 (Present-at) is the location of x, and Column 3 (Value) the Value

of x, at that instant. Column 4 (i) is the index of the processor at whose input port

%, X4 is present, Column 5 (I‘C) is the element at the corresponding input port Ifgand

Column 6 (T,) gives the time instant at which the element now at Iicentered the
array. The correctness of the Comparison Algorithm ensures that the values of the
elements at I') Ipand Iiare those needed for the intersection algorithm.

3.3 Difference

The difference of the two relations A and B can be simply found by taking the
complement of the values of the X vector computed by the interection algorithm
described above.

3.4 Duplicate Removal

Removal of duplicate tuples in a relation can be accomplished by the intersection
(slightly modified) of the relation with itself.
Let X == ANA and [C] = A * A,

35

36

37

38

39

40

41

TABLE 4: Snapshots of the Intersection Algorithm

Present—at

Value

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

1
X

W
NS

»

b

S0 W R

FALSE

FALSE

FALSE

FALSE

L

(R

N~ S S

I~
-

15

10

Comments
12
AR
02 2
_— N 7
%= ¥y
32 2
%7 SV Gy

Remove from 1/0 Port.

16

Then x; = (i;'kcik)(v ¢;)
If ¢;; is ensured to be False, then x;=True iff a; is a duplicate tuple. Also, to detect
the duplicate tuple unambigously, we must ensure that only one of the duplicates is
removed. That is only one of x; and X is set True if a; = a;. We do this by ensuring
- that ¢, is False for i 2> j.

Since a False value of ¢;; can be ensured by pumping an initial value of False for c%
into the array, Step 2 of the Algorithm is modified as shown below for Duplicate

Removal.

Algorithm 3

Replace Step 2 of Algorithm 1 as follows.
Viand Vjsuchthati < j<rand1<i< pdo:
Pump c% (value True) into Port-C at t=(p-+1)}{j-1) + p{p-i}.
(At all other time instants pump False).

The components of Vector X that are set to True on completion of the algorithm
correspond to the duplicate tuples in the relation.

3.5 Union

The Union of two relations is found by merging the two relations and then
removing duplicates.

3.6 Projection
Achieved by projecting over the desired columns followed by duplicate removal.

3.7 Join

Achieved by intersection of the appropriate columns of the two relations.

11

4 Discussion

We have presented systolic algorithms for relational database operations such as
intersection, remove-duplicates, union, difference and joins. A unique feature of these
algorithms is their robustness which permit fault tolerant realizations in VLSI
technology. It is therefore possible to concieve of s large wafer-sized array of these
processors in which the non-faulty ones are efficiently utilized in performing the
computation. Such a device may be interfaced to the system bus of existing general
purpose computers to improve the overall system performance.

In wafer-scale integration of array processors each processor in the array can
occupy as large an area as a present-day chip. Using present-day NMOS technology
an estimate of 1000 bit shift register per chip was provided in [6]. Hence the arrays
used by our algorithms can handle relations having 102 tuples.

Lastly we provide some time complexity measures for our algorithms. In particular
we examine comparison of tuples in two relations having p tuples each and q
attributes per tuple. The time complexity (which is the number of cycles between
the time at which the first element in [C] is pumped into the array and the time at
which the last element from [C] emerges out of the array) is seen from step 2 and
step 6 of Algorithm 1 in section 3.1 to be O(p?). Clearly this is a speedup of O(q)
over a sequential algorithm. The time complexity for the other algorithms are the
same as the algorithms are essentially similar.

(10]

[11]

12

REFERENCES
R.C. Aubusson and 1. Catt.

" Wafer-Scale Integration - a Fauli-Tolerant Procedure.

IEEFE J. Solid-State Circuits SC-13(3), June, 1978.

D.S. Fussell and P.J. Varman.

Fault-Tolerant Wafer-Scale Architectures for VLSL

In Proc. 9th Annual Symposium on Compuler Architecture, pages 190-198, |
1982.

1. Koren.
A Reconfigurable and Fault-Tolerant VLSI Multiprocessor Array.
In Proc. 8th Annual Symposium on Compuler Architecture. | 1981,

H.T. Kung.
Why Systolic Architectures.
IEEE Computer 15(1):37-46, January, 1982.

H.T. Kung and C.E. Leiserson.
Systolic Arrays {for VLSI).
In Sparse Matriz Proc., pages 256-282. 5IAM, 1978.

H.T. Kung and P.L. Lehman.
Systolic (VLSI) Arrays for Relational Database Operations.
In Proc. SIGMOD, pages 105-116. , 1980.

T. E. Mangir and A. Avizienis.

Fault-Tolerant Design for VLSI: Effect on Interconnect Requirement on Yield
Improvement of VLSI Designs.

IEEE Trans. on Computers C-31(7):609-616, July, 1982.

F.B. Manning.
An Approach to Highly Integrated, Computer-Maintained Cellular Arrays.
IEEFE Trans. on Computers C-26{6):536-552, June, 1977.

C.A. Mead and L.A. Conway.
Introduction to VLSI Systems.
Addison-Wesley, Reading, Massachusetts, 1980.

Jeffrey D. Ullman.
Principles of Database Systems.
Computer Science Press, Potomac, Maryland, 1980, .

P. J. Varman.

Fault Tolerant VLSI Computation (in preparation).

PhD thesis, Departmant of Electrical Engineering, University of Texas at
Austin, 1983.

13
Appendix
We now develop the correctness proof for the algorithm described earlier.

Definition A Processor Pk has distance 'd’ if there are d inter-module links between
P, and Py in the path configured.

Proof of the Comparison Algorithm

Lemma 4-1: All the Cjj (a’ij?bij) values enter Port-C (Port-A, Port-B) at distinct
times.

Proof: =~ We shall prove the result only for the ¢;; values, the rest of the proofs

being similar.

Suppose ¢, ¢ enter the port simultaneously. From Step 2 of the algorithm it

ij “mn
follows that
(p+1)(i-1) + p(p-1) = (p+1)(n-1) + p(p-m)
Hence, (p+1)(j-n) = p(i-m)
(i-m) = (j-n) + (j-n)/p.
Since |j-n] < r < p, the above integer equation can only be satisfied if j-n = 0.
Thus j=n and correspondingly i = m.
W]

Lemma 4-2: Let t_, t, and t_be the times when a5, bij and ¢;; are pumped into
their respective Input-Ports. Then the times t,, t5 and t at which they reach the
corresponding input-ports of processor P (where P_ has distance 'd’) is given by:

Lty =t +d
2 tg =ty +s+d.
3. tg =t + (p+1)s + d.

Proof: We shall prove only (3), the rest of the proofs being similar.
From the interconnection it can be seen that ¢;; will traverse the buffers C,[1..p+1],
Collp+1], . , C[1..p+1], incurring a total delay of (p+1)s. In addition, exactly 'd’
of the ¢ buffers will also be traversed, incurring an extra delay of 'd’.
Summing the delays: t5 = t. + (p+1)s + d.
a

Lemma 4-3: The initial value of ¢; (value True) remains unchanged till it

reaches I3, wheres =r +1i-j.

Proof: Let 1 <k < r+i-j-1, and P have distance 'd". Let t, i be the times
when ¢, is pumped into Port-C and at which it reaches i’(‘; respectively.
From Lemma 4.2, to =t + (p+1)k +d.
Suppose the element at Ii at t is x and let x have been pumped into Port-A at t.
Then to =t, +d
If t, < r{p+1)+p(p-1) then x = WC, and ¢;; will be unchanged at P.
Hence we must show that:
t, = to - d < r(p+i)+p(p-1)
Substituting for t, from Algorithm 1 (Step 2) and simplifying we need to show that
k < r+i-j - (-1)/(p+1)
Since (i-1)/(p+1) < 1 and k < r-+i-j-1, the result follows.

O

Lemma 4-4: The final value of ¢; (c?l) remains unchanged from OF (where
s = r+q+i-j-1) till it reaches the Output-Port-C.

t

LIS ¢

Proof: Let r+q+i-j < k < p+q+r-2 and let Py have distance ’d’. Let tg, t
be as defined in Lemma 4.3.
If t, > (p+1)(r+p+q-2) then x = WC, and ¢;; will be unchanged. Thus we require
to show that
t, = tg -d > (p+1){r+p+q-2) Substituting for t¢ and simplifying we get
k > (r4q+ij) - (i+1)/(p+1)
Since k>r+q+i-j > (r+q-+i-j) - (i+1)/(p+1) the result follows.

O

Lemmasa %—5: B bjk .and Cjj reach the input ports I} I3 and I of P,
(s = r+k+i-j-1) at the same time.

Proof: Let P_ have distance 'd’, and ag, bjk and C; reach the input ports of P at
ty. tp and tq respectively.
From the Algorithm and Lemma 4.2
t, = (p+1)r + p(p-1) + (p+1i)(k-1) + {i-1} + d.
ty = p(r+p-1) + p(k-1) + (j-1} +s + d.
te = (p+1)(i-1) + p(p-i) + (p+1)(s) + d.

Substituting for s, each of the above expressions reduces to

15

p?+pk+pr+k+d+r-2p+i-2
Hence tA=tB=tC.
O

Lemma 4-8: Vk such that 1 < k < q, the value of Cjj (c}‘j) at Of where

.k
s=r+k+i-j-1, 18 A l(aim:bjm)‘

m=
Proof: (By induction on k).

Base Case: k=1

By Lemma 4.3, the value of ¢;; at I} (u==r+i-j} is True. By Lemma 4.5, a;,, bjl and c?j

(=True) arrive at the Input-Ports of P at the same time.

b

A straightforward induction step will complete the proof.

- 1
Thus, the value at Og, which is c}, :m/\zi(aimz jm)

d
q .
Theorem 4-1: ¢; = m:/1\ (aim:bjm) when it leaves the Output Port C.
Proof: Follows from Lemmas 4.6 and 4.4.
O

Proof of the Intersection Algorithm

Lemma 4-7: Vk such that i < k < p, the value of x can only change at P, where
qtk-1 < s < r+q+k-1

Proof: If [};has the value False then the value of x, cannot change at P; at that

cycle. We will show that I;has a True value only if s lies in the above range.

Value True can reach Ifonly if it was pumped into Port-C at the times specified in
the Algorithm (Step 2). For x; and some ¢; 1<i<p, 1<j< to arrive simultaneously
at P, where P has distance d’

(p+1)(-1) + pl(p-i) + s(p+1) + d = (p+1){p+q+r-2) - (p-k) + d.
Simplifying, s = r+q+i-j-1 + (k-1)/(p+1)

Since |k-ij < p, and all other quantities are integers, k-1==0.

16

Therefore, s=r+q+i-j-1 and since k=i and 1 < j < r, the range of s for x; to meel
any ¢;; is given by
qtk-1 < s < 1+q+k-2.

0

Lemma 4-8: x; and c%‘l arrive simultaneously at the input-ports Irand I;of P,
where s=r+q+i-j-1, Viand Visuch that 1 < i< p, 1 <j<r.

Proof: X, is pumped into Port-X at the same time as 34 {Steps 3 and 7 of the

Algorithm). Both encounter the same delays. From Lemma 4.6, a,, and c; arrive

G J
simultaneously at P, (s=r+q+i-j-1) and from Lemma 4.6 its value is cg‘lg Therefore

the same holds for X;.

O

Theorem 4-2: Vk such that 1<k<p, x = '\5/1% when it leaves the Output
Jm
Port X.

Proof: From Lemma 4.7, the value of x; does not change till it reaches I§ where
s=q+k-1. Using Lemma 4.8 and the fact that the initial value of x; is False, it can be
T
shown by induction that its value at Oy {s=1+q+k-2) is V c%. Invoking Lemma 4.7
3 (%1

again this value remains unchanged till it reaches the Gutput-Port-X.
O

P: Processor in Module

—— 3 Link

v+ : Tie-Point

Figure 1(a): Layout of modules as a two dimensional mesh

4
P! p P
: Bae
9
Pi P P
L e

P

4.

-\
O
H

e

Processor in Module
Tie-Point

Faulty processor

: Links in configured machine

Figure 1(b): Configuration of the non-faulty modules

P
5 p > g
I —?ﬁ_. }2 P
ﬁ_*www,‘w ¢
F WM? F
éﬂ-—T : “ B
e]
o - P P "“‘T P —?
Port. P P P
1 2 3

Processing Element

PE

Figure 2(a): Schematic of a Processor Pi'

0
~~~~~~ >
i
OA —
~



s B,
e e o B et e e e o e = s ———————

S b e

P bwwwan

R R

S

Lnu P TS -

PE B e

Figure 2(b): Configuration of shift registers and processing elements corresponding to

Figure 1(b)-

.o

»»»»»

[ Y
B,
3



