ROBUST MATRIX-MULTIPLICATION !
ALGORITHMS FOR VLSI

Peter J. Varman, 1. V. Ramakrishnan
and Donald Fussell

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-221 March 1983

1T‘his research was partially supported by NSF Grant Numbers MCS 81-09489 and
MCS 81-04017.

Index Terms

VLSI, Fault Tolerance, Systolic Algorithms, Matrix Multiplication,

Reconfigurability, Wafer-Scale Integration.

Abstract
Parallel matrix-multiplication algorithms have been proposed for execution
on a rectangular or hexagonal mesh of identical processors on a single VLSI
chip. These algorithms impose stringent interconnection requirements between
processors of the host network. The occurrence of production faults during the
manufacturing process disrupts the data paths and may cause the algorithm to

fail even if a sufficient number of non-faulty processors are available.

This paper presents a systolic algorithm for matrix multiplication that is
robust in the face of production flaws. Each processor consists of an 'Inner-
Product" step computing unit and shift registers. By appropriate
interconnection of the shift registers, the processors of the host network are
configured so that all non-faulty processors accessible from the I/0 port can
be utilized. Irrespective of the structure of the fault-free component
obtained due to the random fault patterns, the behaviour at the I/0 port,
through which all external communication occurs, is unchanged. The I/0
bandwidth is independent of the problem size and the multiplication of two nxn
matrices requires O(n) processors and has a time complexity of O(nz) cycles,

bounded by the I/0 bandwidth.

1 INTRODUCTION

Advancements in integrated-circuit technelogy have stimulated reseavrch on
designing specilal-purpose computing devices tc solve specific problems.
Systolic Arrays [10] were proposed by Kung and Leiserson as an attractive
alternative for solving compute-bound problems [9], and several algorithms
based on this concept have since been discovered {3,5,6,8,11]. The attractive
features of the algorithms are the regular data-flow requirements and simple
control structures for individual processors that make them particularly

suitable for VLSI implementation.

In this paper we present an algorithm for multiplying two nxn matrices in a
systolic manner, using (3n~-2) processors. Each processor is composed of shift
registers and a simple "{nner-product-step’ computing unit. Interconnection

of shift registers between processors provides the data flow between the
computing units.

One processor serves as the port for the network and all input/ output with
the external world occurs via the port. The I/0 bandwidth 1s a constant,
independent of the size of the problem, differing from earlier solutions which
required an I/0 bandwidth proportional to n [8]. The time complexity for the
computation is O(nz) cycles, which is a lower bound for a fixed-bandwidth

system.

A novel feature of this algorithm is its fault-tolerant capability.

Specifically, the algorithm operates on any connected component of processcrs
of the required size that 1is dictated by the random fault patterns. In

contrast, the earlier proposed solutions [8] necessitate stringent
interconnection requirements between processors of the host network. The
occcurrence of production faults during the manufacturing process disrupts the

data paths required by the computation, either causing the algorithm to fail
or severely limiting its applicability. Since the probability of a fatal

production flaw increases exponentially with the size of the circuit on the
chip [13], building a sufficiently large patrix-multiplication array using the

rectangular or hexagonal mesh algorithms becomes Infeasible.

Several aﬁproaches to the problem of dealing with faults in VLSI arrays
have been considered previously [2,4,7,12], the basic idea belng to extract a
fault-free array (linear or rectangular) from a larger mesh {rectangular or
hexagonal) with randomly distributed faults. An attempt to extract a fault-
free rectangular mesh from a larger rectangular mesh was shown by [12] o
result in the waste of a large number of non-faulty processors. Also the
solution in [7] required every processor on the row and column of a faulty
processor to act as a switch to connect together non—faulty reglons of the
chip. Since 0(n) processors are wasted per faulty processor, a large number
of non-faulty processors go unutilized using this approach thereby precluding
a straightforward method of achieving fault-tolerant implementations of the
mesh matrix-multiplication algorithms. In {2,4], solutions for growing a
linear array in a mesh with faults were presented, aund it was argued in [4]
that the seméntics of the algorithm to be mapped onto the chip could be

exploited to design robust implementations.

Fault tolerance 1is achieved by the algorithm presented here, due to 1its

ability to execute efficiently on any connected set of Pprocessors. HNo

complicated addressing schemes are needed to route data, and the algorithm

does NOT change depending on the topology of the fault—free component.

In section 2, the host network on which the algorithm will operate is
described. Sections 3 and & contain the algorithm description and its
correctness proof respectively, and the tradeoffs involved in its

implementation are discussed in Section 5.

2 NETWORK MODEL
The underlying host network is some nearest-nelghbor mesh-network, like the
rectangular or hexagonal mesh which are particularly suited for VLSI

implementétion. One node (processor) in the mesh serves as the 1/0 port.~

During the manufacturing process, some subset of the nodes in the mesh will
be faulty. We focus our attention on the largest connected component of non~
faulty nodes that includes the 1/0 port. In [4], an algovithm for growing a

spanning tree in an arbitrary connected component was presented. The algorithm

operates in time proportional to the number of nodes 1in the component and
establishes a path from the I/0 port to every fault-free node in the

component.

Depending on the mesh and the fault distribution, trees with arbitrary
structure may be grown. The idea of a robust algorithm is to ensure correct

and efficient execution irrespective of the actual tree structure.

A conceptual model of a processor P; is shown in Figure 1. PE is a
processing element that performs an inner—product-step computation using the
elements at 1ts dinput ports, Ii, Ié and Ié and places the results at the

corresponding output ports Oz, O% and O%. The computation by the PE in Py is

specified by:

s qi,

i .. .1
ol =1 3% Ip

ol L2 g1
B g Opi=1Ig+I

. are "forward" buffers used by the elements of the "A°, "B’

ajy, bi and ¢y

’ £

and ‘C° matrices vrespectively. The '“reverse' buffer for the “A" matrix
elements is A; and that for the ‘¢’ matrix is the array C;[l..k], k=2ntl. Ay,

bi and CiII] are connected to the ports Oé, Ié and Oé regpectively.

Consider an N-node rcoted tree. The nodes represent processors with the

root serving as the I/0 port. The edges of the tree represent communication

Pl

l1inks between adjacent nodes.

Each node has an index ‘j°, equal to that obtained by some depth-first
search [1] of the tree starting from the root. (The node with index 730 will
be called Pj). The depth—first traversal also defines a father-son

relationship between any pair of adjacent nodes. (Fig.2).

‘ oes P
Let Pi be the father of Pj and let the sons of Pj be le,sz, By

with j; > Iy > ees > jp = jtl. Note that r=0 implies that P. is a leaf node

3
in the tree. The interconnection of buffers at each Pj, i=1,..,N is given in
Table 1. Figure 3 illustrates the interconnection for a particular seven node

tree.

The operation of the machine is as follows. The elements of the matrices
‘A",’B’ and ‘C’ (initially cij=®, for i,j=l,..n) are fed into the buffers
al’bl and ¢y of the I1/0 port. At every clock cycle all the elements move
forward to the next buffer in its path. Elements that are at the input ports
of PEs are transformed and their new values clocked into the buffers connected
to the output ports. The elements are updated and transfervred from the input

to the output ports in one cycle.

3 ALGORITHM

In this section the algorithm to compute C = A x B, where A, B and C are

nxn matrices, on a tree of N = 3n-2 processors is described.
The values of the matrix C are computed using the following recurrence:

kt+1

k .
Cij = Cij+ aik * bkj N k=®,..,n"l. i,j=1,...,n.,

All the entries of the matrix C are initialized to @ before being pumped

{nto the machine. The initial and final values of €i3 will be referved to as

cgjand cgjrespectively.

Let the time at which c?lis fed into c¢; be @. The algorithm (including

initiaiization of the array and extraction of the results) 1is given in

glgerithm.L

ALGORITHM 1

Pump cgj(value @) into ¢ at time t = 2n(i+i-2) + 2(i-1)
Pump bij into b; at time t = 4(n2~1) + 2(n+1)(1~13=-2(3~1D)

Pump @ into a; for all times @ <t < 4n(n=-1) (which is the time
when aj; is pumped into a;), and for all times t > 2(n=1)(3n+1)
(which is the time when a, is pumped into al).

Pump aj 4 into a; at time t = 2n(2n-3) + 2{ni+i~1)

Extract c?j from Cl{k} at time

t = 2(3n~2)(n+l) F 2n(i+j-2) + 2{i-1).

4 PROOF OF CORRECTNESS

Definition: A processor P, has a distance equal to ‘r’ 1if there are

exactly ‘r’ edges between F; and P, in the tree.

Lemma l.1l: Suppose P| has a distance ‘r’. If t,,ty,t, ave the times at

which elements are pumped into al’bi and ¢; respectively, then the times t,,tly

k

and tg at which they reach Ii, Iy and I% respectively, are given by:

N Lty = t, + 2(3n~k~2) + 1
2. tg =ty tx
3. tg = bt 2(3n~k~=23(n+l) + r
Proof:
(1): Let the element ’x° be pumped into a; at time t,. From the tree

interconnection, it can be seen that x moves through the buffers A

ja

3=3n-2,3n-3,....,kt2,k+tl before reaching 1%. This involves a delay of {(3n~

k=2).

#

For every A., j=3n-2,..,kt+l that x’ traverses, 1t has to move through the

corrvesponding buffer ajs incurring an extra delay of (3n~k-2).

Also the ‘r’ edges between Py and P, are traversed exactly once, via the aj

buffers, involving an additional delay of (r).
Summing the delays: t, =t + 2(3n~k=-2) + r.

(2): Let the element “x° be pumped into bl at time tye From the
interconnection it can be seen that one copy of “x’ moves directly along the

2

r’ by buffers separating Py from Py.
Since there is a unit delay through each by, ty = ty + r.

(3): The same argument as for (1), except that the the delay in traversing

Cj{l} .o Cj[2n+li is (2n+l).

Therefore, ty = t, + (3n=k~2) + (3n-k=-2)(2n+1) + r.

r
£

te =t + 2(3n~k~2){n+l) + r.

ngg@vl.z: For any 1i,] the initial value c?jof SEL remains unchanged as
it travels from ¢; till it reaches the 1input-port I% of P, where

k=n-+1+3-2.

Proof:

Suppose Py has distance ‘v, and atit+j-1 < s < 3n-2.

Let t. be the time when €y reaches I%. Since cyj was pumped into c; at

t. = 2n(i+i=2) + 2(i=-1) (Algorithm 1), from Lemma I.l

te = 2n(i+3=2) + 2(i-1) + 2(3n=-s=-2)(n+i) + r.

Let the element at IZ at te be ‘x", and t, be the time at which “x’ was

pumped into aj. From Lemma 1.l
te =ty + 2(3n=-s-2) + r.

If x=0 then the computation at Pg will leave i3 unchanged. From Algorithm
1, if ¢ < 4n{n-1) then x=0. Hence, we must show that

t, = te - 2(3n=-s~2)-r < 4nfin-1)

Substituting for te and reducing we require to show that
s > (n+i+j-2) + (i-1)/n. Since
n + (1+j-1) > (n+i+3=2) + (i-1)/n for i < n, and s > n + (i+j-1), the result

follows.

Lemma 1.3: For any 1,3, the final value cﬁjof g remains unchanged as 1t

travels from the Output-Port O% of Pkg where k = i+3j=-1, till it reaches Cl[k]°

Proof:

Suppose P, has distance ‘r’ and 1 < s ¢ i+j~2. Let t be the time when 45
reaches Iz. Let ‘x’ be the element at Ii at tg, and suppose ‘x’ was pumped

into a, at ta' Then

tC = ta + 2(3““8"2) + 1.
1If t, > 2(n=-1)(3n+1) then x=@ (Algorithm 1), and €15 will remain unchanged
at PS. Hence, we must show that

te - 2(3n-8=2) =t > 2(n=1)(3ntl).

Substituting for t. and reducing requires that

s < i+j-2+i/n

Since i+j=2+i/n > 1+j~-2 for 1>@, and s<{itj-2, the result follows.

Lemma l.4: For any 1,j and for any k, 1 <k < n, ayp, bkj 4 reach the

input-ports Iﬁ, Ig and I% of Py, 8 = nH{i+j)~(k+l), at the same time.

Proof:

Suppose Pg has distance ‘r’. Let trsty and t. denote the times at which ayy,

bkj and €43 reach Ii, I% and I% respectively. From Lemma 1.1 and Algorithm i,

by = 2n(2n-3) + 2(nk+i-1) + 2(3n-s-2) + r.
e = 4(n2=1) + 2(aH1) (k1) = 2(§=1) + x.
te = 2n(i+3-2) + 2(i-1) + 2(3n-s-2)(n+l) + r.

Each of these expressions (which is the sum of the time the element entered
the array and the delay) reduces to:
4n? + 20k - 2n - 23 + 2k + ¥ = 4.
Hence, t, = ty = tee
k
Lemma 1.5: For any k, 1 <k <n, the value of ¢y, at O% is wE2im * by

where s=n+{i+j)-(k+1).

Proof :
(By induction).

§§§e—8teg: k=1

From Lemma 1.4, a41» blj and 4 arrive at the same time at Ii, 1% and Id,

d

where d=n+i+j~2. By Lemma 1.2, the wvalue of at Ip is %, and hence the

Cij

value at O% is a4y * blj‘ Thus the lemma holds for the base step.

Induction Step: Assume the lemma holds for some k, 1 <k <n. By Lemma

Ig and Xd, where

1.4, a4p+10 bk+lj and i arrvive at the same time at Ii,

d = nt(i+ij)~(k+2).

k

By the Induction Hypothesis, the value of €4 at O% is ag aypn * bmj and
this is the value at I% (interconnection structure).

‘ .) . d .

Thus the valuek+ of Cij at 0¢ is

k
méﬂéim * bmj *ayps * bk+ij =milaim * bmje Hence, the lemma holds for kt+l.

Theorem 1:

b
cyy < kilaik * by 4 when it leaves Cy{2nti].

Proof:

From Lemmas 1.3 and 1.5.

Thecrggngz

The time complexity of the algorithm is O(nz).

The first value ¢y, is pumped at t=0@. The final value c_ . 1is extracted at

t = 2(3n=-2){(n+1) + 2(n=1)(2n+l). Hence the time complexity is O(nz),

An example of a 3x3 matrix multiplication on the network of Fig. 3 1is

illustrated in Fig. 4.

5 DISCUSSION

The processor model used in describing the algorithm was largely for
purposes of clarity. In an actual implementation some optimizations of memory

and time can be achieved as discussed below.

The C-buffers of size 2n+l dimplement both the delay and storage for
intermediate cij values in a processor. Analysis of the algorithm indicates
that no more than n of the iy values are ever present in any one processor’ s
(~buffer at any time. By incorporating a iimited amount of decision~ making

ability in each processor the c~buffer can be replaced by local memory of size

10

In determining the time complexity of the algorithm it was assumed that the
time for an inner-product=step computation was equal to the rate at which data
items could be made available. However, by building each PE as a k-stage
pipelined unit (where k is the ratio of the inner-product-step computation
time to the data-access time) the total time for the algorithm is still O(nz)
cycles, where a cycle is now the data—access time fixed by the supportable I/0

bandwidth.

Finally, explicit initialization of the array achieved by pumping 0 into a;
for t < 4n(n-1), can be dispensed with if each processor can initialise its ¢
and C buffers to zero on starting. The ounly change in the algorithm is that
4n(n-1) is subtracted from the time each element is pumped into or extracted
from the array. A continuous stream of zeroes is fed into c¢; starting from
t=0, which is now the time when ay; 1is pumped into the array. This reduces
the constant factor in the dominant term for the time complexity of the

algorithm by a factor of 3/5.

In summary we have presented a systolic algorithm for multiplication of two
n x n matrices using 0(n) simple processors in time O(nz). (The algorithm is
easily extendible to non-square matrices). A unique feature of the algorithm
is its ability to execute efficiently on any connected component of processors
of the required size, thus providing it with fault-tolerant capability. It
should therefore be possible to build a large wafer—sized array of processors
and utilize the non-faulty processors for the computation, thereby achieving

an implementation that is robust in the face of production flaws.

£

e

1@‘

1l.

12,

13.

i1
References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, "Design and Analysis of
Computer Algovithms," pp.176-195, Addison-Wesley, Reading,
Massachusetts, 1976,

R.C. Aubusson and 1. Catt, '"Wafer—Scale Integration =~ a Fault-
Tolerant Procedure," IEEE J. Solid-State Circuits, Vol. SC-13, No.
3, June 1978, pp.339-344.

M.J. Foster and H.T. Kung, "The design of special-purpose VLSIL
Chips," IEEE Computer, Vol.13, No.l, Jan. 1980, pp.26~40.

D. Fussell and P. Varman, "Fault-Tolerant Wafer-Scale Architectures

for VLSI," Proc. 9th Annual Symposium on Computer Architecture,
1982, pp.196-198.

L.J. Guibas, H.T. Kung and C.D. Thompson, "Direct VLSI
implementation of combinatorial algorithms,” Proc. Conf. Very Large
Scale Integration: Architecture, Design, Fabrication, California
Institute of Technology, Jan. 1979, pp.509-325.

L.J. Guibas and ¥.M. Liang, "Systolic Stacks, Queues, and
Counters," Proc. Conf. Advanced Research in VLSI, MIT, Jan. 1982,
pp.155-164,

1. ¥oren, "A reconfigurable and fault-tolerant VLSI multiprocessor
array,” Proc. 8th Annual Symposium on Computer Architecture, 1981,

H.T. Kung, "Let's design algorithms for VLSIL systems,"” Proc. Conf.
Very Large Scale Integration: Avchitecture, Design, VFabrication,
California Institute of Technology, Jan. 1979, pp.65-90.

H.T. Kung, "Why Systolic Architectuves,” I1EEE Computer, 15:1, pp.
37-46, Jan. 1982.

H.T. Kung, and C.E. Leiserson, "Systolic Arrays (for VLSI)," Sparse
Matrix Proceedings, 1978, pp.256-282, SIAM, Philadelphia , I.S.
Duffand G.W. Stewart, eds.

C.E. Leiserson, "Systolic Priority Queues,” Proc. Conf. Very Large
Scale Integration: Architecture, Design, Fabrication, California
Institute of Techunology, Jan. 1979, pp.199-214.

F.B. Manning, "An Apprcach to Highly Integrated, Computer—
Maintained Cellular Arrays,” IEEE. Trans. on Computers, Vol. C-26,
No. 6, June 1977, pp.536-552.

C.A. Mead and L.A. Conway, 'Introduction to VLSI Systems," pp.
45-46, Addison-Wesley, Reading, Massachusetts, 1989,

3=1|:ltfal;rilatxalelalcnlsfle: .
] i }]]
b } 1 i |
| ! j o] i
e i - 1 i
i] i + o = ! !
P i @ [i i
oW g™ po° i i
i v §oe] !
} t P - i i
M - P |
. R |
! i
]] + ! i
i sl ! o | §
i " i N i | 1
[=z P W i i 1
| T ;T oo I
i
] { ol] i
i i i i
| i M] i
“ | - i
i | il oo ! i
joeren § N " i]
PO P e @ q]
] o e e i ST E I i
M 2 T
; e | |
o o o
L Lo Lo
§ o e o e s o s e e e e e g i . o i i et o, o e e s e -
- - R
P i < "y
T o o e cime e e i s o v Tll.lﬂ..ﬂ.ll !!!!! .wa.lllliwa
i !
1 L I 2 I i
- Lo I
j T R i 1
! el 1 - 1 i
T o® i R i i
R e e e e AP 1
| ; |
i m — ! o f
| 2 S
i e
| Z N Lo
i)
PO w o
i i !
} i 1
{ i |
i i 1
] i i

Table 1

N
i :Ci‘,--—i,}
s Oi
p— 's B
N, - £ o
Lonan WSS) i i
A Oa PE s e
o S ¥
¢fi-]
Figure 1: A Processor
©® ROOT NODE
2 ‘
FATHER
A
\ SOH
Fa
4
P
SE
?4 }.\g\

o®

Figure 2: Numbering by Depth-First Search

S
&
Vi > _J
PE i Pe

. M/
(N A g’ 1L I< P,
PE
b
7 N
P
N
>
@ ¥/~
“H PE SoloFh4 PE Sddfi{ 4 PE
<
> A 4 oxp—<d
Py N g‘"’a:[}——é—«- Py -l
; b
PE i/é?/f% Q;
| — ¢ T b,
T A
[0 ¢
Pti

Figure 3:

Interconnection for the seven-node tree of Figure 2.

A
M“? ,,,,, r_"m_r _____ Eamtte
it o2 |3
o e e o o o b s e e :
t i i
i i I
$ | i
i)] !
i 1 1
wnmm_y—n«~%—~-~—L———-
\ i
L2430
i i
i i
} |
R_P....-,.—m't.._._._.—._.._._._...
| B E
2 i 26 1 32
1 |
i | i
| i i
i i i
-_-mywnw—%-“«amL~-_~
~ i o
3 v 28 | 34
! i
i § i
1 | }
e e . e s i s B e s i o s e

e e e e e g T T e e

Fig.4:Example of 3x3 multiplication on the network of Flg. 3.

A= lagglagy B =

The time instants

(byslgxz €=

at which elements are pumped

legylayg = A X B

port are given below (from Algorithm 1).

Pump ¢ into a; for £<24 and L>49.

B
bl 5 | Pob
N “} 2 1
io4d AP S S SC A
ol bbb o] b b
i { i i I
Pt i i ! Voo i
Lo
. i
S i i N
[R VORI NV NS | S | R T—,
P i i i o
Pl 1320 30 1 281 11 1
P { i | ot
i ! } i 1 [|-
P i i ; P
{] i H 4 i i
PG S WSV SOOI OUpUp | ISV S R W
P P [o0
o2 Vo490 38 1 361 12 1
P i i i R
P i i 1 i1 L
P : i i P
H H i i i [H
I ISR TN S A B
b3 1481 46 | 441 13
[i
§ i i i i [{
P i i i T
i § i i P
[i i H | { i
[W ESNRRUING USRS SRS SR WO S8
{In the C

into and extracted
<
""""" T
Loy 2 43
S —— I |
i {]
i { {
i i i
i i H
] i i
e e e s S e s s | IR |
i i f
¢ 16 g 12 !
[P W | S
56 | 62 168 |
P e v
8 g 14 120 1
R NN —|
64 | 78 176 |
e R R
i6 ; 22 ;28 i
SN O []
72 1 78 |84 |
e b e e I
Table,

input and the bottom value the ocutput time for each i value).

We shall trace the computation of Cyn as illustration.

from

the

the top value is the

Column 1 is the time instant of interest, Column 2 the location of cyo at that

time and Column 3
processor at whose input port ¢y, is
and 6 are the values

corresponding prYocessor.

through a PE and has its value updated

the wvalue of Cooe

at

the dinput

Starred time

present at

Column 4

contains

that instant, and

the index of the
Columns 5
ports I, and Iy respectively, of the
instants are those at which cyo passes

by an inner-product-step computation.

o - . " 4 - - o - - . _ . AR G e G e e e W M m M S e Sm CU W Mo S e W SR T R e e G e RS O O e S o e e e e e

” ' ! ' ¥ ' f
H i 1 i N ot oNd
P m 1 ' i P - o~ 3a!
;-] i H [-] L0001 £

! 1 t ' 1 i
;) ' i i ! !
' ' ' i i 1 t
: ¢ i ' ' ' '

i 1 i 1 i t
T:zc B L it A S TR Dl Dbt R Al St il d il fah, ddiind il
, 1 i ! i i i
' ! ' 3 ! i t
. 3 i i ' ' i

t t 1 ' t '
'

i § ' ' ' 1
! i ! ! T o~ ol
"?,A t : 1 [o o
. - T~ 1 i L) o o i i & >
: i i 3 ' '
' ' i I i i
X i] i 1 1
X i 1 i $ 1
S S e S e e A e el Rl it ol Ahaling S At

i : i

I ' i

' H i

¥ b i

1 t !

] § 1

' ' '

i i 1

- -

L L T L T T
e
ek T T

P et e e Il e e
U et n e v e o o T O s T e T T n e e e e e e e A o e e T o v

1 ! H

i i i

' i 1

' t !

[i [

| ' [

1 I} '

i I [

§ l i
" s M

| i ¥

' i t

i H t

i H '

t §]

t i i

' [!

) i ! !

i ¥ ! H

1 1 § !

1 [' i

[b i i

r + + *

1 i i H § H

[§ i § 1 {

i i ' 1 i 1

i) 1 1 I !

¢ 1 ' i ' l
- s t ¥ 0 [XaY - o (o] — !
! H i i i i

' i I 1 1 i
S AU SO SONPREY (R SpEppy SPRpRPRY SPRPEPRY SRR SR g et etk kol et dia ket dhaih s
l] 1 i | ¥] § '

i i ' ' i i f l 1

i] H i i g H t = [

+ H LI t t [~ N} i 1 !

[' i ¥] i '] + +

1 ' 4+ 4] ¢ + 1 o~ NN o N o~ o~ o~ oy

[] i 1 ' ! i o e OMEON ONTON ONEOY OO ON IO ON O ONTONY N
b SR T] S 1S T ®) ®] [~ 2NN I~ ~TEE TS N RS N RS S N S [S IS (S
—] H ' ¥ H ¥ ! t 1 1 [} i t i
Mo ' [i i i i 1 [i] i y t
>] i i t 1 1 f 1 1 ' '] 1
'] 1 § ! 3 i i §] 1 § i !

t ' ¥]] ' § | H] § i [1
IR U PRI S APy Spepy SPEPEPRY R it etk et bl el bl il Sl g
§ 1 [] 1 1] £ ! ' i 1) i i '

i [! i 1 t | H ¥ H i 1 i § H i
PR i i 1 1 i 1] ! t ! | i ! [t
oo 1 § 1 ' 1 i [i 3 i t ' ! ! i
§ i 1 1 f 1 § ! 1 l ! 1 i H { i
ot] t i] 1 i 1)] 1 1 i t i)
fol | el 1SN 1 o N 1) ot [sal) ARG OND WO QWA OSE WOT L210M LI0N LSIN OIN WDl Qe O
O 1 Ul ==t O VUl Qe OO~ 0§ [oo TN I B o TN BT S oo B |
w o § [' [! [i [} [' | | ' 1 t 1 1 I
L i ¥ 1 ¢ 1 ¥ [] 1 ! | '] 1 t | ' i
[[] 1 1 i ¢ !] t] [i | I I i | '
Qo 1 i i ! ! [} i t 3 1] 1 1 ' i t] 1
' [1 i 1 ! 1] 1 §]] § l 1 1 1 ' i
[a'1] § i] [] i ! 1 §)]]] i] 1 i 1
ot 1] ! i ¥ 1 [§ [1 ! i | 1 i i i]
[SE]] ' i i i !] ! i 1 i] [f | 1 H !
i ' |] | | 1] ¥ ¥ i 1 [i [1 i] !

| § ' ! [1 [] 1 i [i 1 i ! [] t H

1 § 1 H i H 1 § i § ¥ ¢ t i ¥ i ' 1

!] i 1 i i i] [' ' l | [[t f t i
llllvs|sv|:|fua:flllfltltlll?lt:7lli1tnales?lll1i|l+::t731:f;cnf||l+t||§a|¢+
i] i t 1 1 ' ' t i 1 i] 1 { i ' ' '

' |] 1 t | | | ' ' H i [! l ' § i i

] i i []] i) § i i '] ' 1 t [1 i

1] [[§]] | ! 1 ' l '] ' 1 i i]

1] 1 1 i 1] 1 1 i 1 ' ' 1 1 ! 1 ! 1

[] ' 1 i I H 1 H 1 ¥] [[i ' 1 1 '

'] '] t 1 i] 1] t 3 1 t ' ¢ ' 1 1

[(BN i ') i [i (X i [EAS ! 1ae] (B4] (B8 1 '

N S Y N N T T N R Y O = B e R AT A L R B = B [IR ¥ U BN s B B T IR s

o e g e o= b ONb N DN B NN 0N Y LT T ST [V N I Ve N N o I I o I
t | '] 1 ' ' ' i ' ' 1] 5 t ' 1 i t
e e e o o - - e T T S T e S T T S e S e TS R S S e o

[

=79.

Extract c22 at t

