AN EXAMPLE FOR CONSTRUCTING
COMMUNICATING MACHINES BY
STEP-WISE REFINEMENT

Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-223 March 1983

ABSTRACT

We consider the problem of constructing two f{inite-state machines that comimunicate by exchanging
messages via two, one-directional, unbounded, FIFO channels. The two machines should be constructed
such that their communication is guaranteed to progress indefinitely. We discuss a methodology to solve
this problem by 3 succession of refinement steps. At each step more nodes and edges are added to the two
machines constructed so far; this continues until the required two machines are realized. We illustrate the
usefulness of this methodology by using it to construct two communicating machines which model the cali
establishment/clear protocol in X.25.

I. INTRODUCTION

Many communication protocols, notably the Alternating-bit protocol [1], and the call
establishment/clear protocols in X.21 [5], X.25 [1], and X.75 [7], can be modeled as two finite-state
machines which communicate over two one-directional, unbounded, FIFO channels [6]. In each of these
models, the communication between the two machines are required to progress indefinitely. In this paper,
we propose a new methodology for constructing a pair of such machines whose communication is
guaranteed to progress indefinitely. The methodology is based on the well known principle of step-wise
refinement [2].

The paper is organized as follows. The model of communicating machines is discussed in Section I
Then in Secticn I, we outline a step-wise refinement methodology for constructing a pair of communicat-
ing machines whose communication is guaranteed to progress indefinitely. An example of using this
methodology to construct a machine pair that models the call establishment/clear protocol in X.25 is
discussed in Section IV. Concluding remarks are in Section V.

II. COMMUNICATING MACHINES

A communricating machine M is a directed labelled graph with two types of edges, namely s endmg
and receiving edges. A sending (or receiving) edge is labelled send(g) (or receive(g), respectively) for some
message g in a finite set G of messages. Fach node in M has at least one output edge. One of the nodes in
M is identified as its initial node; each node is reachable by a directed path from the initial node. A node
in M whose output edges are all sending (or receiving) edges is called a sending (or receiving, respectively)
node; otherwise it is called a mixed node.

Let M and N be two communicating machines with the same set G of messages. A state of M and N
is a four-tuple [v,w,x,y], where v and w are two nodes in M and N respectively, and x and vy are two
strings over the messages in G. Informally, a state [v,w,x,y| denotes that the executions of M and N have
reached nodes v and w respectively, while the input channels of M and N have the message sequences x
and y respectively.

The initial state of M and N is [vy,w,,E E] where v, and w, are the initial nodes in M and N respec-
tively, and E is the smpty string.

Let s=[v,w,x,y| be a state of M and N; and let e be an outgoing edge of node v or w. A state s’ is
said to follow s over e iff the following four conditions are satisfied:

i. I e is a sending edge, labelled send(g), from v to v’ in M, then s’=|v’,w x,y.g], where ®.® is the
concatenation operator.

ii. If e is a sending edge, Iabelled send{g), from w to w' in N, then s'==[v,w’ x.g,y].
iii. If e is a receiving edge, labelled receive(g), from v to v’ in M, then x==g.x’ and s’==[v’,w,x’,y].

iv. If e is a receiving edge, labelled receive(g), from w to w’ in N, then y=g.y’ and s'=[v,w’ x,y’].

Let & and 8’ be two states of M and N, s’ follows s iff there is a directed edge e in M or N such that
8’ follows 8 over e.

Let 5 and s’ be two states of M and N. s’ is reachable from s iff s==s" or there exists states LI
such that s=s,, s’==5, and 541 follows s; for i==1,...r-1,

A state s of M and N is said to be reachable iff it is reachable from the initial state of M and N.

A state [v,w,x,y] of M and N is a deadlock state iff (i) both v and w are receiving nodes, and (ii)
x=y==E (the empty string). If no reachable state of M and N is a deadlock state, then the communication
is said to be deadlock-free

A state [v,w,x,y] of M and N is an unspecified reception state iff one of the following two conditions

is satisfied:

I X==g, 8y .. By (k>1); and v is a receiving node and none of its outgoing edges is labelled
receive (g,).
ii. y==g,.g,. .. .8 (k>1); and w is a receiving node and none of its outgoing edges is labelled

receive (g,).

If no reachable state of M and N is an unspecified reception state, then the communication is said to be
free from unspecified receptions.

We say that the communication between two communicating machines will progress indefinitely iff
the communication is free from deadlocks and unspecified receptions. In this paper, we are interested in
constructing pairs of communicating machines whose communications are guaranteed to progress in-
definitely.

. STEP-WISE REFINEMENT

Assume that it is required to construct two communicating machines M and N such that their com-
munication is guaranteed to progress indefinitely. And assume that the required M and N are expected to
be complex; i.e., they are expected to contain large numbers of nodes and edges. In this case, the task of
constructing M and N is better divided into 2 succession of refinement steps. At the ith step, i=1,2,....k
{for some kj, two communicating machines M; , and N; +1 2re constructed by adding more nodes and
edges to the two communicating machines M; and N;, constructed earlier. These additions should be such
that if the communication between M; and N; is guaranteed to progress indefinitely, then also the com-
munication between M; +1 and N; 4118 guaranteed to progress indefinitely. M, and N, are called the initial
machines; their communication should be guaranteed to progress indefinitely. M, +1 and N, +1 2re called
the final machines; they are the required machines M and N; and their communication is guaranteed, as
required, to progress indefinitely.

To make this methodology useful, one needs a technique to add nodes and edges to two com-
municating machines while preserving their freedom of communication deadlocks and unspecified recep-
tions. Such a technique is discussed next.

Let M; and N; be two communicating machines where it is required to add more nodes and edges.
Then, the next four steps can be followed:

i. Prove that the communication between M; and N, will progress indefinitely. (The proof is only
necessary if M; and N, are the initial machines; if M; and N, are the product of a previous

refinement step, then their communication is already guaranteed to be free of deadlocks and
unspecified receptions.)

ii. Find two compatible nodes v; and w;, in M; and N; respectively, that satisfly some conditions
(discussed later).

iii. Construct two communicziing submachines m; and n; that satisfy some conditions {discussed

later). (A communicating submachine is a communicating machine where some nodes are
designated terminal nodes. Also, a node in a submachine may have no output edges.)

iv. Replace node v; in M; by submachine m; and node w; in N; by submachine n; according to
some rules (discussed later). The result of this substitution is two communicating machines
M;,, and N, \jghose communication is guaranteed to progress indefinitely.

These four steps, which constitute a single refinement step, are discussed in detail in [], along with
a correctness proof to show that the communication of the resulting machines M; , and N;; will indeed
progress indefinitely. In the next section, we use these steps to construct a call establishment/clear
protocol, for X.25, whose communication is guaranteed to progress indefinitely.

Iv. AN EXAMPLE

Assume that it is required to construct two communicating machines M and N which exchange the
messages g, to g,. {(Although irrelevant to the following discussion, these messages stand for the following:)

g, stands for call request.

g, stands for call connected.

g, stands for incoming call.

g, stands for call accepted.

g, stands for clear request.

gg stands for clear indication.

g, stands for clear confirmation.}
Also assume that the designer starts with the two initial machines M, and N, shown in Figures 1a and 1b
respectively. (For convenience, edge labels such as send(g) and receive(g) are written as -g and +g,
respectively.) Following the above refinement procedure, the designer should carry out the next steps.

First Step:

Since the given machines are initial machines, the designer should first prove that their communica-
tion will progress indefinitely. Such a proof is not straightforward, even though the two machines have a
small number of nodes and edges. This is because the communication between M, and N, is unbounded
(i.e., there is an infinite number of reachable states); hence, conventional state exploration [8] cannot be
used to prove freedom of deadlocks and unspecified receptions.

Fortunately, a recent technique [3] can be used in this case, to prove indefinite progress. This tech-
nique is based on constructing a set C of states of M, and N,, then proving that C satisfies three con-
ditions:

i. The initial state of M, and N, must be in C.
ii. Each directed cycle in M, or N, must have at least one node referenced in some state in C.

iii. The acyclic version of M, with respect to C can be constructed from M, by partitioning each
node v, which is referenced in some state in C, into two nodes. One node has all the input
edges of v and no output edges; the other node has all the output edges of v and no input
edges. Similarly, the acyclic version of N, with respect to C can be defined. The third con-
dition can now be defined in terms of these acyclic versions. If the acyclic versions of M, and
N, with respect to C start at a state s, in C and if they reach a state s, after which no other
state is reachable, then state s, must also be in C.

It is shown in [3] that the existence of such a set C, called a closed cover for M, and N,, gnarantees
that the communication between M, and N, will progress indefinitely.

For the two machines M, and N, in Figures 1a and 1b, consider the following set:

c=4{ [1,1,(gytgx)", (gy*tgyH"1.
[6,6,F.E],
[7.7,E,E],

[6,7.(g,t83)" Bg. (B*8" 851,

(6.1, (g,+gx) ", (g,+g8)"" g5,

(1.7, (gy*g) ! g,. (g, +g "1
where -+ is the usual ®or?® operator, and E denotes the empty string. Each element in C denotes a set of
states of M, and N; for example [1,1,(g5+2,)", (8,+8,)"] denotes the set:

&

Initial
node

-9,

_ap W 9
+93 > { e
..‘}‘
+9,
”34‘ +92’
(a)M!

Fig. 4 Imitial Machines

Fig.2 Acgc\lc versions oF the initial

wachines with respect to closed cover C.

{ [1,1,E,E],
(1,1.8,.8,1, [1.1.8,.8,]. [1.1.85.8,). [1.1,85.8,1.
(1.1.8, 83. By &4, .-
[1.1.83 B3 B3 B4 8 8,l.
A

Similarly, the element [6,6,E E] in C denotes the singleton {[6,6,EE|}.

A state s of M, and N, is said to be in C iff s is in the set denoted by an element of C. Next, we
show that C satisfies the above three conditions of a closed cover:

i. The initial state [1,1,EE] is in C since it is in the element [1,1,(g,+g,)", (g,+g,)"] of C.

ii. Each node in M; or N, is rcierenced by at least one state in C. For instance, nodes 1 and 1

are referenced by the state [1,1,EE] in C; nodes 6 and 6 are referenced by the state [6,6,E,E]
in C; nodes 7 and 7 are referenced by the state [7,7EE] in C.

ifi. Since each node in M, or N, is referenced by at least one state in C, the acyclic versions of M,
and N, with respect to C are as shown in Figures 2a and 2b; they are called A; and B, respec-
tively. It can be shown, by enumeration, that if A, and B, start at any state in C, and if they
reach a state s after which no other state is reachable, then state s must also be in C. For
example, assume that A; and B, start at a state in [1,1,(g,+8,)" (g,+8,)"] If A, sends g, or
g, and B, receives g, or g,, then the resulting state must be in [1,1,(g,+8,)", (g,+8,)"]; i.e., it
is in C.If A, sends g; and B, receives g,, then the resulting state must be in {6,1,(gz+g3)",
(g1+g4)“" gs]; ie, it is in C. If A, sends g, and B, sends g4, then the resulting state must be
in [6,7,(8,485)" 8¢, (8,+8,)" 5], and so in C. Similarly, assume that A, and B, start at a
state in [6,7,(8,+8,)" g (8,+8,)" 85]. I A, receives gg, then n=0, B, must receive g, and
the resulting state must be [1,1,E E] which is in C, and so on.

Therefore, set C is a closed cover for the initial machines M, and N,; hence the communication
between M, and N, is guaranteed to progress indefinitely.
Second Step:

The designer should find two compatible nodes v, and w,, in machines M, and N, respectively,

which satisfy the following two conditions:

i. Node v, has an output edge labelled send(g) (or receive(g)) iff node w, has an output edge
labelled send(g) (or receive(g), respectively).

ii. The second condition should be satisfied after removing the self-loops at nodes v, and w,.
Informally, if machine M, reaches node v, for the jth time and if at the same instant machine
N, reaches node w, for the jth time (i=1,2,...), then the two channels between M, and N,
must be empty at this same instant.

Next, we show that nodes 1 and 1 in M, and N, satisfy these two conditions:
i. Obviously, nodes 1 and 1 satisfy condition i.
ii. To show that nodes 1 and 1 satisfy condition i, for j==1,2,..., we use an induction argument.

For j=1: Remove the self-loops at nodes 1 and 1 in M, and N,. Then, partition each node 1

into two nodes; one has all the input edges of the original node; and the other has all the
output edges of the original node. The resulting machines are C; and D,, shown in Figures 3a

 E, (dy F,

Figure 3 Proving that wodes 4 and 4
in My oand Ny ace Cow\‘;at\\o\e

and 3b. Since the only reachable state of C, and D, is [{,1,EE], then nodes 1 and 1 satisfy
condition ii for j==1.

If condition ii is satisfied for j=k, then it is satisfied for j==k-+1: Remove the sell-loops at
nodes 1 and 1 in M, and N; then partition each node 1 as before. In each machine, make the
partitioned node, with the output edges, the initial node of the machine. The resulting
machines are E; and F, shown in Figures 3c and 3d. It is straightforward to show, by conven-

tional state exploration, that if E, and F, reach a state {L,w,x,y] or [v,1,w,y], then the two

machines must eventually reach [1,1,E,E|. Therefore, if nodes 1 and 1 satisfy condition ii for
j==k, then they satisfy it for j==k+1.

This completes the proof that nodes 1 and 1 in machines M; and N, are compatible.

Third Step:

The designer should then construct two communicating submachines m; and n; which satisly the
" following two conditions:

i. Let v, and w, be the two compatible nodes, in M; and N,; respectively, selected in the
previous step. Submachine m, has an edge labelled send(g) (or receive {g)}, only if node v, has
a self-loop labelled send(g) (or receive (g), respectively). Similarly, submachine n; has an edge
labelled send(g) (or receive(g)), only if w, has a self-loop labelled send(g} (or receive(g),
respectively).

ii. Each node in m, or n, is a terminal node. (Although this is a reasonable condition for the

current example, it is a severe condition in general. In [4], we discuss how to relax this
condition.}

Figures 4a and 4b show the two constructed submachines m, and n, for our example. Each node in
m, or n, is designated a terminal node; and so m; and n, satisly conditions i and ii.

Fourth Step:

Now, the designer should replace node 1 in machine M, (Figure 1a) by submachine m, (Figure 4a) as
follows:

i. Remove all the self-loops at node 1.
ii. All the inpnt edges of node 1 become input edges to the initial node of m,.

iii. Each output edge of node 1 is replaced by an output edge (with the same label, and to the
same destination node) at each terminal node in m,. (There are other variations to this

replacement step [4].)
The result is the final machine M in Figure 5a.
Similarly, node 1 in machine N, (Figure 1b) should be replaced by submachine n, (Figure 4b). The

result is the final machine N in Figure 5b. Notice that the resulting two communicating machines M and
N represent the call establishment/clear protocol in X.25 as defined in [1}.

As shown in [4], the communication between the two final machines is guaranteed to progress in-
definitely; i.e., the communication is free of deadlocks and unspecified receptions.

Figure 4 Tu)o Cemmun\ca\:inq Su‘owxa.c\a}ﬂgs

Lidh anc‘ n, .

Initial N
+g7 i1 Node &7

+g
C‘)6

(a) M

(b) N

Figure 5 The call establishment/clear protocol in X,25.

V. CONCLUSIONS

We have demonstrated, by the virtue of one example, that step-wise refinement can be used to
construct communicating machines that represent actual protocols. There are three advantages to using
this methodology in constructing communicating machines:

i. Dealing with Complexity: This methodology allows one to comstruct very complex com-
municating machines via a succession of refinement steps. At each step, the designer adds
more complexity to the communicating machines constructed so far. This continues until the
required communicating machines with all their details are fully constructed.

ii. Computer Aided Design: Many of the steps in this methodology (e.g., checking a given closed
cover, or verifying the compatibility of two given nodes) can be carried out by a computer.
This suggests some computer aided design tools which can help the designer to concentrate on
the creative aspects of the methodology.

iii. Increase our Understanding of the Constructed Machines: In the above example, the initial
machines M, and N, and the two communicating submachines m, and n; were not selected
arbitrarily to construct the required machines M and N. A closer examination of the example
should reveal that m; and n, perform the call establishment function, while M, and N, per-
form the call clear function. (Hence the final machines M and N perform the cali
establishment/clear function as required.) In other words, this methodology encourages one to
reason about each function of the protoco! separately, before adding these functions together.
This should lead to a better understanding of the protocol and its multi-functions.

ACKNOWLEDGEMENT:
The author is thankful to Prof. Bochmann for directing his attention to step-wise
refinement. He is also thankful to K. F. Carbone for her speedy and careful typing.

10

REFERENCES

1. G. V. Bochmann, "Finite state description of communication protocols,® Computer Networks,
Vol. 2, Oct. 1978.

2. G. V. Bochmann, and M. Raynal, *Structured specification of communicating systems,®* IEEE
Trans. on Computers, Vol. C-32, No. 2, Feb. 1983, pp. 120-133.

3. M. G. Gouda, *Closed covers: to verify progress for commuricating finite state machines,?
Technical Report 191, Dept. of Computer Sciences, University of Texas at Austin, Jan. 1982,
revised Jan. 1983.

4. M. G. Gouda, *Construction of communicating finite state machines by step-wise refinement,®
in preparation.

5. H. Rudin, C.H. West, and P. Zafiropulo, ®Automated protocol validation,® Computer
Networks, Vol. 2, No. 415, 1978, pp. 373-380.

6. C. A. Sunshine, "Formal modeling of communication protocols,” USC/Information Science In-
stitute, Research Report 81-89, March 1981.

7.5. T. Voung, and D. D. Cowan, *Automated protocol validation via resynthesis: The CCITT
X.75 packet level recommendation as an example,” Tech. Report CS-80-39, Dept. of Comp.
Science, Univ. of Waterloo, revised May 1981.

8. C. H. West, *An automated technique of communication protocol validation,* IEEE Trans. on
Commun., Vol. COM-26, pp. 1271-1275, Aug. 1978.)

