A ROBUST DISTRIBUTED CONCURRENCY
CONTROL SCHEME

Abraham Silberschatz
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-224 April 1983

A ROBUST DISTRIBUTED CONCURRENCY CONTROL SCHEME!

Abraham Silberschatz

Department of Computer Sciences
The University of Texas
Austin, Texas 78712

Abstract

A transaction is atomic if it can be comnsidered, so far as other transactions are concerned, to
be indivisible and instantaneous even in the case of failure. This paper examines the problem of
ensuring atomicity in non-replicated distributed database systems. Cur maia contribution is in

providing a concurrency control scheme that:

o is non-blocking; that is, the system will continue with its execution as long as there
exists at least one healthy node in the system.

e allows the transactions to read uncommitted data values.
o does not use a global (central) Dependency Graph.

e does not require the use of time-stamps to order the relative execution of the various
transactions in the system.

Thus our scheme is robust in the face of hardware/software failure and can be efficiently and
effectively implemented in a distributed environment. Arguments in support of our scheme

including correctness proofs are also presented.

' This research was supported in part by the Office of Naval Research under Contract N00014-80-K-0087, and in
part by NSF Grant MCS-8104017,

1. Introduction

A database system in the most general sense may be simply viewed as a pair DS =
<D,P>, where D is the set of the database entities, and P is the set of all the programs that may
access D. A transaction in such a system is the execution of one of the programs in the set P. An
important issue that arises in the design of a database system is the problem of ensuring the
consistency of the database when it is accessed concurrently by a number of asynchronously
running transactions. A common approach to the problem is to define a transaction as a unit
that preserves comsistency (e.g., it is assumed that each transaction, when executed alone,
transforms a consistent state into a mew consistent state), and require that the outcome of
processing a set of transactions concurrently be the same as one produced by running these
transactions serially in some order. A system that ensures this property is said to be serializable
[1]. Associated with concurrent access to data is the problem of ensuring that for each
transaction, either all of the actions associated with it are completed or none are completed. A
system that ensures this property is said to be recoverable. A transaction execizting in a

serializable and recoverable system is said to be atomic.

In order to emsure atomicity some form of supervision must be present in the system to
influence the manner in which the transactions executing the database can interact with each
other. Such a supervision may be achieved through the use of a variety of methods, the most

common one being a locking protocol together with some recovery scheme.

A significant amount of work has been performed in the area of locking protocols and
recovery schemes for centralized and distributed environments. (For a discussion on this topic see
[2]). In this paper we wish to focus our attention on the problem of locking and recovery in
non-replicated distributed database systems [2-5]. Our main contribution is in providing a

concurrency control scheme that:

a. is non-blocking [6]; that is, the system will continue with its execution as long as there
exists at least one healthy node in the system.

b. allows the transactions to read uncommitted data values.
¢. does not use a global (central) Dependency Graph.

d. does not require the use of time-stamps [7,8] to order the relative execution of the
various transactions in the system.

Thus our scheme is robust in the face of hardware/software failure and can be efficiently and

effectively implemented in a distributed environment.

The remainder of the paper is organized as follows. In Section 2 we present the atomic
transaction model and establish some basic properties of our model. In Section 3 we develop a
distributed control scheme which is independent of any particular locking scheme. In Section 4 we

presented arguments in support of our proposal and discuss the question of appropriate locking

protocols in which our distributed control scheme can be effectively embedded. Finally,

correctness proofs are given in the appendix.

2. An Atomic Transaction Model

A transaction is the execution of a single sequential program residing in one and only one
site. The sequentiality requirement is imposed for ease of presentation; our model could be
extended in a straightforward manner to handle the case where several sites may be executing
simultaneously on behalf of a single transaction. A transaction may access data residing in either
a single (own) site (central environment), or multiple sites (distributed environment). Thus, in a
distributed environment, a transaction may be viewed as a locus of control, migrating from one
site to another, carrying with it the relevent information needed to perform its designated task.

At any time a transaction is in one of the following states:
active -- iis initial state
partially commit — after rez.a,ching its last statement
commit ~ after ®successful® completion
abort — after discovering some ®error®

fail — after ®error® taken care of
We will say that a transaction has committed/failed only if it has entered the commit/fail state.

Furthermore, such a transaction will be said to have terminated.

A transaction starts its execution in the active state. It enters the partially commit state
after reaching its last executable statement. It then may enter the commit state only if the
serializability and robustness properties are preserved. A transaction enters the abort state after
discovering that it can no longer proceed with its normal execution (e.g., hardware or logical
errors). Such a transaction must be rolled back to its initial state. Once this has been
accomplished the transaction enters the {ail state. At this point in time the system must decide
whether to try and restart this transaction (such a transaction will be considered as a new

transaction), or to ®kill® it.

We note that it may be necessary to rollback a transaction even if it has reached the
partially-commit state (in contrast, once a transaction enters the commit state it may never be
rolled back). This implies that observable external ®writes® (e.g., to a terminal, printer) should
only be allowed to occur after a transaction has committed. Alternatively, external writes can be
allowed to occur in the midst of execution, and "appropriate® messages printed, if a rollback was
performed; for ease of discussion we restrict our attention here to the former case. One way to
implement such a scheme is to store any value associated with such external writes in a

temporary stable storage, and to perform the actual writes only at commit time. More on this

subject later.

Since several transactions may be concurrently executing in the system, the state transition
of one transaction may influence the state transition of another transaction. In order to ensure
proper state transition, the system must maintain sufficient information about how the various
transactions have interacted. Such information will be maintained in the form of a directed
graph, called Dependency Graph (DG). The nodes of a DG are transactions which have not yet
terminated, while the arcs of a DG correspond to some dependency relation among the vzrious
transactions. More precisely, a directed arc from T; to Tj will be inserted in a2 DG if there exists
an entity e, accessed by both T; and Tj where at least one of them updated e, and Tj accessed it
after T, did.

Qur definition of a Dependency Graph is similar in many respects to other graph models
used in discussing the issues of concurrency and consistency, Dependency Graphs, however, also

allow us to discuss the issue of failure.

Given a Dependency Graph, we can now precisely specify, when the state transitions of 2

transaction T may occur.
1. T, enters commit state «
a. reached last statement, and
b. has no more fathers in the DG.
2. T, enters abort state ¢ |
a. has encountered an error, or
b. one of its fathers in the DG has entered the abort state.
3. T, enters fail state «
a. reached abort state, and
b. has rolled back to its initial state.

We can now state some basic properties of our scheme.

Lemma 1: If no cycles are ever formed in the Dependency Graph, then the system is

serializable,
" Lemma 2: I a transaction terminates, then it is executed as an atomic transaction.

There is one more issue concerning our mode] that needs to be addressed at this time. It
concerns the problem of maintaining the Dependency Graph in a distributed environment. The
observant reader has probably noticed that in our model, if a cycle is formed in a DG, then each
transaction participating in the cycle must be aborted. This implies that the system must

continuously search for the formation of such cycles. If the DG is distributed over a number of

different sites the detection of such cycles is not an easy task. Moreover, it requires a

counsiderable amount of overhead.

An alternative, and one which we adopt, is to restrict our attention to those schemes which
ensure that no cycles will ever be formed in a DG. Such schemes have the advantage that they
can be effectively and efficiently implemented in a distributed environment. In section 4 we
discuss this issue in greater detail and show how this requirement can be effectively met in a

distributed environment.

3. The Distributed Control Scheme
Consider 3 distributed system consisting of m nodes, Ny, N, ...y N;,- Our task is to develop
an effective mechanism to implement the dependancy graph model introduced in the previous

section. In particular our mechanisms should ensure:
a. efficient implementation,
b. resiliency in case of {ailure.

A considerable amount of work has been done in the area of distributed implementation of atomic

transactions (e.g., [2-6,8-10]). The main differences between our scheme and previous ones are:
a. Transactions are allowed to read uncommitted data values.
b. We do not use a global (central) Dependency Graph.

c. We do not require the use of time-stamps [7,8] to order the relative execution of the
various transactions in the system.

We assume that the individual nodes are capable of providing both stable and volatile
storage. Stable storage does not lose its contents as a result of failure, while volatile storage may
lose its content as a result of failure. For a more thorough discussion on the implementation
issues concerning such storage we refer the readers to [10]. For the rest of the paper we assume
that all data structures described are of a volatile type. Those structures that need to be kept in

stable storage will be explicitly mentioned.

The system’s nodes must communicate with each other in order to ensure proper state

transitions of the various transactions. Thus 2 node may send a message to another node via:

send <message> to <node_id>

We assume that if <node__id> is "up® then the message will be properly delivered to its
destination before the next statement can be executed (this may require several lower level
transmissions). If <node__id> is *down® then the message is lost (a notification of this event
may be conveyed to the sender). We also require that each node process its arriving messages in

the First Come First Served order. This is not a restriction since the receiver can always

internally queue these messages for later use.

For convenience, we allow a node to send the same message to all other nodes via the

‘broadcast statement which Lias the form:

broadcast <message>>;

The broadcast statement is semantically equivalent to a program segment consisting of N
individual send statements. Thus a broadcast statement cannot be considered to be atomic. That
is, if a failure occurs during its execution, some of the nodes in the system may receive the

message while others will not.

The central concepts of our distributed control scheme can now be described.
1. Each node N; maintains its own local Dependancy Graph DG;. This graph contains
information concerning only those transactions which accessed its local entities. There

is no global dependency graph maintained in the system.

2. There exists a single coordinating node C whose function is to ensure the proper state

transition of all the transactions in the system.

3. Our scheme assumes an unbounded growth of the Dependency Graphs. Since in such
an environment a failure may be quite devastating, our scheme may be viewed as
being an optimisitic one. That is, we assume that failures (abortions) occur very
infrequenily. In a previous paper [11] we have argued that with reasonable discipline
this assumption can be effectively realized. In section 4 we briefly elaborate on this

issue.

4. Our scheme uses a two-phase commit protocol:
Phase 1 ~ When 2 transaction T reaches a state when it can be *fully® committed;
that is, there is no DG, with indegree(T) greater than zero, a message
[OK T] is sent to the coordinator notifying him of the occurence of this
event. When the coordinator receives this message a message [commit T}

is broadcast to all nodes.

Phase 2~ The ®real® commit message is broadcast. This message is piggybacked
on the next "regular® message broadcast by the coordinator to all the
nodes. Only when a node receives this "real® commit message is the
transaction considered to be committed at this node.

We emphasize again that in contrast to previous work on two phase commkit protocols

we allow a transaction to access data produced by a transaction which has not yet

committed (or even partially-committed).

5. The scheme is robust in the face of hardware failure. When the coordinator fails
another one may be elected. Similarly, a failed node can gracefully recover. Our

scheme however, does not handle the problem of network partitioning.

6. Our algorithms are quite general in the sense that they are applicable to those locking
protocols which ensure serializability and deadlock-freedom. Thus our control scheme

can be superimposed on any such previously developed locking protocol.

The algorithms presented in this section are driven by control messages sent and received by
the coordinator and the various nodes in the system. In particular, the coordinator may issue the

following control messages:

[abort T} - This message is sent to all nodes when C discovers that T must be aborted.
[commit T] — This message is sent to all nodes when C decides to commit T.

[down N — This message is sent to all nodes when the coordinator {or some other node)

discovers that node Ni is down.

The coordinator may receive any of the following control messages:
[wound T] — This message is sent to the coordinator by a node who discovers that

transaction T may have failed.

[kill T} - This message is sent to the coordinator by a node who determines that
transaction T must be aborted (i.e., T was executing in N; and an error was

discovered which prevents T from continuing with its execution.)

-]

[OK T] - Is issued by the owner of transaction T when T reaches a state when it can

be fully committed.

We now formally present the various algorithms that the coordinators and the rest of the
nodes of the system must execute. The algorithms are written in a pseudo Pascal notation. In

particular, if A is a set of elements of type x, then the statement

for x in A do §;
enumerates all the elements in A.

3.1. Node Ni

Each node N; maintains the following data structures whose purpose is explained below:

e DG, — a local Dependancy Graph. Each transaction in DG, must have accessed an
entity defined in N,.

e Commit; set — an ordered set consisting of all committed transactions in the system.

e PC,; set — a set consisting of all transactions which have partially committed and
whose owner is N;.

o Kill, set — a set consisting of all transactions for which N; has issued [kill T}]. Such a
message is sent when N, discovers that T can no longer proceed with its normal course
of execution.

@ OK|, set — 2 set consisting of all transactions for which N; has issued [OK T].
e Abort; set — a set consisting of all aborted transactions.

e In-Out; array — an array of M elements indexed by node names. Each element is a
list of transaction names computed as foilows:
In-Out;[N;] = {T | N; sent/received information concerning T to/from N;}.
In other words, we record in In-Outi[Nj] the set of all transactions that executed in
both nodes N; and N.. :

o Last-commit; — a variable of type transaction-id. This variable contains the name
of the last transaction for which node; has received a commit message from the
coordinator.

The above data structures, except DG;, are maintained in volatile storage. The DG,; structure,
however, needs to be maintained in stable storage so that in case of failure, recovery will be

possible.

Let T be a transaction owned by node N;. With each such transaction the data set:
Before(T) = {T’|T" is a father of T in one of the DG;s}

is associated. This set is constructed while T migrates from one node to another.

When T reaches its last statement (i.e., it enters a partially commit state), the following

actions are then taken:
PC, := PC, + [T];
for T' in Commit, do

1f T' in Before(T) then Before(T) := Before(T) - [T'];
if Before(l) = O then send [OK T) to coordinator;

Let EXTERNAL-WRITES(T) stand for ®"execute the external observable writes associated
with T® (if there are any). Now, since failure can occur at any arbitrary point in time, such
external writes cannot be immediately executed when T receives a [commit T] message. Instead,
this is allowed to occur only after N; has received both a [commit T] message followed by a
regular control message (i.e., one which does not deal with recovery; see Section 3.3) from the
coordinator. For this reason we have introduced the variable Last-commit;. It is in this variable
where we record the name of the last transaction (say T) for which node N; received a [commit T]
message. Thus whenever N, received a regular control message it does the following:

if Last-commit, 3 '° then

begin
Commit, := Commit, + [Last—commitil;

EXTERNAL-WRITES (Last-commit,);
if Last-commit, in PC, then PC, := PC;, - [Last-commit]
delete Last-commit, from DG,;
for T in PGy do
if Last-commit, in Before(T) then

begin
Before(T) := Before(T) - [Last-commit,];
1f Before(T) = 0 then send [OK T] to coordinator;
end
Last-commit, := 't

end

Thus the ®actual® commit occurs a¢ this point in time.

We present now the various algorithms that need to be executed by the node N, in response

to receiving the various control messages from the coordinator.

1. [commit T] -
Last-commit, := T;

2. [abort T] -
12 T in DG, then
begin

Let A be the ordered set consisting of T plus all its
descendants in DG,. This set is ordered in the

reverse 061 order.
for T' in A do

begin
rollback T

delete T® from DG,

send [Kill T'] to coordinator;
Kiil, := Kill, + (T'];

if T’ in PC, them PC, := PC, - [T'];

end
end
else Abort, := Abort, + [T];
3. [down N;| -
for T in In-Out,[N,] do
send [wound T] to coordinator;

4. [new-coor T] — This message is sent by a newly elected coordinator. The value of T
corresponds to the last committed transaction in the system as will be explained in Section

3.3.
if Last-commit, 3¢ T then
begin
EXTERNAL-WRITES (Last-commit,) ;
delete Last-'commit1 from DGi;
if Last-commit, in PC, then PC, := PC, - [Last-commit,];
Commit, := Commit, + [Last-commit] ;
for T' in PC, do
if Last-commit in Before(T') then
~--begin
Before(T') := Before(T') - [Last-commit];
1f Before(T') = 0 then send [OK T'] to
coordinator;
end
Last-commit1 = T;
end

When N; receives a message from Nj to process tramsaction T (i.e. T has migrated from
node N; to N,), it must first check to see whether T is in the Abort, set; if this is the case then N;
simply ignores this message. This is done in order to guard against the possibility that an [abort

T] message, and the message concerning transaction T, will cross each other in some obscure way.

Finally, we note that N; can remove T from its In-Out; array and Kill; set after the

coordinator has successfully executed either [abort T}, or {commit T}, or [new-coor T].

3.2. Coordinator

The function of the coordinator node C is to ensure the proper state transition of all the
transactions in the system. In particular, all messages concerning commitments and abortions are
handled by the coordinator. The sole purpose of the coordinator is to make our scheme non-
blocking; that is, to ensure that the system will continue with its execution as long as there is at

least one healthy node.

The coordinator maintains two main data structures whose purpose is explained below:
. & Commit set —.an ordered set consisting of all committed transactions

e Abort set — a set consisting of all aborted transactions.

We present now the various algorithms that the coordinator must execute in response to

10

various control messages.

1. [OKT]-
if T not in Abort then
begin
Commit := Commit + [T];
broadcast [commit TI;
end

We note that the check for determining whether T is in the Abort set is indeed
required. To illustrate this, consider the case where node N; in which T executed went

down. Node N; determines that T € In-Out;[N;] and sends a message to the
coordinator, who then aborts T. The owner of T in the meantime may send [OK T},
but T now is in the Abort set.

2. |wound T} —
1f T not in Commit then
begin
Abort := Abort + [T];
broadcast [abort T];
3. [kill T} -

Same as [wound T]; we use two different commands to differentiate between the
case where a node explicitly wishes to abort a transaction ([kill T]) and the case
where a node simply responds to the coordinator’s [down Ni] message. Such a

differentiation is needed when an election of a new coordinator takes place, as
will be seen in Section 3.4.

4. [down N] -
broadcast [down N,]:
We note that the coordinator may not decide on the abortion of a transaction. It can issue [abort
T] only in response to [wound T] and [kill T] messages it receives. We do not however exclude the
possibility that the coordinator may issue ®broadcast [down N|® (i.e, it can be viewed as the
coordinator sending [down N| to itself). Such a situation will occur when the coordinator

discovers that Ni is down.

3.3. Recovery from hardware fallure

In this section we describe the recovery actions that need to take place after a node has
been down. We take the approach that if node N; was down then this has been detected by some
other node and appropriate actions have been taken (i.e., abort those transactions associated with

Ni)' In the following we present a scheme to ensure this.

Let N; be a node which went down and is trying to recover. The following actions need to

take place before N; can be considered to be up.
a. find out who the current coordinator is; if no coordinator exists wait.

b. send a message to the coordinator informing him that N; is trying to recover. It then

11

receives from the coordinator a copy of its Commit and Abort sets. N; uses this copy
to initialize its own Commit, and Abort, sets.
c. the following actions are then executed:

for T in Abort, do
if T in DG, then

begin
rollback T;
delete T from DG1

end
for T in DG1 do

send [wound T] to coordinator;
for T in Commit, do EXTERNAL-WRITES(T);

broadcast [up N,]

After all the above have taken place, node N; is considered to be active again in the system.

We note that DG; was put in stable storage in order to be able to execute step (c) above.
Alternatively, one could keep DG; in volatile storage and construct a list of all the transactions
that are currently active in node N;, and keep this new list in stable storage. Step (c) above could
be easily modified to deal with this change. This new scheme is simpler to implement in terms of

the actual implementation of storing the information in stable storage.

3.4. Election of a new coordinator

When the coordinator node goes down, a mew coordinator must be elected. There 2re
various methods which can be used in electing a coordinator [4,12] and for our scheme any one of
them will do. We do however require that each node that is up will participate in the election. In
addition, each such node will freeze its activities until it either receives a [new-coor T] message, or
a new election is declared. Before responding to messages from the possibly newly elected
coordinator each such node will be required to process all the control messages it has received thus

far. This is done to ensure that the Commit; sets are in a consistent state.

Suppose that a new coordinator has been elected, say C. When C is notified about his new

job he must execute the following:

a. send a message to all nodes informing them that he has been elected as a possible
coordinator.

b. get from each node Ni that is up the sets Commiti, Killi, Aborti, OKi and the variable
Last—comlmiti.“ C constructs its own Commit and Abort sets from the information it
has obtained.

¢. Let Commit be a newly constructed set:
for T in Commit do broadcast [abort T].
We note that there is no need for the coordinator to be concerned with broadcasting
[Abort T} messages for transactions that depend on those in the set F, since each node

N,'s algorithm for [Abort T] calls for it to rollback the dependent transactions that it
is aware of, based on its DG;.

12

d. Let Kill be the set consisting of all transactions appearing in all the Kill; sets the
coordinator has received in step (b).

for T im Kill do
if T not in Commit then
begin
Abort:= Abort + [T]
broadcast [Abort T]
end
e. Let D be the set of nodes that are currently down.

for N in D do broadcast [down N];

f. C waits until all nodes that are ®up® have sent them their appropriate [wound T]
messages. For each [wound T| message an appropriate [abort T] message is sent.
Note that any node may fail in the midst of sending its [wound T] messages. Such a
node must be added to the set D and steps (d) and (e) must be repeated.

g. if all Last-commit; = " {from step (b)), then goto step (g). Otherwise, let T be the
transaction such that there exists Last-commit; = T and T not in the newly
constructed commit set.

broadcast [new-coor T]
It can be easily shown that there exists such a unique transaction T.

b. Let OK be the set of all transactions appearing in all the OK; sets the coordinator
received in step {(b).
for T in OK do

begin
if T pot in Abort and T not in Commit then
begin
Commit:= Commit + [T}
broadcast [Commit T]
end
end

3.5. Remarks

There are three additional issues that need to be discussed concerning our distributed
control scheme. The first one concerns the problem of maintaining the database entities, the
second one concerns the problem of the unbounded growth of the Commit and Abort sets, while
the last one is concerned with the issue of proving the correctness of the proposed scheme. Below
we deal with the first two issues. Arguments in support of the correctness of our scheme are

presented in the appendix.

3.5.1. The Mzalntenance of the Database Entltles

Our distributed control scheme implicitly assumed that when the coordinator issues a
[commit T] message, no hardware failure can effect this commit. That is, all the changes made in
the database as a result of the execution of T can always be recovered. There are a variety of
techniques for ensuring this property. For example, requiring all data items to be kept in stable
storage. Another more economical method is to require that before a transaction T leaves a node

N for the last time, N must store all changes made by T in stable storage. For sake of brevity we

13

do not elaborate on this subject in this paper.

3.5.2. The Commit and Abort Sets
One point which we have not discussed thus far is the unbounded growth of the Commit

and Abort sets.
i. It can be easily shown that it is safe to remove a transaction T from the Commit sets
if mo node, which is either up or down, maintains a2 DG, which includes T. This
observation can be used in a variety of ways to remove transactions from the Commit

sets; we do not elaborate on this subject any further in this paper.

it. It can be shown that it is safe to remove a transaction T from the Abort sets if the
following two conditions hold:

a. there exists a coordinator which did not fail in the midst of broadcasting [abort T},

b. all messages concerning transaction T have been processed in the system.
It is easy to determine when condition (a) holds. However, it is a little bit more
difficult to handle condition (b). One possibility is to use a time out mechanism; yet
another mechanism is to use a cancellation message. Again for the sake of brevity we

do not elaborate on this subject any further in this paper.

4. Discussions

It should be clear that if 2 DG can unboundedly grow, failure may be quite devastating.
This is due to the fact that a transaction which is rolled back must first enter the abort state and
thus by our algorithm, each of its successors in the DG must also enter the abort state and be
rolled back. (This situation is commonly known as cascading rollbacks.) On the other hand, by

allowing the DG to unboundedly grow one may obtain a greater amount of parallelism.

In order to control the growth of a Dependency Graph some form of supervisicn must be
present in the system to influence the manner in which the transactions executing the database
can interact with each other. Such a supervision may be achieved through the use of various

concurrency control schemes, the most common one being locking protocols.

The two-phase locking protocol [1] is the most "popular® protocol to date. This protocol
allows a transaction to lock 2s many data items as it needs. However as soon as it unlocks one of

these items no more locking is allowed. The reason the two-phase scheme is so popular is because

14

it deals effectively with cascading rollbacks. However, in order to completely eliminate cascading
rollbacks, a strict two-phase scheme must be used [13]. Such a scheme requires that unlocking
may only be performed after the transaction has reached its last statement. Thus in terms of the
Dependency Graph model the strict two-phase scheme ensures that the DG will be of minimal

size.

Recently, 2 number of new non-two-phase protocols have been proposed which ensure
serializability [14-22]. All of these protocols rely on 2 priori information as to how the database
entities are organized. The advantage of the non-two-phase protocols is that they enhance
parallelism. Unfortunately, they do not guard against cascading rollbacks. Thus in terms of the

Dependency Graph model these protocols allow the DG to unboundedly grow.

What we have pointed out is that there are at least two conflicting criterions in selecting a
locking protocol. One is to guard against cascading rollbacks while the other is to increase
parallelism (i.e., minimize locking time). If a system can emsure that transactions failure will
occur only relatively infrequently, then cascading rollbacks may be tolerated, otherwise, it should
be guarded against. In a previous paper [11] we have argued that with some reasonable discipline,
"abortion® rates can be considerably reduced. In particular we have noted that there are three
events which will cause a transaction to enter an abort state; namely, cycle formation in a DG,

hardware and software errors, and the transaction cancelling itself.

We have already seen that cycle formation in the DG may be eliminated via the use of
locking protocols which ensure serializability. Unfortunately, the act of locking may create a new
kind of cycle commonly known as deadlock. Deadlocks must be resolved via the use of rollbacks,
which in our model may result in cascading rollbacks. Furthermore, deadlock detection in a
distributed environment is quite expensive. Thus in order to minimize the overhead and reduce
cascading rollbacks, one must choose locking protocols that assure both serializability and
deadlock freedom. The two-phase protocol does not ensure freedom from deadlocks. This
deficiency can be remedied through the use of some prevention algorithm, such as hierarchical
ordering of the entities in the database. Most of the non-two-phase protocols developed thus far
ensure freedom from deadlock. Those protocols that are not deadlock-free enjoy the property that

deadlocks can be effectively handled without causing cascading rollbacks [23].

Obviously, hardware failure cannot be completely eliminated. There are various degrees of
hardware failures, each of which may result in different recovery actions. Some of these errors
may be corrected by simply repeating a particular action (e.g. rewrite a page on & disk).” Other
errors however, may require the abortion of a transaction (and its successors in the DG). In
recent years we have seen a significant improvement in terms of hardware reliability. A case in
point is the Tandem Computer which improves reliability by duplicating every major hardware

component [24]. In such an environment hardware failure (coupled with software for recovery) is

15

a rare event. Since the cost of hardware is going down, such a technology is cost effective. We
thus expect in the future that most hardware will use some duplication (and even triplication) in

order to improve reliability.

In [11] we have argued that a database system should not allow the user to cancel a
transaction in mid-execution. We do not have any objection to such cancellation if the data on

which the transaction is operating on, is either private, or is explicitly locked by the owner of the

transaction. If the data is private, the abortion of the transaction will not affect any other
transaction. Explicit locking will result in the notification of the system that the transaction may
be aborted in the midst of execution. The system then may decide to employ a strict two-phase
locking for this particular transaction so that in case of abortion no cascading rollbacks will result.
In all other cases, cancellation of a transaction should not be permitted. An exception to this is a
transaction which does not modify any of the database entities. Such a transaction can always be

aborted without directly effecting other transactions.

Finally, we note that even in case of failure, it may be possible to improve performance by
using partial rollbacks. In [25] we have described such a scheme for the two-phase locking
protocol. We are currently extending our results to other concurrency contro! schemes, including

non-two-phase protocols and multiversion protocols.

5. Conclusion

The problem of ensuring the atomicity of each database transaction was considered. We
have focused our attention on non-replicated distributed database systems. We have developed a
distributed control scheme which can be superimposed on any of the previously developed "safe®
locking protocols. We have shown that our scheme is robust in the face of hardware /software
failure and can be effectively and efficiently implemented in a distributed environment. Finally,
we have pointed out that with reasonable discipline the number of rollbacks required in a system
can be considerably reduced. Thus contrary to common practice non-two-phase protocols could

be effectively used in guaranteeing atomicity.

Lastly, we note that if one combines our scheme with a locking protocol that assures
serializability, one can modify the Dependency Graph model to reduce the number of dependercies
in the system. In particular, we can insert a directed arc from T, to Tj in a DG only if both
transactions accessed a common entity e, and T, wrote onto e and Tj read the value written by

T;. This modification is possible since the DG is only used for commitment decisions.

10.

11,

12.

13.

14.

15.

16.

17.

18.

16

REFERENCES

. Eswaran, K.P., Gray, J.N,, Lorie, R.A,, and Traiger, L. The notions of consistency and

predicate locks in a database system. CACM 10, 11 (Nov. 1976), 624-723.

. Gray, J.,, Notes on database operating systems. Operating Systems, Lecture Notes in

Computer Science: Volume 60, Springer Verlag, 1978,

. Rosenkrantz, D.J., Stearns, R.E., and Lewis, P.M. System level concurrency control for

distributed database systems. ACM Transactions on Database Systems 3, 2 (June 1978),
178-198.

. Menasce, D.A., Popek, G.J., and Muntz, R.R. A locking protocol for resource coordination

in distributed databases. ACM Transactions on Database Systems 5, 2 (June 1980),
103-138.

. Bayer, R., Elhardt, K., Heller, H., and Reiser, A. Distributed concurrency control in

database systems. Proc. International Conference on Very Large Data Bases {Oct. 1980),
275-284.

. Skeen, D. Nonblocking commit protocols. Proc. ACM-SIGMOD International Conference

on Management of Data (April 1981), 133-142.

. Lamport, L. Time, clocks, and the ordering of events in a distributed system, CACM 21, 7

{July 1978), 558-565.

. Reed, D. Naming and synchronization in a decentralized computer system. Technical

Report, MIT, Sept. 1978.

. Hammer, M., and Shipman, D. Reliability mechanisms for SDD-1: A system for distributed

databases.® Computer Corporation of America, Cambridge, Mass., (July 1979).

Lampson, B., and Sturgis, H. Crash recovery in a distributed data storage system, CACM,
(to appear).

Silberschatz, A. A case for non-two-phase locking protocols that assure atomicity. IEEE
Transactions on Software Engineering, (to appear).

Garcia-Molina, H. Election in a distributed computing system. Technical Report, Princeton
University, Dec. 1980.

Stearns, R.E., Lewis, P.M., and Rosenkrantz, D.J. Concurrency control for database
systems. Proc. IEEE Symposium on Foundations of Computer Science (Oct. 1976), 19-32.

Silberschatz, A., and Kedem, Z. Consistency in hierarchical database system. JACM 27, 1
{(Jan. 1980), 72-80.

Kedem, Z., and Silberschatz, A. Controlling concurrency using locking protocols. Proc. 20th
IEEE Symposium on Foundations of Computer Science (Oct. 1979), 274-285.

Yannakakis, M., Papadimitriou, C.H., and Kung, H.T., Locking policy: safety and freedom
from deadlock. Proc. 20th IEEE Symposium on Foundation of Computer Science {(Oct.
1979), 286-297.

Kedem, Z., and Silberschatz, A. Non-two-phase locking protocols with shared and exclusive
locks. Proc. Sixth International Conference on Very Large Data Base (Oct. 1980), 309-317.

Kedem, Z., and Silberschatz, A. A characterization of database graphs admitting a simple
locking protocol. Acta Informatica 16, 1 (1981}, 1-13.

19.

20.

21.

23.

24.
25.

17

Fusscell, D., Kedem, Z., and Silberschatz, A., A Theory of correct locking protocols for
database systems, Proc. Seventh International Conference on Very Large Data Bases {Sept.
1981), 112-124.

Silberschatz, A., and Kedem, Z. A family of locking protocols for database graphs modeled
by directed graphs. IEEE Transactions on Software Engineering 8, 6 (Nov. 1982), 558-562.

Yannakakis, M.A. A theory of safe locking policies in database systems. JACM 29, 3 (July
1982), 718-740.

. Kedem, Z., and Silberschatz, A. Locking protocols: from exclusive to shared locks. JACM

(to appear).

Kedem, Z., Mohan, C., and Silberschatz, A. An Efficient Deadlock Removal Scheme for
Non-Two Phase Locking Protocols, Eighth International Conference on Very Large Data
Bases, (September 1982).

TANDEM, Non Stop System Description, Tandem Computers, Inc., Cupertino, CA.

Fussell, D., Kedem, Z., and Silberschatz, A. Deadlock removal using partial rollback in
database systems, Proc. ACM-SIGMOD International Conference on Management of Data
{April 1981), 65-73.

18

8. Appendix: The Correctness of Our Scheme

We present now arguments in support of the correctness of our scheme. Since no cycles can
be formed in the Dependency Graph, the serializability property is ensured. Thus we only need to
show that our scheme ensures robustness. In order to do so we need to prove that the following

three properties always hold.

1. Under no circumstances will there be in the system a transaction T and two nodes N;
and N; such that N, executed the external observable writes associated with T while
Nj rolled T back to initial state.

2. Under no circumstances will there be two transactions T, and T, such that T, has
aborted, T, has committed and T, depends on T,.

3. Every transaction in the system either commits (i.e., all its external observable writes
are eventually executed), or fails (i.e., is rolled back to its initial state.)

For brevity some of the details of the proofs are omitted.

Claim 1: If the coordinator issued [abort T], then for all nodes N; the following holds:
e T ¢ Commit,

o Last-commit; 5% T.

Proof: The proof follows from the following two facts:
1. for each node N;, Commit; U Last-commit, C Commit.

2. the coordinator broadcasts an {abort T] statement only if T is not in the Commit set.

Claim 2: If the coordinator issued [abort T], then neither [commit T| nor [new-coor T]

messages will ever be issued.

Proof: Assume by contradiction that a coordinator has issued [abort T], and that later on a
[commit T]/|new-coor T] message was issued. We claim that between the time [abort T] and
[commit T]/[new-coor T| were issued the coordinator (say C1) must have failed. Moreover, C1
must have failed in the midst of broadcasting [abort T]. Indeed, when the coordinator issues
[abort T} it adds T to its Abort set. Thus if a [OK T] message was on its way to the coordinator,
by our algorithm it will be simply ignored. Also, since each N; adds T to its own Abort, set, from
that point all non-control messages concerning T will be ignored. Thus C1 could not have
received a |[OK T| message. From Claim 1 we know that the newly elected coordinator (say C2)
could not have issued [new-coor T]. Furthermore, C1 must have failed in the midst of
broadcasting [abort T|; otherwise, by our algorithm the owner of T would not have issued (or
reissued) the message [OK T]. Thus we need only consider the case where the coordinator C1
failed in the midst of broadcasting [abort T] and the owner of T issued, at some point in time

later, the message [OK T|. Three subcases need to be analyzed.

i. C1 issued [abort T] as result of a [kill T| message from node N,. If when C2 was

19

elected Ny was still up then by our algorithm N, will send to C2 its Kill, set and thus
C2 will issue again [abort T]. Thus we are left with the case where N; went down
before C2 was successfully elected. Consider the chain <Nk,Nk1,...,qu> consisting
of all the nodes through which T has migrated up to the point in time when C1 f{ailed
(note that the owner of T must be in this chain). When C2 is elected N, is still down
(it may be trying to recover, but since no coordinator exists, it is still considered to be
down). If none of the nodes in the chain is up when C2 was elected then it implies
that the owner of T is also down. Thus no [OK T] message can be issued.
Furthermore, as soon as one of these nodes tries to recover, by our algorithm, it will
issue [wound T]. Since T is not in the Commit set it will be aborted. If on the other
hand, when C2 was elected, one of the nodes in the chain is up, we have the following.
First observe that each node in this chain must have T in its own In-Out array. (T is
removed from the In-Out array only after the coordinator has successfully completed
broadcasting [abort T]). Second, let N, be a node such that N, is down and Nyjyq is
up. When C2 is elected it discovers that Ny; is down and thus broadcasts [down N .
In response Ny, , will issue [wound T]. Since T is not in the Commit set, C2 will

abort it.

ii. C1 issued [abort T] as result of a [wound T] message from node N, and N, sent

[wound T} to C1 as result of C1 broadcasting [down Nj], and T is in In-Outy (N;). If N;
recovered between the time [down N;] was received by Ny and the time Ny issued
[wound T], then by our algorithm C1 will again issue [abort T]. If N, does not recover
this implies that when C2 is elected it will discover that N; is still down (N; may be
trying to recover). Thus C2 will issue [down NJ. If Ny is up then it will reissue

[wound T]. If Ny is down arguments similar to those present in case (i) above can be

repeated.

iii. C1 issued [abort T} as a result of a [wound T} message from node Ny, and N, sent

[wound T] to C1 as part of its recovery algorithm (section 3.4). Since C1 failed in the

20

midst of broadcasting [abort T} by our algorithm, when C2 is elected Ny is still
considered to be down. Thus when C2 is elected it discovers that N, is down and it
broadcasts [down N,]. Since no coordinator has successfully broadcast [abort T}, it
follows that T has not been removed from any In-Out array.{ Thus we can repeat the

same arguments as in case (i).
Since [new-coor T] can be issued only after [commit T| was issued, the result follows.

Claim 3: If the coordinator does not fail in the midst of broadcasting either [commit T] or

[new-coor T], then no [abort T} messages will ever be issued.

Proof: Suppose that the coordinator has pot failed in the midst of broadcasting either
[commit T] or [mew-coor T]. Let X={N;N,,..N.} be the set of nodes that were "up"
immediately after the coordinator has completed its broadcast. Clearly each N; in X will ave
Last-commit; = T. We claim that from this point on, every node that will be up will have T in
either its Commit set or in its Last-commit variable. Indeed, if the coordinator fails, the new
elected coordinator will have T in its commit set. Now since every node that recovers (say N,)
constructs its Commit, set out of the commit set it receives from the coordinator, the subclaim
bhas been substantiated. Thus every coordinator will have T in its commit set and by our

algorithm no [abort T| messages will ever be issued.

We note that if the coordinator does fail in the midst of broadcasting either [commit T] or
[new-coor TJ, it is possible that an [abort T] message v.il indeed be issued. To illustrate this,
consider the case where the coordinator has failed just after it has sent its first [commit T]
message to node N;. Suppose that N; and the owner of T have failed. When a new coordinator is
elected no record is available to indicate that T has ®potentially® committed. Now since the
owner of T is down, by our algorithm the new coordinator will abort T. It is for this reason that
the external writes of a transaction cannot be immediately executed when a [commit T] message

is received.

Claim 4: The procedure EXTERNAL-WRITES(T) can be executed only if there exists a

coordinator which did not fail in the midst of broadcasting either [commit T] or [new-coor T}.
Claim 5: Property 1 always holds in the system.

Proof: Assume by contradiction that claim 5 is false. Let T be a transaction such that N;
has executed EXTERNAL-WRITES(T) and Nj has rolled T back. Since N; executed
EXTERNAL-WRITES(T), by Claim 4 some coordinator did not fail in the midst of broadcasting
either [commit T] or [new-coor T|. By Claim 2, [abort T] was sent after the coordinator

(mentioned above) had broadcast either [commit T} or [new-coor T}, which contradicts Claim 3.

21

Claim 6: Property 2 always holds in the system.

Proof: If T, depends on T, then by our algorithm T, will be added to the set Before(Tz).
Moreover this will occur prior to T, entering the partial-commit state. Now T, is removed from
the set Before(T,) if and only if T, has ®fully® committed. Since an [OK T,] message can be sent

only if Before(T,) == 0, our result has been proven.

Claim 7: Property 3 holds in the system provided that the cocrdinator does mot fail

infinitely often.

Proof: From our previous claims (and their proofs) it is clear that we need only consider the

case where the coordinator fails in the midst of broadcasting [abort T}, [commit T}, [new-coor T].

Case 1: From the proof of claim 2, we know that in the case of [abort T, the newly elected

coordinator will reissue [abort T]. From our hypothesis it follows that there will be a point in
time when the coordinator successfully completes broadcasting [abort T]. Thus each node that is

sup® will rollback T. Furthermore, every node that recovers will also rollback T.

Case 2: From claim 3 we know that if the coordinator fails in the midst of broadcasting
[commit T, [new-coor T} then either the new coordinator will issue [abort T] and then we have
case 1, or it will reissue [new-coor T]. Thus for each such T either an [abort T] message will be
issued, or, eventually [new-coor T} will be successfully broadcast. In the latter case, from claim 3,
no [abort T] messages will ever be issued. Moreover, from that point on T will be in the commit
set of all nodes. From our hypothesis it follows that the external writes of T will be eventually

executed.

