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Abstract This paper presents a new combination of the bisection algorithin and the Bayleigh quotient
iteration for computing a few eigenvalues of 2 symmetric band matrix. Both global and local convergence
results are proved and numerical examples are presented. The modification of the algorithm meeded to

handle generalized eigenvalue problems is described.



1. Introduction

This paper describes 2 new algorithm for computing a few specified eigenvalues and eigenvectors of a2
symmetric band matrix. The algorithm was developed for use in conjunction with the symmetric block
{or band) Lanczos algorithm. At each step of the Lanczos algorithm it is necessary to compute a few
eigenvalues {and eigenvectors) of a symmetric band matrix. The eigenvalues are specified by index and an
approximate eigenvector is available which is often quite accurate although it can occasiomally be
completely wrong.

The new algorithm can compute eigenvalues by index or by location (i.e. all the eigenvalues between
zero and one) and can take advantage of approximate eigenvectors if they are available. The local and
global convergence rates of the algorithm are given. Some numerical tests are described. Finally the
changes necessary to make the algorithm applicable to banded generalized eigenvalue problems are
described.

2. The Algorithm

The use of the bisection algorithm fo compute eigenvalues of tridiagonal matrices was introduced by
Givens |1} in 1954. Bisection uses the Sturm sequence property to compute the number of eigenvalues of 3
symmetric matrix A less than a number ¢ by computing triangular factorization of {A - oI). Thus given
any interval known to contain the desired eigenvalue, it is possible to compute the eigenvalue count at
some point in the interval and thereby shrink the size of the interval known to contain the desired
eigenvalue. In the absence of any ancillary information the best choice for the shift o is the midpoint of
the interval, which is what the bisection algorithm uses. By repeating the process the eigenvalue can be
computed to any desired accuracy up to the roundoff error threshold.

Bisection of tridiagonal matrices is remarkably stable even without pivoting as shown by Wilkinson on
page 302 of [3]. A careful implementation of tridiagonal bisection is given on page 249 of [4]. For larger
band widths special pivoting is necessary to get 2 reliable eigenvalue count. An ALGOL code (BANDET?2)
implementing this pivoting technique is described on page 70 of [4]. For some reason a FORTRAN
version of this code has not been incorporated into FISPACK.

Bisection gives a completely reliable way of computing eigenvalues. The eigenvectors can then be
obtained by inverse iteration. The main drawbacks with bisection are that its asymptotic convergence
rate is only linear and that there is no convenient way to take advantage of approximate eigenvectors, Of
course it is possible to switch from bisection to some faster technique once an eigenvalue has been isolated.
Wilkinson mentions this on page 306 of [3] although he adds the observation that for tightly clustered
eigenvalues the advantage of switching will be slight, since most of the work will be done in the isolation
phase.

The basic idea of the new algorithm is to use a faster technique before the desired eigenvalue has been
isolated. Instead of just bisecting the current containment interval, it is possible to maintain an
approximate eigenvector and use the Rayleigh quotient of the vector as the shift rather than the midpeint
of the interval. A step of inverse iteration applied to the approximate eigenvector can be performed at
the same time that the latest eigenvalue count is obtained. This is just the Rayleigh quotient iteration
(see |2] page 69) except that if the Rayleigh quotient is outside the containment interval the approximate
eigenvector should be replaced by a random vector and the bisection shift should be used.

There are two possible reasons why such an algorithm has not been described before. One is the known
existence of stagnation points of the Rayleigh quotient iteration. The stagnation points are numerically



unstable, but it is still impossible to prove a global convergence result for an algorithm using Rayleigh
quotient shifts. A more practical problem is the fact that the Rayleigh quotient iteration often converges
monotonically. All the computed shifts are then on one side of the eigenvalue and the containment
interval does not become small. This is fatal if interval widths are used for termination. Furthermore if
the desired eigenvalues are specified by index then many steps of the algorithm may be taken before it is
discovered to be comverging to one of the wrong eigenvalues. This false convergence can significantly
degrade the performance of an algorithm based on Rayleigh quotient shifts.

The surprising fact is that both problems can be cured by the same mechanism. 1f would be best to
have a way of choosing the shift so that a desired eigenvalue is always in the smaller subinterval. This is
not always possible but it is possible to choose a shift so that the eigenvalue closest to the Rayleigh
quotient is in the smaller subinterval. What is needed is a bound on the distance from the Rayleigh
quotient to the mearest eigemvalue. Two potentially useful bounds are available. Given 2 normalized
vector x and its Rayleigh quotient § then there is an eigenvalue A of A which satisfies {see pages 69 and
222 of [2])

lo-2 <6
and
|0- M < &/
where
5 =||(a - 6Dx]|
is the residual norm of x and the gap 7 is the distance from 4 to the next closest eigenvalue of A.

The vector x and its Rayleigh quotient # are already available from the algorithm and the residual norm
§ can be easily computed. Thus the first bound is always computable. The second bound is an
improvement over the first whenever § < 7. In general the true gap is not known but 2 computable lower
bound on the gap may be available from the eigenvalue counts obtained from previous factorizations.
Provided that # lies in an interval known to contain only one eigenvalue then 2 lower bound on 7 can be
computed as the distance from & to the nearest endpoint of this interval. We now define v to be this
computable lower bound (if it exists). Thus f§, the bound on the distace from 6 to the nearest eigenvalue
of A, will be just & unless 7 exists and § < 7 in which case § = 62/ .

If instead of using @ directly as the shift, it is perturbed toward (but not past) the midpoint of the
interval by J then the interval known to contain the eigenvalue closest to & will be shrunk at least by a
factor of two and perhaps much more. If the eigenvalue closest to € is a desired eigenvalue then
convergence may proceed at 2 much faster pace than bisection, while if the eigenvalue closest to ¢ is not 3
desired eigenvalue then this fact is discovered immediately and the current approximate eigenvector can
be abandoned. If the Rayleigh quotient lies outside the current containment interval then the vector
should be replaced by a random vector and the bisection shift should be used. We call this the BPRQS
{Bisection with Perturbed Rayleigh Quotient Shift) algorithm. A formal description of the algorithm
follows {for finding one eigenvalue and eigenvector) is as follows:

BPRQS Algorithm
Given an interval [rcl,gl] known to contain the desired eigenvalue, a normalized vector x,, 0,
the Rayleigh quotient of x,, §; the residual norm of x,, and 7, the computable lower bound on

the gap between #, and the second closest eigenvalue of A (if it exists):



For j == 1, 2, ... until convergence do 1-4
1. Compute the minimum error bound ﬁjz
i (75 does not exist or 7; < 6j )
Theﬁ 53 = 5j
e 5.2
Flse ﬁ}- == 63 /fyj
2. Select a shift ;5
i ﬁj<xj oréj>§j
Then o5 = 1 and set X; to a random vector
Else If 93 < B
Then o; = min{u;, 6; + B}
3. Factor (A - o;) to get the new eigenvalue count, solve
(A-ollyiy =% and pormalize y; ., to get X; 4,
4. Update the values:
If the desired eigenvalue is smaller than 9
Then Kipr = %5 and
Ga1 = 7
Else Kipy = O and
G417

Tax

b 41

41 T X
di41 '—"ﬁ(A - 95-4»1”"5«»1“
Update v {if possible} from 9j 41 2nd the previous

eigenvalue counts.

Termination is based on the width of the coqtainment interval or on the error bound once the



computed gap is larger than the residual norm.

3. Global Convergence

The BPRQS algorithm converges globally to a particular eigenvalue with an asymptotic convergence
rate which is at least linear with rate constant at least sqrt{1/2), as shown by the following theorem.

Theorem 1: For all steps | of the BPRQS 2algorithm, the containment interval after two
more steps, that is §xj +205; 4ob» Will satisfy at least one of:

L§pn- e S g - 55)/2
2. [k, 2:642] contains fewer eigenvalues than [565]-

Proof: If §; is not in gicj,gj] then the first step is a bisection step and the theorem is true.
Without loss of generality we now assume that /; is in {,-cj,p,_%}.

i Gj + /95 > u then the next step is a bisection step and the theorem is trume. So we may
assume that the next shift will be g; = 83. + ,63‘

I the desired eigenvalue is in [ch,aj] then the theorem is true. So we may assume that

K.

3_},1=-—-crjane:i 41 = G

If 6, , is not in [641,541] then the next step will be a bisection step and the theorem will be

true. So we may assume that "m is in {xj+1,g'j+1§.

Assume for now that 8, | < p; .

19,

we may assume that Tigqg = gj-!-l + ’33-1-1'

+ ﬁj +1 2 Bip then the next step will be a bisection step and the theorem is true. So

If the desired eigenvalue is in {fcj +10 9 4+1) then the theorem is true. So we may assume that
Kigp = Ojpr 204 g = Gy

If there is any eigenvalue in {xj, & +2} then the theorem is true. The bound # is computed
using 7 only if the interval [ - 6, & + 8] is known to contain only the desired eigenvalue. In
this case [f - §, ¢ + f] also contains only the desired eigenvalue. Since we have assumed that
the desire eigenvalue is not in this interval at both step j and step j+1 it follows that both

B =9 and f,, = bipy

The following lemma is needed to prove under the above assumptions that there is an
eigenvalue in the interval [, x; o).
Lemma 2: Let 8 be the Rayleigh quotient of the normalized vector x and let § be
its residual norm ( =|}(A - %}xﬁ ). Let py == (A - oI)!x for some number o, where
p{=1/ QQ{A - &i}‘ix%é} is chosen to normalize ¥, let a be the Rayleigh quotient of y,
and let g be its residual norm. Then if § < ¢ < «a then

p Bt
and

Lrhis generalizes Kahan’s monotone residusl theorem for the Rayleigh quotient iteration. See p. 75 of f2].

tp



Proof:

A - 91))&3! > yT(A - 1)

by the Cauchy-Schwarz inequality,
= yT(A - ol)x + (o - 8]y x
= yT(A - ol}x + plo- Oy T(A - o)y
= yT(A - ocl}x + plo - 6){c - 0)
> yT(A - ol)x

by hypothesis,
—l(a- o0y

since x is parallel to (A - olly,

>iA - eyl

since the Rayleigh quotient minimizes the
residual norm.

This proves the first result. To get the second we apply the Cauchy-Schwarz
inequality to the next to last line above to get

> yT(A-al)y

= -0,

By elementary linear algebra there is an eigenvalue in Iﬂj +r 63 e Gj st éj _H], ,85 o = 5}. +1
as shown above, éj n=< 5§ by the lemma, 0; = 95 + ﬁj by construction, and Bj > & Therefore

kg, K500l = [K5f500t Bisil

I

Ixj,95+1+6j+1}

]

40051t

2 15 41!

i1

and hence contains an eigenvalue.

Finally assume 6., 2> #4;- The new containment interval will be smaller than than
[Gj'9j+1] and by the lemma, 6., - 0; < § and & < (x5 - ¢;)/2 by assumption {since the first
shift was less than a bisection shift. Therefore ¢, - 5, < {g; - x;)/2 and the theorem is

true.

This completes the proof.



4. Local Convergence

The previous section showed that the BPRQS algorithm conmverges globally with aymptotic rate of
convergence no worse than linear with rate constant SQRT(1/2). With 2 careful analysis it is possible to
improve the rate constant to 1/2 but impossible to prove that the asymptotic convergence rate is better
than linear. The reason for this is that the global convergence result only guarantees convergence to the
eigenvalue by the bisection process, it does not guarantee convergence to the eigenvector. This
convergence failure can happen only if the starting vector Xq is orthogonal to the desired eigenvector.
Furthermore during the algorithm it is very likely that the current vector would be periodically discarded
and a new random vector genmerated. To prevent convergence to the desired eigenvector each of these
subsequent vectors would also have to be orthogonal to the desired eigenvector. This event has
probability zero. We now assume that the vectors X; converge to the desired eigenvector. With this
assumption it is possible to prove that the convergence of the BPRQS algorithm is asymptotically
quadratic or cubic.

Theorem 3: Assume that the sequence of veciors % generated by the BPRQS algorithm
converges to the desired eigenvector z. Let M be the eigenvalue associated with z. If )\ is 2
simple eigenvalue then the convergence is asymptotically cubic. Otherwise the convergence is
asymptotically quadratic.

Proof: Assume that the projection of the vector x; onto the eigenspace sssociated with ) is
the vector z and assume that

X3=VZ+€W

where w and z are unit vectors, w is orthogonal to z, and v = SQRT(1 - 62}. The Rayleigh
quotient of X is

=X+ e (wTAw - )
which is obviously X + O(e?).

The residual norm of X; is
A - 0+ o(2)x)| = efl(a - \Dw]] + O(e?) .
If X is 2 multiple eigenvalue then the next shift o; will be within O(¢} of X and the next vector
will be
Yipr = (A - (7 + O(e))I) x;.

Thus the z component of % will be amplified by 1/¢ while the other components will be
amplified by at most 1/ where « is the gap between ) and the distinct eigenvalue closest to ).
iIf ¢ << «v then after normalization

Xip1 = 2 + O(€%).

If \ is a simple ecigenvalue then eventually the minimum error bound will be 652;"75 and thus
the nmext shift o; will be within O{e?) of \. The next vector ¥j41 Will have its z component
amplified by O(1/¢?) while the others remain bounded so that after normalization

X, =2 + O(c?)

i+
and the theorem is proved.

5. Numerical Results

The implementation of the algorithm used in this section computes the desired eigenvalues sequentially
from left to right. Containment intervals for all the desired eigenvalues are updated after each
factorization. Vectors discarded in the course of computing one eigenvalue are saved if appropriate for



computing later eigenvalues.

This section gives the results of a few numerical experiments. In every test except the last, the matrix A
was of the form HDH where H = I - 2ww? /w'w was a Householder reflection matrix with a random
vector w and D was a diagonal matrix containing the eigenvalues. This form allows the easy specification
of the eigenvalues without suffering from the special rounding error characteristics of using 2 diagonal
matrix directly. Of course the resulting matrix is not banded but (A - oly! can be computed as
H(D - ¢IJ*H which keeps the the cost of the tests down. The tests were run on 3 DEC-20 computer in
double precision.

The first example had D = diag(1, 2, 3, .., 50). The smallest eigenvalue was computed {rom an initial
containment interval |-6, 55] and 3 random vector. The behavior of the algorithm is given in Table 1.

Table 5-1: Behavior of BPRQS Algorithm

step RQ Residual Error Bound  Shift

1 27.204 13.50 13.50 25.5000

2 25915 2.09 2.09 10.2500 *

3 10.096 1.87 1.87 8.2220

4 9.232 837 837 1.6611 *

5 2.825 3.11 3.11 -1.6945
6 4.758 7.00 7.00 - 0417 *

7 3.267 4.80 4.80 7846 *

8 3.964 5.78 5.78 1.1978 *

9 1.319 1.24 1.24 8912

10 1.000 0555 00505 1.00534

11 1.000 B1be-4 A434e-8 5999999972

i2 1.000 962e-13 .304e-15 terminate

¥ indicates a bisection shift and randomization
of the eigenvector approximation

As can be seen from Table 1, it takes a while for the shift to get nearer to 1 than to any other
eigenvalue, at which point the cubic rate of convergence of the algorithm becomes apparent.

It is more efficient in terms of factorizations per eigenvalue to compute several adjacent eigenvalues
since the information gained while locating the first eigenvalue gives a head start on finding the rest.
Table 2 shows the number of factorizations needed to compute the first ten eigenvalues of the same
matrix A using the same initial containment interval.

To test the effects of multiple eigenvalues on the algorithm the second test matrix had the same
eigenvalues as the first except that five extra eigenvalues were added to make the eigenvalues 1, 2, 3, 4,
and 5 double. The behavior of the algorithm on computing the smallest eigenvalue of the matrix, starting
with the interval [-5, 56] and a random vector, is shown in table 3. The quadratic convergence can be
seen easily as well as the additional penalty for terminating due to interval width rather than due to small

residual.

As before in the simple eigenvalue case, the number of factorizations per eigenvalue was reduced if
several eigenvalues are computed at once. The number of factorizations needed for each of the ten
smallest eigenvalues for the second test matrix are given in table 4. Fach second eigenvalue was already
known %o the desired accuracy, the factorization was needed only in computing the corresponding
eigenvector. The total number of tactorizations meeded to compute the ten eigenvalues was 54. This



Table 5-2: Number of Factorizations Per Eigenvalue

Figenvalue Number of Factorizations
1. 11
2. 8
3. 8
4. 4
5. 7
6. 3
7. 4
8. 5
9. 4
10. 3
Table 5-3: Behavior of BPRQS Algorithm on Multiple Eigenvalues
step RQ Residual Error Bound Shift
1 19.957 149 14.9 25.500 *
2  25.098 4.03 4.03 21.067
3 21048 514 514 20.535
4 20998 075 075 7.767 *
5 8.264 4.73 4.73 1.334 *
6 1.685 1.96 1.96 -1.808 *
7 34972 8.05 6.05 -212 *
8 3.464 4.68 4.68 586 *
9 1.201 1.39 1.39 985 *
10 1.000 498e-2 408e-2 1.005
11 1.000 227e-4 227e-4 999977
12 1.000 5ile-9 .5lle-9 1.0000000005107
13 1.000 334e-15 .334e-15 .99999992999999666
14 1.000 334e-15 .334e-15 1.00000000000000334
15 1.000 termination due to interval width

% indicates a bisection shift and randomization
of the eigenvector approximation

Table 5-4: Number of Factorizations Per Eigenvalue

Eigenvalue Number of Factorizations
1.0 14
1.0 1
2.0 10
2.0 1
30 9
30 i
4.0 7
4.0 1
5.0 9
5.0 1

compares to the 55 factorizations needed to compute all the eigenvalues in table 2.

o



The behavior of the algorithm on close but not multiple eigenvalues is similar. The third test matrix
had eigenvalues i3 i=1, 2, .., 50. The code took 60 factorizations to compute the ten smallest
eigenvalues which are bunched closely together mear zero. When asked to compute the ten largest
eigenvalues the code needed 61 factorizations.

The final test matrix used was one of the tridiagonal matrices used to test the tridiagonal bisection code
on p.255 of [4]. The off diagonal elements are all ones while the diagonal s
diag{lGO,QO,BO,...,10,(},10,...,100). All twenty one eigenvalues were computed to fifteen figures of accuracy
using 93 factorizations starting with random vectors and the containment interval [-1,101}, which is known
to contain all the eigenvalues by the Gerschgorin circle theorem. The bisection algorithm took 345
factorizations to compute the eigenvalues to seven figures of accuracy.

8. Generalized Eigenvalue Problems

Both the bisection algorithm and the Rayleigh quotient iteration can be applied to the generalized

eigenvalue problem
(A-AM)z =0

provided that both A and M are symmetric and M is positive definite. The only problem is that given an
approximate eigenvector x with xTMx = 1 and its Rayleigh quotient ¢ = xTAx , the residual norm
needed by the algorithm is is the M norm of (A - éMjx. Computing an M porm requires the
factorization of M. However neither the time needed to compute this factorization nor the space needed
to store it make a significant increase in the time and space needed for the algorithm in the standard case.
Once the factorization of M is available the algorithm procedes as described above. Thus the algorithm is
equally applicable to generalized eigenvalue problems.

7. Conclusions

This paper has described and analyzed a new combination of the Rayleigh quotient iteration and the
bisection algorithm and has shown that it is an effective way to compute 2 few eigenvalues and
eigenvectors of a symmetric band matrix or a symmetric definite banded generalized eigenvalue problem.
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