EXTENDING GRAPH BASED LOCKING PROTOCOLS
WITH EDGE LOCKS

Gael N. Buckley
and
Avi Silberschatz

TR-226 June 1983

TRI3-22¢

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

EXTENDING GRAPH BASED LOCKING PROTOCOLS WITH EDGE LOCKS!

Gael N. Buckley
Avi Silberschatz
Department of Computer Science
University of Texas at Austin

Austin, Texas 78712

Abstract
A large number of locking protocols use precedence relations among data items to assure
the serializability of the database system. These protocols have extended the semantics
of the exclusive lock from prohibiting access to a data item to prohibiting access to an
entire subgraph. In this paper we argue that combining the use of exclusive locks for
these different purposes is ill conceived. We show how these two distinet functions can
be separated into the traditional locks operating on the individual data items, and a
corresponding set operating on the edges of graph. This separation is illustrated by a
general transformation between a given graph protocol and the new type of protocol that
retains the same properties as the original protocol. This separation clearly illustrates
the relation between shared and exclusive locks in the various protocols, and allows

greater concurrency for the database system.

lThis research was supported in part by the Office of Naval Research under Contract NOO01I4-80-
K-0987, and by the National Science Foundation under Grant MCS 81-04017.

1. Introduction

A database system has a set of user programs P which can operate on the set of data
items D. If it is assumed that each user program (or transaction) when executed alone
preserves the consistency of the database, then it is often necessary to ensure that any
concurrent execution of several user programs also preserves consistency of the database.
A database system that guarantees this property is said to be serializable [1].

Most systems ensure serializability by controlling access to each itern in the set D via
the use of a concurrency control scheme. A very common model {or such systems is the
use of a locking protocol. "A transaction must lock a data item before the first access to
that item, and unlock it when all accesses to the item are complete. Locking protocols
commonly use two types of locks, exclusive locks and shared locks. Exclusive locks
preclude any other lock to be held on a data item, while shared locks permit other
shared locks on the same item. Thus a locking protocol is a restriction on when a
transaction may lock and unlock each of the data iterns in the database.

Eswaran et al [1], were the first to discuss the importance of serializability. They also
introduced the first useful locking protocol - the two phase protocol. This protocol
specifies that no data item can be unlocked until all data items to be accessed have been
locked. Eswaran et al have also demonstrated that if no additional information
concerning the structure of the database is available, the two phase criterion is necessary
and sufficient to ensure serializability. To overcome this problem, several authors have
used a precedence order on the database structure to develop locking protocols that are
not two phase [6, 4, 3, 8. We term these graph protocols.

The earliest of the graph protocols is the tree protocol [6], used in databases organized
(logically or physically) as trees. In this protocol, a transaction can lock any data item in
exclusive mode first, and lock a subsequent item in exclusive mode only if its father is
locked, and the item has not yet been locked. A transaction can unlock a data item at
any time. In this protocol exclusive locks are used for three different purposes. These
are:

a) to prohibit access of other tramsactions from its unlocked data items to the subtree
where it will yet lock additional data items, and

b) to prohibit access to an individual data item that it intends to update

c) to prevent deadlock.

Hence, the tree protocol extended the semantics of the exclusive lock.

The idea of restricting access to parts of the database graph was further developed by
more general non-two-phase graph protocols, applicable to both acyclic and arbitrary
directed graphs. (see, for example [8, 4, 3]). These protocols operate on a database
modelled as a directed graph or undirected hypergraph. In general, the restrictions for

these protocols state that an item cannot be locked unless the transaction is holding
locks on some set of ancestors {usually some number of Tathers of the item), and that this
set has some functional relation to other sets for the item to maintain serializability (and
perhaps deadlock freedom).

The intent of this paper is to show that the idea of using exclusive locks to prohibit
access to the rest of the graph is ill conceived. We will elaborate on some of the
problems that may arise in connection with the use of such methods and develop new
mechanisms for eliminating these problems. These problems may be eliminated by the
use of an edge lock, which operates on the precedence relations between data items
rather than the data items themselves. In this manner one may distinctly sce the
utilization of subgraph exclusion of the previous protocols, and use this separation to
enhance the behavior of the original protocols. We will give a simple transformation
from existing graph protocols to the corresponding edge protocols. While these
transformations do not utilize the full power and semantic separation of edge locks, they
do increase concurrency for the corresponding protocols.

The remainder of the paper is organized as follows. Section 2 illustrates the motivation
for edge locks by presenting various examples of the restricted concurrency inherent in
the family of tree protocols. Section 3 introduces edge locks, and shows how the
corresponding edge tree protocols resolve these difficulties. Section 4 presents a general
transformation between a graph protocol and its corresponding edge protocol, and shows
that the properties of the original protocol is preserved. Section 5 concludes the paper
with a discussion on the adaptability and extensibility of the edge lock concept.

2. Motivation for Edge Locks

In this section we describe three variations of the tree protocol, and show how the use
of the extended semantics of exclusive locks limits the amount of permissible concurrency
of each database system. The first variation requires a transaction to issue only
exclusive locks, while the other two protocols employ both shared and exelusive locks.
We begin by describing the system model.

2.1. The System Model

For the first three protocols and their analogs, the database is organized in the form of
a tree, where the vertices of the graph correspond to the data items in the database.
One major example of a tree structured database is the IMS system developed by IBM.
We represent data items by single capital letters. An arc e, from item A to item B
implies that a transaction may access A before accessing B, and is denoted by <A B>.
The terms father, path, and ancestor are used in their usual graph theoretic sense. The
term "the closest ancestor with property p* is defined as the ancestor M of V such that
no vertex in the path from M to V has property p except M.

A transaction T, must access data items according to the precedence relation of the
graph as defined by the locking protocol; it must lock an item before the [irst access to
that item, and unlock the item once all accesses are complete. A transaction may only
lock a data item once. If T, will only read access an item, it may request a shared or
exclusive lock (denoted S or X| respectively}, otherwise it must request an exclusive lock.
There may be several S locks on a data item, but one X lock on an item precludes other
locks on the item. When the system issues T.'s request for a 5 lock, an X lock, or an
unlock on some data item A, we denote this by LS(A), LX(A), or UN(A), respectively.

2.2. The Tree[X] Protocol

We now describe the first of the tree protocols, which requires that a transaction can
issue only exclusive locks [6]. The tree[X] protocol allows a transaction T; to request an
X lock on vertex V if both of the following conditions are satisfied:

1. a. V is the first vertex to be locked by T;, or
b. the father of V is locked in X mode by T,

2.V has not yet been locked by T

A vertex can be unlocked at any time.

We now present a simple example which shows that updating a data item unnecessarily
restricts access to the subgraph reachable from that data item. Consider the database of
figure 2.1 with two transactions T; and T,. T, locks data items A and C for 10 time
units each, and T, locks item B for 100 units. Consider the following history, where the
vertical axis denotes when the transactions obtain and release locks.

T, Ty

LX(A)
LX(B)
UN(B)

LX(B)

LX(C)

UN (B)

UN(C)

UN (A)

In this example, T’s completion time {or response time) must be 120 units, even though
the two transactions lock no data items in common. Indeed, this same behavior is true
for all graph protocols using only exclusive locks. Note that T,’s completion time for the
2PL protocol is only 20 units, a large performance difference, especially to a database
user.

Figure 2.1

2.3. The Tree[XS] Protocol

If a transaction reads many data items and only updates a few, it would be more
efficient to allow a transaction to request both shared and exclusive locks. One protocol
which allows this is the tree[XS] protocol (this denotes that there is one class of
transactions which can issue both X and S locks), presented in [4]. To simplify the
presentation of the protocol, we define the function top(V,T;)=W as follows:

a) If there exists an ancestor of V locked in X mode by T, let W be the son of the
closest such ancestor; otherwise

b) If the first vertex locked by T, is locked in S mode by T, let W be that vertex;
otherwise

¢) let W = nil.

The Tree[XS] protocol allows a transaction T; to request a lock on vertex V if both of
the following conditions hold:

L. a. V is the first vertex locked by T; or
b. i. top(V,T;) #= nil and
ii. all vertices except V in the path{top(V,T,),V) are locked in S mode by T}, and
iii. all vertices R with top(R,T;)=top(V,T,) have not yet been unlocked.

2. V has not yet been locked by T;.

An example of these conditions are shown in figure 2.2, where T, has locked AB,C, D,
and it wishes to lock E. Top(E,T;) is B, and hence D must be locked in S mode, and B,
C, D must still be locked by T}.

We now illustrate the case where a transaction using the tree[XS] tree protocol and
only requiring shared locks must either not unlock any item, or must issue an exclusive
lock to prohibit access to the subgraph. Hence, it must restrict access to the data field of

Figure 2.2

the root of the subgraph, even though the function is not intended. Consider again the
database of figure 2.1, where transaction Ty reads A, B, then C for 10 units each, T,
writes A and reads B for 1 unit each, and Ty writes C for 50 units. If T locks A, B, and
C in S mode, then it cannot unlock A until it locks C. Consider the following history:

T, T2 T,
LS(A) LX(C)
LS(B)
UN(C)

LS(C)
UN(A)
UN (B)

LX(A)

LS (B)

In this case, Tg must wait 40 additional units until Tl can lock C. Notice this lock
history can also be generated by the 2PL protocol. In order to allow T, to unlock A
carlier, T, can lock B in X mode, shown by the following history:

Tl T2 T3
LS{A) LX(C)
LX(B)
UN (A)

LX (A)

UN(C)

LS (C)
UN(B)

LS (B)

This history has T, wait to access B until T removes the X lock from B. Either option
unnecessarily reduces concurrency.

Notice that the two protocols described use an X lock on a data item as the blocking
factor to prohibit access to the subgraph rooted at the item. Both of these problems can

be resolved by separating the semantics of graph access from data item access, as we
show in the next section.

2.4. The Tree[X,S] Protocol

Finally, we show that these problems remain even when transactions ean be separated
into sets of read-only transactions and update transactions. I'or this we use the tree[X 5]
protocol given in [4]. Upon entry into the system, a transaction which only reads data
items is classified as read-only, and only issues S5 locks. All other transactions are
classified as update transactions, and can issue only X locks. The tree[X,S] protocol
allows a transaction to request a lock on vertex V in mode M iff:

1. V is the first vertex locked by T}, or
father(V) is locked in mode M;

2. V has not been locked by T;;
3. all update transactions must lock the root of the tree first.

As before, a vertex can be unlocked at any time.

Consider figure 2.1 with update transactions T and T,, and one read-only transaction
T, T, writes B for 40 units, T, reads A and B for 5 units each, and T writes A for 5

units. Using the tree[X,S] protocol, T, must begin by locking A, the root of the tree.
Consider the following history:

T1 T2 TB
LX (A)
LX(3B)
UN(A)
LS (/)
UN(B)
LS(B)
UN (A)
LX(A)
UN(A)

Notice that T, must retain the lock on A until T, releases B, even though A is no longer
being read. This again shows how the restrictions on the graph decrease concurrency by
preventing access to a data item. We now show how these concepts can be separated,
and how they increase the concurrency of the systems illustrated above.

3. The New Edge Tree Protocols

In this section we define a new type of lock, called edge locks, and show how the
problems presented above can be resolved by the use of these new type of locks. Edge
locks have also been used by Korth [5] to prevent deadlocks for protocols operating on
multiple granularity DAGS [2]. The edge locks we introduce also operate on edges, but
are used for a completely different purpose. As the tree protocols enforce serializability
by holding locks on a set of data items, the edge tree protocols enforce serializability by
holding locks on a set of edges. We present a simple transformation from the original
protocols to the new protocols, and generalize the transformation in the next section.
We begin by defining terminology for the use of edge locks.

All terms have direct analogies to the original graph protocol. We denote an edge {rom
vertex A to vertex B as <AB>. An edge <A,B> may be locked in ezclusive or
shared mode (denoted EX or ES, respectively). An edge may be locked with seversl I5S
locks simultaneously, but may only have one lock if the lock mode is EX. The lock and
unlock instructions issued by the system on edge <AB> are represented by
LEX(<A,B>), LES(<A,B>), and UNE(<A,B>). An edge may only be locked once
for the transformations of the original protocols.

Using terms in the same manner as the previous section, we define the father of edge
<A B> as the edge <M,A>, where vertex M 1s the traditional father of vertex A. The
use of the terms ancestor, path, and closest ancestor with property p are constructed
analogously. Finally, any verlex V with no incoming edge has a dummy edge <0, V>
from a dummy vertex to V, simply to avoid special cases {or the protocols.

We now present the edge protocols corresponding to the various tree protocols
presented in section 2, and demonstrate how edge locks resolve the blocking problems
encountered in each of the earlier examples. The three new protocols look nearly
identical to the old protocols, the only difference being that vertices are now replaced by
their corresponding edges.

We do not present in this section the proofs that the new edge protocols ensure
serializability. This is done in section 4, where we present general transformation rules
and correctness rules which apply to the edge tree protocols presented below.

All the following edge tree protocols allow a transaction to request a lock on vertex V
in mode M only when the transaction can request a lock on edge <V,R> in mode EM.

3.1. The Edge Tree[X] Protocol

We give the conditions necessary to lock an edge for the new protocol, and show how
the blocking problem presented in section 2.2 is eliminated by use of the corresponding
edge protocol.

The condition to request a lock on edge <M, V> under the edge tree[X] protocol is:

I. <M,V> is the [irst edge to be locked by T, or
<I,M> is locked in EX mode by T

2. <M,V> has not been locked by T,.

We now present the corresponding edge lock history for the problem given in section 2.2.
We first redraw figure 2.1 to construct the dummy edge and label edges in the figure to
correspond to the histories.

(O,A? <A, By

Figure 3.1

The corresponding history for the tree[X] protocol is:

T, Ty
LEX (<0, A>)

LEX(<A,B>)
LX (A

1LX(B)

UNE (<A, B>)
LEX (<A,B>)
LEX(<B, C>)
LX(C)

UN(B)

This example illustrates how the use of edge locks allows T, to bypass T,, and
dramatically decrease its completion (or response) time.

3.2. The Edge Tree[XS] Protocol

The original tree[XS] protocol was defined in terms of a function on the ancestors of a
data item. Similarly, the edge protocol is defined in terms of the edge ancestors of an
edge, where edge <Q,M> is the father of edge <M,V>. Ancestors are constructed in
the same manner. We define etop(<M,V>T,) = WV in the same way as before:

a) If there exists an ancestor of <M,V> locked in EX mode by T;, let W be the son
of closest such ancestor, otherwise

b) If the first edge locked by T, is locked in 5 mode by T, let W be that edge,
otherwise

¢) let W = nil.

We now present the conditions which must be satisfied for T, to request a lock on edge
<MV>:

1. a. <M,V> is the first edge to be locked by Ti or
b. 1 etop(<M,V>,T,} # nil and
ii. all edges except <M,V> in the path(etop(<M,V>T,)) are locked in ES mode
and

iii. all edges <R,5> with etop(<R,5>,Tj=etop(<M,V>T)) are locked by T,

iiii. If T} has locked the vertex S for any edge <R,S> locked in ES mode fulfilling
conditions i or iii above, T, still has a lock on S.

2. <M,V>> has not been locked by T

We now give the corresponding edge history for the problem given in section 2.3.

T, T, Ty
LES(<0,A>)
LS (A)
LEX(<B,C>)
LX({C)
UNE (<B, C>)
LES (<A,B>)
LS(B)
LEX(<B,C>)
UNE (<0, A>)
LEX (<0, A>)
LES(<A,B>)
UN(A)
UN(B)
LX(A)
LS(B)
U((c)
UN(A)
UN(B)

Notice that T, no longer waits on the use of C, and yet the EX lock on <B,C>
establishes the necessary access restriction that T, requires, without delaying T,. One
can easily see from this example that if transactions with intersecting sets of data items
split into disjoint subgraphs, the completion time of each transaction will decrease. Only
when the yet to be locked data items reside in the same subgraph will the transacticns
be delayed, as is necessary for serializability.

10

3.3. The Edge Tree[X,S] Protocol

Finally, we give the conditions necessary to lock an edge in the tree[X,5] protocol. To
be consistent with the original protocol, an update transaction issues only EX edge locks,
and a read-only transaction issues only ES locks. To request a lock on edge <M, V> in
EX mode:

1. <M,V> is the dummy edge for the root V or
<Q,M> is locked in EX mode by Ti

2. <M,V> has not been locked by T
To lock <M,V> in ES mode:

1. <M,V> is the first edgé to be locked by T.

;or <QM> is locked in ES
mode by T,

2. <M,V> has not been locked by Ti

An edge or vertex may be unlocked at any time.

We now present the new history for the problem given for the tree[X,S] tree protocol.

Ty T, Ty
LEX (<0,A>)
LEX (<A, B>)
UNE (<0, A>)
LES (<0,A>)
1LX(B)
UNE (<A, B>)
LS (A)
LES (<A,B>)
UNE (<0,A>)
LEX(<0,A>)
UN(A)
LX(A)
UN (B)
LS(®)
UNE (<A,B>)
UN(B)
UN(A)

This new history allows T3 to write A as soon as T, has finished reading it, without
waiting for T, to release B.

Through these three examples, we have shown that separation of function both
increases clarity and extracts additional concurrency from this set of graph protocols. In
the next section we demonstrate how it is possible to achieve this with any graph
protocol.

i1

4. Deriving Edge Protocols from Graph Protocols

We now present the general transformation f{rom any graph protocol to its
corresponding edge protocol. We demonstrate that if the original protocol ensures
serializability and possibly deadlock freedom, then the derived edge protocol ensures the
same properties. This transformation is done by replacing vertices in the original
protocol by edges. Since all graph protocols use information about the graph, we first
define the graph relations used, and their corresponding edge relations.

4.1. Transformation Rules

In a general directed graph, vertex M is a father of V if there exists an edge from M to
V. There is a path from M to V if there is a path from M to Q and Q is a father of
V. The length of a path is the number of edges in the sequence. A vertex M is an
ancestor of V if there is a path from M to V. The definitions for edge relation are
identical. Edge <Q M> is a father of edge <M, V> if <QM> is an incoming edge to
vertex M and <M,V> is an outgoing edge from vertex M. There is a path from edge
<Q,R> to <M,V> if there is a path from edge <QR> to <LLM> and <LLM> is a
father of <M,V>. The length of an edge path i1s the number of edges in the path minus
1. An edge <Q,R> is an ancestor of <M, V> if there is a path from <QR> to
<M V>.

The database systems used in graph protocols operate upon database structured as
trees, directed acyclic graphs, or general directed graphs. Every protocol operates on the
concept of some form of separation between unlocked iterns and items yet to be locked,
using some combination of the graph relations presented above. Additionally, some
protocols proseribe special status for particular vertices, such as the first vertex locked in
the tree protocols presented earlier. To derive an edge protocol from its corresponding
graph protocol, observe the following steps:

1. Replace every reference to a vertex with some edge, such that any graph
relation between vertices in the original protocol are maintained in the
transformed edge protocol. The first object locked by T; must be an edge.
Thus the derived protocol specifies when an edge may be locked or unlocked.
The two steps below define when a vertex may be locked or unlocked.

2. A vertex V can be locked in mode M by transaction T, il V has not been
locked by T;, V is not presently locked in an incompatible mode by some
other transaction, and the edge protocol would allow T, to request a lock on
some outgoing edge <V,Q> in the corresponding edge mode EM. This edge
<V,Q> need not actually be locked by T;.

3. A vertex V presently locked can be unlocked only when unlocking a dummy
edge <V,0y,> locked in the same edge mode as V does not prohibit locking
any future edge using the edge protocol.

12

For the graph protocols described in this paper, this last condition is important only in
the tree[XS] protocol. This oceurs when the incoming edge is locked in ES mode, and
the vertex itself is locked in X mode. Ilence, the dummy edge is considered locked in EX
mode, and would have an etop identical to the outgoing edges from the vertex.

The transformation has been used to derive the three edge tree protocols given in
0

section 3 from the graph protocols given in section 2. We now present one additional
graph protocol, the guard protocol of [7].

With each vertex V, associate a set of pairs of sets of vertices, denoted by
AV By LAy Byl where Ay, C By and Ay N ij 7% 0. If M € By, then
M is a father of V.

Transaction T can request a lock on V in X mole iff:

1. V is the first vertex to be locked by T, or
Ay 1s locked in X mode by T, and By, has at some time been locked in
X mode by T;.

2.V has not been locked by T,

The corresponding edge guard protocol is defined as follows:

With each edge <P,V associate a set of pairs of sets of edges, denoted by

.

UAcp vs1Bep voil-[Acp vonBap vsmlhy where Ap vy € Bopyyy and
A<P,V>i N B<P,V>;’ s£ 0. All edges in A‘<P,V>i are fathers of <P, V>.

A transaction T, can request a lock on edge <P,V> in EX mode iff:

1. <P, V> is the first edge to be locked by T, or
A<P,V>i is locked in EX mode and B<P,V>i has at some time been
locked in EX mode by T;.

2. <P, V> has notl been locked by T;.

4.2. Proofs of Serializability and Deadlock Freedom

We now present the proof of serializability for this general transformation. We do so
by showing that whatever properties the original graph protocol had are maintained by
the new protocol. To do so, we need to perform two transformations on the graph that
the graph protocol operates on, and show that these maintain the structure of the graph.
As in section 3, we assume that the original graph already has an incoming edge for
every vertex to enable locking of that vertex.

There are three types of graphs that protocols operate on: trees, acyclic graphs (rooted
or otherwise), and arbitrary directed graphs. To a graph § we add a new vertex 0y, for
every vertex V, with an edge <V,0y,> from V to 0y, We term this graph §’. Since
there are no outgoing arcs from 0y, this addition does not change the graph structure,

13

nor introduce any new paths between vertices in §. We then construct the dual of §7,
denoted by §”, by transforming each edge <<AB> in § into a vertex (<A,13>>), with
an edge from one vertex to another if the edges they represent are incoming and
outgoing edges of the same vertex in §'.

We now prove that if there is a path from one vertex to another in §”, then there was
a path of the same length {rom one edge to another in §.

Lemma 1: There is a path from vertex (<AB>) to (<C,D>) in §” if and only if
there is a path of the same length from edge <A B> to <CD> in §'.

Proof: Proof by induction on the length of the path.

i==1 There is an arc from (<AB>) to (<C,D>) if and only if edges <A,B> and
<C,D> are incoming and outgoing edges of the same vertex in §’, by construction
of G”. Both of these paths are of length 1.

i>k From the inductive assumption, there is a path of length k from {<R,Q>) to
(<C,D>) if and only if there is a path of length k from <R,Q> to <CD> in §'.
There is an arc from (<AB>) to (<R,Q>) in §” if and only if <A B> and
<R, Q> are incoming and outgoing edges of the same vertex in §’, by construction
of G”. Both of these paths are of length 1, and hence the paths from (<A,B>) to
(<C,D>)in §” and <A,B> to <C,D> in § are of length k+1.

We now present two definitions which are necessary in proving serializability and
deadlock freedom.

Definition 1: A history is the time ordered sequence of the lock and unlock
operations of a set of transactions T= {T,..., Ty} performed on the database. There is
a dependency between transaction T; and Ty il both transactions lock vertex V) and at
least one transaction locks V in X mode. If T; locks V first, we say T, < Tjn A history
is serializable if and only if the < relation on the set Tis acyclic.

Definition 2: I[T, holds a lock on vertex V, and Tj requests a lock on V|, where the
lock request and lock are not both S mode, the lock request must be delayed until T;
unlocks V; in this case we say that Tj waits-for T,. A protocol is deadlock free if all
wait-for relations produced are acyeclic.

Theorem 1: If the original graph protocol is serializable, then the transformed edge
protocol is serializable.

14

Proof: Consider a history consisting of edge and vertex locks obtained by excculing
the edge protocol on some graph §. Construct the graph §’ in the manner given above.
Execute the given history on this graph, with the addition that edge <V, 0y > is locked
in mode EM by T, immediately after vertex V is locked in mode M by T, and edge
<V,0y> is unlocked immediately after vertex V is unlocked. This locking is allowed by
the edge protocol since a vertex can be locked only when an outgoing edge can be

locked. The unlocking is allowed by restriction 2 of the edge transformation.

Since the dependencies and wait-for relations for the vertices in the original history are
duplicated by the edge locks on the edges <V,0y,>, we can remove the vertex locks
from the new history. Apply this sequence to §”. The edge locks in the sequence are
once again vertex locks when applied to §”. By Lemma 1, the transformation from §' to
G’ maintains exactly the same graph relations between vertices as the relations between
the edges in §'. The transformation from locking a vertex in the original graph protocol
to locking an edge in the edge protecol maintains the same graph relations between
edges as there were between vertices. Ience, we have obtained the original graph
protocol executing on a set of vertices on G, a graph of the same structure as g. Hence,
if the original protocol ensures serializability, the corresponding edge protocol ensures

ba

serializability on the graph & Since any < relations between the dummy edges
<V,0y> are acyclic, and these duplicate the < relations between vertices locked in the
graph §’, the entire set of dependencies of the edge protocol on the graph § are acyelic,
and hence serializable.

Theorem 2: If the original graph protocol is deadlock free, then the transformed edge
protocol is deadlock free.

Proof: Construct the graph §” and the same three sequences of locks and unlocks as

given in the proof of Theorem 2. Again we obtain the original graph protocol exccuting
on a set of vertices of §”', a graph of the same structure as G If the original protocol
produces an acyclic wait-for relation, the corresponding edge protocol has an aeyelic
wait-for relation on the graph §”. Since any wait-for relations between edges <V,0y>
duplicate the wait-for relations of the vertex locks in the edge history of §, the entire

wait-for relation remains acyclic.

To illustrate the transformations given above, we use this graph and history given for
the edge tree[X] protocol in section 3.1. The graph § is figure 2.1, and graphs §’ and §”
are presented below, in figure 4.1.

Figure 4.1
The histories are arranged in the same order as the proof: the original edge history on
the graph G, the extended edge history on the graph §', and the history with the vertex
locks and unlocks removed, which is to be applied to the dual of §.

16

Tl

LEX (<0,A>)
LX(A)

UN (A)

LEX (<A,B>)
UNE (<0, A>)
LEX(<B,C>)
LX(C)

UNE (<A, B>)

UN(C)
UNE (<B, C>)

T
LEX (<0,A>)

LX (A)
LEX (<A, 0,>)

LEX (<B, 05>)

UN (A)
UNE (<A, 0,>)

LEX (<A, B>)
UNE (<0, A>)
LEX (<B, C>)
LX(C)

LEX (<C,0¢>)

UNE (<A, B>)

UN(C)
UNE (<C, 0¢>)

UNE (<B,C>)

Ty
ad

LEX(<A,B>)
LX(B)

UNE (<A, B>)

UN(B)

'1‘2

LEX(<A,B>)

LX(B)

UNE (<A, B>)

UN (B)
UNE (<B, 05>)

17

T, T,

LEX (<0,A>)
LEX (<A, B>)
LEX (<A, 0,>)

LEX(<B, 05>)
UNE (<A, 0,>)

UNE (<A, B>)
LEX(<A,B>)
UNE (<0, A>)
LEX(<B,C>)
LEX(<C,0:>)

UNE (<A, B>)
UNE (<B, 0p>)

UNE (<C, 0c>)
UNE (<B, C>)
This example shows that the resulting sequence of edge locks is once again the original
tree[X] protocol, operating on a tree extended by the addition of the vertices
corresponding to the <V,0,> edges.

5. Conclusion

We have introduced a new method of separating the several functions that exclusive
and shared locks represent in non-two-phase graph protocols. This separation admits
more concurrency in the database system. We have shown that there exists simple
transformations from existing graph protocols to their corresponding edge protocols
which admits the same behavior as the original graph protocol.

18

References

1. Eswaran, K.P., Gray, J.N,, Lorie, R.A., Traiger, LL. *The Notions of Consistency
and Predicate Locks in a Database System.® Communications of the ACM 10, i1
(Nov. 1976), 624-723.

2. Gray, J., Lorie, R.A., Putzolu, G.R., Traiger, LL. Granularity of Locks and Degrees
of Consistency in a Shared Data Base. Tech. Rept. RJ1654, IBM Research - San Jose,
1975. ‘

3. Kedem, 7., Silberschatz, A. Non-Two-Phase Locking Protocols with Shared and
Exclusive Locks. Proc. Sixth International Conference on Very Large Data Bases,
October, 1980.

4. Kedem, Z. and Silberschatz, A. *Locking protocols: from Exclusive to Shared
Locks." Journal of the ACM (to appear).

5. Korth, H. *Deadlock Freedom Using Edge Locks.* ACM Transactions on Dalabase
Systems 7, 4 (December 1982), 632-652.

6. Silberschatz, A., Kedem, Z. *Consistency in Hierarchical Database Systems."
Journal of the ACM 27, 1 (Jan. 1980), 72-80.

7. Silberschatz, A., Kedem, Z. "A Family of Locking Protocols for Database Systems
that are Modeled by Directed Graphs.® IEEE Transactions on Software fingineering
8, 6 (November 1982}, 558-562.

8. Yannakakis, M. "A Theory of Safe Locking Policies in Database Systems.” Journal
of the ACM 29, 4 (July 1982), 221-244.

