

S I B S v I o eu

ABSTRACT

We propose to specify {i.e., state requirements) and program {i.e., define} systems of CSP using sets
of finite strings called channel observation sequences. [ach sequence is a concalenation of some channel
symbeols that defines a possible order of communications across different channels in the system under
consideration. We present a simple programming language to define CSP systems in this {ramework; and
show that the language satisfies some nice algebraic properiies. We discuss a programming methodology
to define CSP systems that meet given specifications. We also discuss a verification methodology to
establish channel ®liveness* in given CSP systems. A number of CSP systems {e.g., a finite buffer, 2

factorial multiplier, and a circulating token) are deflined and verfied using this approach.

"We aim to describe o concurrent system [fully enough to defermine ezactly what behaviour will be
seen or ezperienced by an exferncel observer.. two sysiems are tndistinguisheble if we cannot tell them

apart without pulling them apart.” R. Milner,1980[8]

"In g spectal purpose language, such o limitatson may be an advantage, if if permils @ mechanical

check against certain undesireble ocourrences such as non-lermination or deadiock.®
C.A.R. Hoare,1982[5]

12 RKIOMS

[P
2iing

3
3

ke

e
&
w0

5

P

bt

in
ns

g

XDPressio

el

nann

i

ES

2

b
H

.t some ¢

IIPEL

= H

g o

no

[

o

W
&
%

ions®
ge is

a

cificat
ms of our

C
7a

ng langunage for

rammi
n our langu

d

e

4}

5
=

a2l
£
&
i
ot
©
at
o
&
i
&

o

e

2 F
£

Ianguage is discussed in section 7. Concluding remarks are in Seclion 8. For convenlence, all the lemmas

are proved in the Appendix.

2. SPECIFICATIONS AND PROGRAMS

Let A=={a,b,...} be a finite set of symbols called channel symbols; A is called the channel alphabet.

A specification S [of some CSP systems) is a nonempty set, of finite strings over the channel
symbols in A, which is closed under prefixing; ie, if 2 string s is in 5, then any prefix of s is also in 8. A
string in S is called a channel observation sequence (or simply a sequence) of S. The set of symbols used

in the sequences of S is a subset of the channel alphabet A; it is denoted @5,

Example: Consider 2 systemn that consists of one sequential process and two chapnels called “left®
and "right®. Repeatedly, the process receives 3 message via channel "left” them sends 2 message via
channel ®"right®. This system can be specified by the infinite set of channel observation sequences:

{E,
lelt,
left.right,
left.right.left,...},
where E denotes the empty siring, and
¥ % is the usual concatenation operator.
Notice that each channel observation seguence defines a possible limited history of the process as it

accesses the two channels. [2

A program P is an expression, written in some restricted notation called a progremming language,
which defines a closed-under-prefixing set of finite strings over the channel symbols in A, From now on,
we use the term "a program® to mean an expression which defines a set or to mean the set itself; the

context should indicate, in each instance, which usage is intended.

Each string in a program P is called a channel observation sequence {or simply a sequence) of P; and

@P denoctes the set of channel symbols used in the sequences of P.

A program P is said to meet a specification S iff P is 2 subset of S {denoted P = §).

3. A PROGRAMMING LANGUAGE

In this section, we present a simple language to define sets of strings over the channel alphabet A.
Later, in section 5, we show that each set defined by this language is closed under prefixing; and so the

language is a programming language.

In our language, a set of strings over the channel alphabet A is defined by an expression:

E(P, .. Q)

which coniains some

«‘v

some recursive equations:

P = F(P), .., Q= G(Q)

i

where F{P) is an expression which contains the program symbol P, and G(Q) is an expression which
contains the program symbol Q. Beside their program s symbols, the expressions E, F,..., and G may also
contain any of two constants and three operators. The two constants are deunted "ZERO® and

«CHAQS®; and the three operaiors are denoted "a:®, "v®, and *&*®. They are defined as follows:

Constant ZERO: ZERO is the set {E}, where E i

ot
[
o
b
e
%
Tl
Ll
€
[
P
vy
I
e
R
o

Constant CHAOS: CHAOS is the set A, where A is the channe} alphabet and * is the usual

transitive closure operalor. i

symbols in A. Then a;%% is the set §i’£§ U aR, where U is the usual union operator, and a.R is the set of
all strings a.s, where s is a string in R. i

Operator ®v": Let R and R’ he two sets of strings over the channel symbols in A Then, Rv R is
the set R U R i

H

Operator *&": Let s and s’ be two strings over the channel symbols in A; and let B be 2 subset of
A which contains all the common symbeols in s and s'. Then, s and s’ are compatible with respect to B iff
they have the same symbols of I in the same order; i.e., they can be writien as:

§ == X8y Xy oo By and

3

5 == ¥oByY g

where a,..,2, are symi bols in B, oand 5,0, 5y ¥ g000

i symbols which contains

where a,,...,3, are the common symbols in s and 5. Deline s&s’ as the set:
intrlv éxg vgé 3, smz’@{xigg} a, .intrlv{x,, ¥,),

H

Let B and R’ be two sets of strings over the channel symbols in A; then R&R’ is the set:

W
o
b
£2
0
g
@
i
fsi)
i
[R
]
3
i)
lad
b
=3
foand
()
gﬁﬂ

h respect to @RMER’

There is another useful characterization of the ng gperator. Let s be a string over the channel

symbols in A; and let B be a subset of A. The projection of s over B, denoted #y8, is 3 string obtained
from s by replacing each channel symbol in 5 but not in B by the empty string. (For example, if s =
abcebabach and B == {a,c}, then #ys = accaac.)
Lemmea 1s Let B and R’ be two sets of strings over the channel symbols in A; and let s be 2 string over
the channel symbols in A,

s is in RER’
il #gpsisin R, #gp.5isin R, and #@RQ@WS == g, |

fon

As mentioned earlier, the above constants and operators can be used to define the expressions
E(P,...,Q), F{P), and G(Q). It remains now to discuss the meaning of "recursion® defined by the equations
P = F{P} and Q = G(Q).

Recursion: An equation P = F(P), where P is a symbol and F(P} is an expression , defines P as the
largest set of strings {over the channel symbols in the channel alphabet A} which satisfies the equation. In
other words, P denotes the “weakest® solution of the equation. Later {in Lemma 6 below), we show that

each equation has a solution, and that there is a systematic technigue to find this solution. Il

4. PROGRAM EXAMPLES

Each of the following examples is written in terms of some parameter N; therefore we use
subscripted program symbols (e.g., P;, CELL;} and subscripted channel symbols {e.g., t;, flow;}, where the
subscript i ranges over the domain 1.N in most cases. We also use the following familiar syntax:

N
&Pi ¢ mean E’laPz&.,,&?Ef and

i=i

i=1..N: P,=F(P, to mean F,=F iPi} A ™,

Example (A Finite Buffer): A finite buffer is placed between two processes named SOURCE and
SINK. The buffer consists of N processes named CELL,,..,CELLy. Each CELL; can store up to one
element and is connected to its neighbours by two channels named flow; and flow;,, as shown in Figure

1a. The system can be defined in our language as follows:

N
SOURCE & (& CELL,) & SINK

i=1
SOURCE = flow,;SO0URCE

i=1...N: CELL,=flow,; (flow, , ;CELL,)

i

SINK = flowy,,;8INK

Notice that process names are used as program symbeols and channel names are used as channel symbols.

I

Example (A Factorial Multipler): We consider the factorial multipler proposed by Hoare[3]; it

fond

ot

"4

o
i

o

e

(w3

computes n! for any n, 1<n<N. The multipler consists of N processes named P,,...,Pyy. For i=1,... N-1,
P; has two input changpels in; and out;, 4, and two output channels in; , and out,. Py has one input

channel iny and one output channel outy;. The arrangement is 3s shown in Figure 1b,

At the beginning, each P, is waiting to receive 2 number via in,. If the received number is 1, then P,
returns 1 via out; and returns to its initial state. If the received number is k (k>1}, then P, keeps k and
sends k-1 via in; , then waits to receive a number via out;, ,. When this number arrives, P, multiplies it
with the stored number k, sends the result via oul;, and returns to its initial state. This system can be
defined in our language as follows:

N
2 P,
i=1

i=1...N-1: P,=(in: {ogai;?i}) v
Id s
Y kS

Py=ing; (outy Pyl
MNotice that our language cannot model the internal workings of processes; it merely models their external

{observable) behaviour. i

Example (A Circulating Token): Consider the system in Figure Ic. It is structured as a cycle of
N processes P;, and N channels t;, i=1,..,N. Also, each process P, has a channel u; to communicate with
the environment. At the beginning, process P, *has the token®. When a process P, has the token, it
communicates with the environment via u;, then sends the token to the next process Py, via t;,. (If the

process is Py, then its next process is P.}. The system can be defined in our language as follows:

Py=bys (U (B 5Py)) {J

Other Examples: Other examples {rom Hoare[3] can be defined using our language; they include
the integer semaphore, the dining philosophers, and the roafrix muitiplication array. Unfortunately, there
are other examples, also from Hoare[3]|, that cannot be defined using our simple language. One such
example is the small set of integers. The reason that our language cannot define this example is that the
allowed recursion in our language is pot powerful enough. To be able to deline this set of integers and the
remaining examples in Hoare[3], our language should be extended to allow programs of the form

EP,....Q)
P=F(P,...,.Q}

Q=G(P, Q).

- 8O e R Wa -
= R g & g 8K
o o o m ?.w
o it mm.g 8y R
w H goow oE
@ R IS
Py &1 wr B @ 3
el o3 iy wh @
ot N [7#} & &, "
& P o e
ey w8 [T
o 5 2 2 ? 2
. @
sﬂt WM@ mw QM ;w%w ®
- et Bg w8 g
@ - "od
. 5 o [E] i
: Lo
N W S
(e w AN B
s
o3
e

OGY

frsbs

o8

HODOL

T

M

G

7T
4=

s
Aw\ MM‘/W v
-
. F
Y 5]
Y = v 4 o
~ vo o = ow R
bt te gy 0D & <
“ o o Qo ol
o EORE o w m,,w B
= x E < B o ™ = «
" [h o g -~ = o =
A] [~ E— e
3 @ ¢ ¢ & o »
b i &
-« o o - S =)

First Step (Divide and Conquer):
i.Let 5 be the given specification.

ii.Find an expression E(P,...,Q) based on the program symbels P,.., and Q and find some
specifications (not necessarily programs) U,..., and V such that
E(U,.,V}=§
{Recall that operators in our langnage, and so expressions, can be applied to specifications as
well as to programs.)

iii.Now the problem of finding a program to meet § has been reduced to finding some programs
P...., and Q which meet U, and V respectively; e, P = U .. and Q = V. Each of the
programs P,..., and Q can be constructed by introducing recursion as discussed in the next
step.

Second Step (Introduce Recursion):
i.Let U be the given specification.

ii.Find an expression F{P} based on the program symbol P sueh that
FUvS }=UvsS
where S is the set of all finite strings, of length n or more, that are based on the channel
symbols in A. (Operators in our language, and so expressions, can be applied to arbitrary sets
of strings not necessarily programs or specifications).

iii.If such an F(P) can be found, then the solution of the recursive equation P=F(P) is a subset of
U;ie, P = U il

Lemma 9: The proposed programming methodology is correct. 0
Example: Let the channel alphabet be A=={ab,c,d}; it is required to define a program in our language to
meet the following specification {defined as a regular expression):

S=o2"+b +ab+c+cd
Define the following expression in our language:

E(P,Q) =P v Qv (2;(b;ZERO}} v {c;{d;(ZERO}).
Also define the following two specifications U and V {defined as regular expression): U=a$, and V=b".
Simce E{U,V] is a subset of S, it remains now to define two programs P and @ which meet U and V
respectively. Define the following expression in our language:

F(P) = a,P
Since F(U v S} = U v §_,,,

Similarly, the solution of Q=0b;Q is a subset of V. Therefore, a program to meet the original specification

then the solution of the recursive equation P==2a;P is a subset of U.

S is as follows:

P v Qv {2;{b;ZERO)) v {c;{d;ZERO}), P=2a;P, Q=b;Q i

7. PROVING CHANNEL LIVENESS

Constructing a pregram P, in our language, to satisfy a given specification S is not hard at all; in
fact, the trivial program ZERO satisfies any specification. Therefore, each constructed program should be
subjected to verification to ensure that it contains a large number of sequences (provided of course that

the given specification has a large number of sequences). Verification can also establish that the

-
— fons

[ey

o wik [
e [W R

ot

B
sl

o e

corresponding transition in M.

iL"a® is live in S iff there is a directed path from every node, in a directed cycle, to an edge
labelled 2% in G.]

Lemma 11: Algorithm 2 is correct. i

Let 5 be a specification. A chain C = {5,,5,8,,...} in S is a subset of S such that sg==E (The empty
sequence), and for i=0,1,2,.., §;,1==5;.a; for some channel symbol 3, in @S. Notice that a chain is itself 2

specification.

Let S be a specification, and "a2® be a channel symbol in @S, "a® is said to be strongly live iff *a® is
live in each chain in S.
Algorithm 3:
Input: A specification S, defined by a regular expression, and 2 channel symbol ?a® in @S,
Output: A decision of whether "a” is strongly live in 5.

Steps:

i.5ince S is defined by a regular expression, construct a finite automaton M which accepts each
sequence in S. (Each accepting state should be reachable from the initial state in M.)

ii.Represent M by a directed labelled graph G as defined in step ii of Algorithm 2.
iii.*a® is strongly live in S iff every directed cycle in G has at least one edge labelled #a®. Il

Lemma 12: Algorithm 3 is correct, il

Let S be a specification, and ®a® be a channel symbol in @S. It is straightforward to show the
following:
i.If *a” is strongly live in S, then ®a” is live in S.

ii.lf each sequence in S is extendable, and if ®a® is live in S, then "2® is weakly live in S.

The above three algorithms can be used to verify that a channel symbol is weakly live, live, or
strongly live in any given program in our language. Consider the program E(P,..Q), P=F(P), ... ,
Q=G{Q). First, use Lemma 6 to solve each of the recursive equations in the program; these solutions can
be written as follows: Psz, . Qr—-RQ where Rp, e, Rq are regular expressions. Second, substitute the
program symbels P,...,Q by the regular expressions R?’ . Rq respectively in E{(P,....Q). The result is a
regular expression R, over the channel symbols of the program. Now, Algorithm 1, 2, or 3 can be used to
show that any channel symbol in R_ is weakly live, live, or strongly live {respectively). Next we apply this

methodology to show that some channel symbols in the three examples of Section 4 are strongly live.

Example (A Finite Buffer)s It is required to show that the channel symbol flow, 41, In the first
example of Section 4, is strongly live. The recursive equations in this example have the following

solutions:

SOURCE = (flow,)"

s 5 n Sew ot a
5 3 o T 855 23 &8 F g N g
S g O 8 g = =g -
= D PR - - s BB g [T 1
o oy A & G ot « o b o
& QL oo & o &
B =) B = G FPR T B S B
s & ot ot @ e E s
o [y i N m it & - = ‘,Mw [
= o o8 9 s 8§ 5 Ha oo
« S [T % © & [e @
@y bt £ e %] e B < O - o W
-+ & ot E s aww L O ,m.w [B A
o8 wo LD @ o) & MM) N g i
[ol & P, & g o=
2 w @ R & = s B 2
hand) i g B R o Mw %)
i Wy ot
5. = 3 ¢ 3 g
o [;MWN o [& &
e PR 1 » W w]
o) y © L &
, = £ o
R -
N -

R
i
[
=
"
]
D
-t
e
(5
Pl
o
@
)
"
@
1y
=
]
" w
o 33
& e
o
o
e
&
]
£ e
o a
S
P
o
o
st
«
; 2
b]
«§ e«
o [0
by & R
5«/& - o m...,_,
o st 4 -
3 & P
ot ES
ot s @
[l 4 oA
$) P >

Initial Stare

{a) SOURCE (b) CELL, (i=1..M) (c) SINK

flow.
(e) SOURCE & CELL, after

(d) SOURCE & CELL, hiding "flow "

?"éwf%?wﬂ+z

(£) SOURCE & CELL, & CELL_ after (g) SOURCE & CELL

3 , { | &.& CELL,
i S &
hiding ”fiewi” and “fiswz” after hiding ”fiowi”,...,

(h) SOURCE & CELL, &...& CEELN & SINK afrer

hiding " %ow}”3,.g? ”fimwﬁ”

Figure Z. Finite automata to prove the strong liveness of
al £

”f10w§$§” in the finite buffer example

e s o .
- : :
t =
b= 5 °
2 @ e W = X
@ & = &= 98 R S @ o« o= e
jat o e Y- & y o
" o - ch o8 Y oa om & e @ @ Do
- “ mw@%muﬁsmwéun fao 2 7w
ae CER T se LB S22 g8y
s 0w o w8 %
- DA - @ w.m) @ .Ww @ & o =R
=) [~ R DI - 8 e =] N .@
Gona EE&E o g2 0 P BT B
e am.w & o oG & Gt ?x\w MM g ¢
« - 08 o o @D o8 Y L&
© S L. W @ W ™]
) o B m o R
£ e TR & v R S Ty ow
S gegglecLE® g &% g E
e =Tt m g W m e P m
= om e W o - I
T D e B A oW
, @ e R @
? <] m% [
&

ng about these s

ont

933 52
b

& ... & P, after hiding ing and "out

Figure 3. Finite automata to prove strong liveness for "in, ' and
. ES

7% 3¢

eutz in the factorial multiplier example

en a

1

TOr

&

~

Fa
£
g S o
P =¥
oy Bl
_— %\w
et

o~

o

S

£y
Ao

s
]

The outlined framework can be extended in two directions:

i.Extend the expressive power of the language: As discussed in Sectionn 4, it seems useful to
extend our programming language to allow general recursion. Also, it seems useful to allow
processes to exchange data values instead of mere noninterpreted messages. These extensions
should be introduced without disiurbing the algebraic properties, discussed in Section 5, of our
current language.

ii.Eztend the programming and verification support for the language: The current
programming and verification methodologies should be extennded to support the language
extensions suggested in i. In particular, the extended verification methodology should support
the verification of safety as well as livenness properties.

Toronto, July 1981,

1

2

W

i,

v

AC

ol. 21, Ne. 8,

* Technical Monograph

nd

2

languages

b5
3

ence 9

3
b

#5 on Computer Sc

APPENDIX:PROOFS OF LEMMAS

Lemma 13

Let s,= #gps and s,= #@%g

s, isin P, s,y is in Q, and #@FU@QS == §

and s, are compatible with respect to aPnag

iff s, and s, can be written as:

8 == Xg-8y XKy o BpXy, and

S, == Yg.2y.¥q- - B Yy

where a,,...,2, are symbols in @PNAQ
Xg,-. X 2T€ strings over symbols in @P-@Q, and
YooY 2Te strings over symbols in QO-QPF.

iff s can be written as:

i

&
e

5 = i{Xg ¥l 2y ilxy ¥y o apilxyyy
where a,,...,2) are symbols in @PNeqQ, and
for j==0,...k !{{Qw} i5 a string in %ﬁiriv{xj,yi}‘
i sin P2Q. i
Lemma 2: 2;(PvQ)=E U {as|sisin P U Q}
=EU{as|sisin P} U {as|sisin Q}
= (aP) v (2,Q) I

Lemma 3: The operator v is the union operator; and so it is idempotent, commutative, associative, and
distributes through v. i
Lemma 4: '
L. PEZP =P

s is in P&P
iHf #@?s isinPand #gp8=5 <Lemma 1>
f sisin P
HL.PLEQ=Q & P:

s is in P&Q
iff FHgpsisin P, #@stis in 3, and %@?U@QS == § < Lemma 1>
iff sisin Q&P
i, (PZQ)&R = P &{(Q&R):

s is in (P&Q)ER
iff s, = #@?U@QS is in P&Q, #gps isin R, and #@?U@QU@RS == g
iff #gps,isin P, #@QSI isin Q, #gpssin R, and #@?U@QU@RS == §
iff #gpsisinP, #@Qs isin Q, #gps s in R, and #@?ij@@i}@ﬁs =g
iff #gpsisinP, #@QU@RS isin Q&R, and #@pU@QU@RS = 5
iff sisin P &(Q & R)
iv. PE2(QVvR) = (P&Q)v(P&R):

s is in QvR, and #'@?Ua @RS = 8

s is in Q or #gq,ers 15 in R and

if F#epsis in P and [{#g4s is in Q and #gpeg8 = sior

ki
(#ggs is in R and #gp gpt = s)] and #epuoquar® =

iff sis in (PEQW(PER) |
Lemma 5: An expression E(P,... Q) in our language is composed of:
i.the program symbols P,...,Q {each of them denotes a set of strings over the channel symbols in
A),

ii.the constants ZERO and CHAOS (each of them denotes a set of strings over the channel
symbols in A}, and

iii.the operators *a;® “v" *&*" {each of them, when applied to some set{s) of strings over the
i

or
channel symbols in A, will produce a set of strings over the channel symbols in Al

Therefore E(P,...,Q) defines a set of strings over the channel symbols in A. Il
Lemma 8: ?é;:*st we prove two propositions which are used later to prove Lemma 6.
Proposition 13 Let F(P) be an expression, in our language, that is based on some program symbol P,
Then,

F(lim n—rc0 FH{A")) == lim n—co. FR(A")
where A is the channel alphabet.
Proof: It is straightforward to show {by induction on n) that for 8==0,1,2.., Fa+1(A")is a subset of F2(A")
where ?S{A*}mﬁf, and FP+1(A")=F(F"(A")). Therefore, for any channel symbol "a®, and for any set Q
of strings over the channel alphabet A, we have:

2;{lim n—o00 FMA }} = lim n—o0. aF2A"),

N %
}) = lim n—o00.QvF?(A

}, and

k]

- end of proposition 1 --

F(P) be an expression, in our language, that is based on some program symbol P; and

the channel alphabet A. If Q=R (ie., Q is a subset of R}, then

sen Tv = TvR

(iii} Since T&R = T&(QvS)
= (T&QNV(T&S),
ther T&Q = T&R
From (i), {ii) and (iii}, and by induction on the number of operators in F, we get: F(Q)=F(R).

-- end of proposition 2 -

Now Lemma 6 can be proven in two steps. First we show that lim nﬁoo.F“(A*) satisfies the
equation; Le., it is a potential solution. Second, we show that it is the weakest solution; i.e., for any set §

which satisfies the equation, S is a subset of lim n—c0.F?(A"), denoted S=lim n—c0.FR(A").

To show that lim n—oc0.F(A”) satisfies P=F(P}, notice that F(lim n—coF?{A"))==lim n—»c0. FMA")
by proposition 1.

Let S be any set of strings over the channel alphabet A; and assume that S satisfies P=F(P}. Then
S=F(S)=F2(S}=...=F"(S}=...=lim n—c0.F?(S) But since S=A", then F2(S)=F(A"} by proposition 2.
Therefore, S=lim n—co F*(S}=lim n—ooF2(A"). I
Lemma 7: Each set used in E(P,...,Q} is closed under prefixing; and eah operator in E(P,...,Q) preserves
closure under prefixing. Therefore, the set defined by E{(P,...,Q) is closed under Prefixing. i
Lemma 8: The set A" is closed under prefixing; each constant in I is closed under prefixing; and each
operator in F preserves closure under prefixing. Therefore, for any n, F‘}{A*) is closed under prefixing; and
lim nﬁoo.Fn(A*) is closed under prefixing. I

Lemma $:

1. Correctness of the First Step: we need to show that if E{U,...V)=5, P=U,..,, and Q=V,
then E(P,...,Q)=S. The proof follows from Proposition 2 in the proof of Lemma 6; notice that
E(P,...Q=EU,. .. Q)=..=E{U,. V=S
2. Correctness of the Second Step: we need to show that if F{UvSn)z}UvSn+1, then the
solution of P=F(P) is a subset of U (ie, lim n—ooF*A"}=U). For n=0,1,.,
Fﬁ{As}r—:Fn{Sg}szﬂ(U%fge}xéﬁvsg, Taking the limit as n goes to infinity, we get:
lim n—o00 F2A"} = lim n—+00.(Uv8 }, ie.,
lim n—c0 F*(A”) = Uv(lim n—00.5) = U. I

Lemmsa 10:

o~ #

5,=23a
iff for any positive integer n, there is a string s in §

such that the number of occurrences of *2" ins = n
iff ®a® is weakly live in 5. i
Lemma 11: Each extendable sequence in S corresponds to a node in a directed cycle in G, and vice versa.
Therefore,

there is a directed path from any node, in a directed cycile,

to an edge labelled #"a® in G
iff for any extendable sequence s in S, there is a sequence ¢’

in S such that s is 2 proper prefix of s', and s” has one

17

more occurrence of "a® than s
#T ®a® is live in S. i
Lemms 12: Each chain in S corresponds to one or more directed cycles in G; and each directed cycle in
G corresponds to a chain in S. Therefore,

there is an edge labelled "a® in each directed cycle in G

iff ?a® is live in each chain in S

oo

iff #27 is strongly live in 8. [

