OPERATING SYSTEMS FOR RECONFIGURABLE NETWORK
ARCHITECTURED SYSTEMS:
THE NODE KERNEL

by

DANIEL ALBERTO CANAS, ING., M.S.

MAY 1983 TR-228

OPERATING SYSTEMS FOR RECONFIGURABLE NETWORK
ARCHITECTURED SYSTEMS:
THE NODE KERNEL

DANIEL ALBERTO CANAS, ING., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfiliment
of the Regquirements

for the Degree of

DOCTOR OF PHILOSOPHY
THE UNIVERSITY OF TEXAS AT AUSTIN

May, 1983

ABSTRACT

The Operating System for a Reconfigurable Network
Architectured (RNA) system must be capable of virtualizing
the execution envircnment of the task which runs on a
Logical Processor. This execution environment of the task

is reflected in the virtualization of:

1. Communication.
2. Logical Processors.
3. Address Space.

4. Synchronization.

The varistructure property of RNA's require for
the Operating System to support the unique characteristic
of intra-task communication. ’ This property will
virtualize the architecture upon which a task executes.
Once this is accomplished, the Operating System is able to
virtualize the support of Logical Processors,
Communication and Address Space. The Operating System
will virtualize Logical Processors by providing the

facility to create Jjobs and tasks, Communication by

providing the proper inter-task communication interface

and Address Space by supporting virtual memory.

viii

TABLE OF CONTENTS

Acknowledgements .
Abstract .

Table of Contents

Chapter 1. Introduction

Chapter 2. Operating System and Virtualization .

Introduction

. Job Monitor .

PN NN
PO PO 0 PN

Chapter 3. The Communication System

3.1. Introduction
3.2. Message types .
3.
3
3.3. Message Object
3.4, Message Processing
3.
3
3.4.3. Conclusions .

Chapter 4. Process Communication .

Introduction

4.1, . ;
4.2. Run-Time Executwve/PRM Coord1nau1on .

System Conf1gurat0r .

Processor Resident Monwtor
.4.1. Hardware-microcode Support
.4.2. Operating System Support

2.1. Interrupt Generatang Messaaes .
.2.2. Non-interrupt Generating Messages .

4.1. Upward Fonsxstenéy‘Checkﬁng :
.4.2. Downward Consistency Checking .

11X

vii

ixX

10

4
BN

11
13

14

14
16
17
17
18
20
24
26
27

29

29
30

PN

U1 P2 P

o
o
o1]
g
pers
®
i

(S22 S,

UMM UTE T WN

Chapter

Oy O

U OO W -

S w

1
2.
2.
2
. Intra-task Communication
1
3.
3.
2

. SEND/RECEIVE Statements .

1.1. Pipeline Communication
1.2. Active Task Communication .
. WHEN/WITH Statements

. Channel Signals . . .
1.1. Through Shared Memorwes .
1.2. Through NIGM

. Paging

3
4.
4.
3 . .
3.3. Shared Memor1es .

. Communication Failure .
.4.1. Deadlock .
.4.2. Process Destruct%oq .
. Conclusions .

5. Reconfiguration .

. Introduction

. Need for Reconf1gurat1on

. Local Reconfiguration .

.3.1. Page-fault Detection
.3.2. Task Reconfiguration

. Global Reconfiguration

.4.1. Hardware failure . . .
.4.2. Explicit request at JCL .
. Self-testing mechanisms . .
.5.1. Time-out protocol

.5.2. Task break up . .

.5.3. TH-PRM rotation .

. Conclusions .

6. Paging

. Introduction .

. The Paging Problem .

. Paging Group Topo]ogy . ..

.3.1. Non-shared backup devices .

.3.2. Shared backup devices/shared trees .
.3.3. Shared backup devices/no shared trees .
. One- and Two-dimensional Page Faults
. Input output

. Conclusion

30
31
32

36
42
42
43
45
47
48
49
51
52

74

74
75
81
83

84
84
86
88

Chapter 7. Conclusions .

7.1. Summary . . .
7.2. Future Research .

Appendix A. Synchrenization in TRAC

A.1. Introduction . .

A.2. Control Port A}gor1thm
A.3. CLA Logic A]gor1thm .
A.4. Conclusions . .

Appendix B. Paging in TRAC .

. Introduction

. Hardware support
. Data Structures .
. Algorithm 1 .

. Algorithm 2 .

o oo w oo
(SN~ SV AV IS

Appendix C. Intra-task Communication in TRAC .

C.1. Hardware Support
C.2. Algorithm .

Appendix D. Shared Memories in TRAC
. Introduction

. Shared Memory F&Qlt i
. Shared Memory Request .

[o B v I w0
FA VRN S

Appendix E. Messages in TRAC .

. Introduction

. Data Structures .
. Message Format

. Message Table .

T Mmoo m
E- T EAVE S

References and Bibliography

X1

. Shared Memory Acquisition .

89

89
91

93

93
93
95
99

101

101
102
104
106
114

120

121
121

124

124
125
126
128

129
129
130
130

138

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

SR T S T R R A R R D RS SN BN N S |
OV 0PN = O N R GO b e DN

Y Y G OV O U U U D P) bed et ped et

LIST OF FIGURES

Operating System for RNA

Job Structure

Physical Computer System

Logical Processors

Consistency Checking Mechanism
Pipeline Communication

Packet Disassembly

Packet Assembly

Reconfiguration situations.

A four physical processor task
Two paging tasks

SMSMLOC of a 4 processor task
PTASKGR for a 4 processor task
Paging tasks

Non shared backup devices

Shared backup devices/shared trees
Shared backup devices/no shared
trees

CLA Togic over a shared iree

CLA logic in a true Shared Memory
Execution flow graph

Fork and join execution

Process desynchronization

Shared Memory Page Table

Shared Memory Page Table Example

xii

Chapter 1

Introduction

An Operating System implements processes, address
spaces, interprocess communication and execution
environments of logical devices. This research is
concerned with the design and specification of process and
interprocess communication on a varistructured

reconfigurable network architectured system (RNAJ.

The concept base mechanism sets for executing
functions for conventional static processor structure are
not yet fully ‘estabiished. The reason for this is the
problem faced in the development of Operating Systems for
statically structured multiprocessors and for distributed
systems. Previous research into execution functions for
concept base mechanism sets have been limited [BAC 81, KAR

77, QUA 78, SUL 77].

A logical computer system (LCS) consists of one or

more logical processors executing an instruction stream in

an address space, It also provides for communication
between its processors and to other Tlogical computer
systems. A 1ogiéa1 processor 1is a computational engine
capable of executing instructions against data elements of
some fixed precision. The Texas Reconfigurable Array
Computer (TRAC) [SEJ 80, PRE 80] instantiation of an RNA
allows for equivalent processors to be constructed from
different sets of physical resources (the varistructuring
concept). For example, a logical processor of 4 bytes of
precision can be constructed from 1,2,3 or 4 physical
processors. RNA's create logical ‘computer systems from
primitive processor and memory units by binding
communication paths between pairs or sets of
processor/memory ~components. This binding may be changed

during the execution of a process (reconfiguring concept).

A top Tlevel schematic representation and a
breakdown of +the structure of a Jjob for the complete
Operating System for an RNA is shown in Figures 1-1 and
1-2. As shown in Figure 1-1 the System Configurator (SC)
partitions the system resources into Logical Computer
Systems. The Job Monitor (JM) controls the execution steps
of an individual job. The Processor Resident Monitor or
PRM associated with each physical processor must create

the execution environment seen by each physical processor

[BRO 81]7. The PRM must be able to bind an almost
arbitrary logical structure to a physical structure or,
equivalently, to virtualize almost any execution structure

with some set of resources.

SYSTEM
CONFIGURATOR

Figure 1-1: Operating System for RNA

Once the set of resources to be composed into a
logical Computer System has been selected and the Logical
Computer System has been physically established, the
programs which define processes must execute correctly on
any possible representation of a Logical Computer System.

This implies that the node kernel or Processor Resident

COMP. JOB
STRUCTURE DEFINITION
TASK 1 TASK 2

Figure 1-2: Job Structure

Monitor of each physical processor must be capable of
correctly mapping all communications between the Logical
Processor of a Logical Computer and between the Logical
Processor of a Logical System. These communication
requirements arise from explicit cooperation between these
elements and from device virtualization such as
virtualization of memory. The programs executing 1in a
physical processor must perform correctly independent of
configuration. This implies that the Processor Resident

Monitor must be able to map any communications between

Logical Processors correctly dindependent of physical
configuration. Thus, the PRM must have explicit knowledge
of the program executing in the Logical Processor of which

its physical processor is part.

Logical Computers are mapped to a set of
processors and memory modules which are interconnected by
a network as shown in Figure 1-3. At its highest level the
Operating System must be capable of assigning a set of
processors and memory modules to constitute the Logical
Computer. It must establish the proper physical paths

through the network as required by the Logical Computer.

Since a lLogical Computer consists of one or more
Logical Processors these physical paths must map the
Logical Processors to the assigned physical resources. For
example & Logical Computer may consist of +two Logical
Processors each four bytes wide. Network blockage may
restrict one of these Logical Processors to a two physical
processor configuration as shown if Figure 1-4. Processors
1 and 2 could not be assigned to Logical Processor A

because of blockage in the network.

The execution of a task in this Logical Processor

must be independent of configuration. Therefore

NETWORK

Figure 1-3: Physical Computer System

communication and data sharing must be handled by the
Operating System regardless of physical configuration.
Communication between tasks executing in a Logical
Processor is handled by the Job Monitor while

communication within a task is controlled by the TH-PRM

/]

Logical Processors

Figure 1-4:

Chapter 2

Operating System and Virtualization

2.1 Introduction

The Operating System for RNA must be capable of
virtualizing the execution environment of a task which

runs on a Logical Processor.

The architecture of RNA's calls for a
hierarchically distributed Operating System. By
hierarchical we mean that Operating System functions are
assigned to different layers or modules and each layer
relies on Tlower layers to carry out more basic functions

[DIJ 68]. By distributed we mean that every Jjob will
execute 1in an environment without being preempted by any
other job. There will be no processor or memory sharing
among Jjobs. Inter-task communication is accomplished by a

message based system.

The three hierarchical layers of the Operating

System are: the System Configurator (SC), the Job Monitor

(JM) and the Processor Resident Monitor (PRM) [BRO 817, as
shown in Figure 1-1. A brief discussion of the first two
layers, namely the System Configurator and the Job Monitor
are presented in Section 2.2 and 2.3 respectively followed
by a detailed description of the Processor Resident
Monitor which is the main topic of the research presented

herein.

2.2 System Configurator

A major problem of Operating Systems of
reconfigurable computers whose processors and memory=-10
modules are connected through a blockage type network [LIP
79, KAP 807, is that of allocating resources to satisfy
the computational needs of different tasks to be
concurrently executed in the system. The SC is responsible

for this task.

There is one SC in the system which will run in
the processor which has a data bus to the memory=-I0 node
which contains the switch [PRE 80, LIP 79]. that main
functions of that SC are:

- Allocation of resources to satisfy requirements
of the computational structure of the different

jobs.

- Reconfiguration of assigned resources in order

10

to avoid blockage situations and to provide
better utilization of system resources.

The functions of the SC are kept to a minimum 1in
order to provide efficient response to the requirements

for switch configuration management.

2.3 Job Monitor

The top level unit of work for RNA's {is a job.
Every Jjob in the system is control!ed by a Job Monitor,
which is responsible for local mahagement of that Jjob.
that jM is Tlogically divided into two parts: the Job
Control Policy Module (JCPM) and the Run Time Executive
(RTE) [BRO 80a].” The JCPM is a user written part of the
Operating System. It establishes flow of control, data
flow, communication requirements among tasks and
computational precision [FED 80]. The RTE is responsible
for the coordination among tasks wupon interpreting
commands from the JCPM, and of communicating with the SC.

The main functions of the RTE are:

- Analysis of resource requirements and
configuration for the different tasks of the
job.

- Negotiation of configuration and reconfiguration
requirements with the SC.

- Inter process communication

31

4.2.1.1. Pipeline Communication

The way to implement pipeline communication is
through the use of a shared memory. Let us suppose that we
want a task, T1l, to leave information of variable ¥ to

task T2 (See Figure 4-1). We have the following JCL

commands:

EXECUTE (T1);

SEND X (T1) TO CH;
RECEIVE Y (T2) FROM CH;
EXECUTE (T2);

Task Tl is to execute and produce a value for X,
which will be used by task T2 (which refers to it as Y).

The following mechanism is used:

1. before executing T1, the RTE will <change the
descriptor of X, to point to a specific
location of a shared memory (SM) which is being
attached to Tl. The RTE will send a modified
descriptor to the respective PRM of Tl so that
X can be updated to point to the SM, and not to
a local memory. Execution of T1 <can now be
initiated.

2. task Tl dis executed and will produce a value
for X in SM. After execution the SM is
disconnected from the processor of T1.

3. the SEND statement will cause the RTE to queue
the modified descriptor for X into the buffer
allocated to channel CH. the RECEIVE statement
will cause the RTE to connect the SM to task
T2. The descriptor for X will be passed from
the channel queue to the respective PRM of task
T2 and will replace the descriptor of Y for T2.
So the descriptor for ¥ will now point to the
SM space.

32

4. task T2 will be executed upon encountering the
EXECUTE command, and will now have access to X
of Tl as intended.

4.2.1.2. Active Task Communication

When communication 1is +to be established between
two or more active tasks, it can be achieved through
message or data channels depending on the amount of
information to be transmitted and the availability of

shared memory modules.

Message channels are used’tc transmit low volumes
of data among the tasks, and is accomplished by sending
packets. Data channels are used to send high volumes of
data among tasks and will be implemented through the use

of shared memories.

1. Communication through Message Channels

The wuse of message channels will move data to
the address space of a task through packet
switching. The action is as follows:

a. the RTE sends packets to the SENDing
task, instructing it to SEND the variable
declared in the SEND command to the
task(s) named in the CHANNEL declaration.

b. the PRM of the SENDing task decodes the
packet message, locates the required
variables and its descripter and
initiates the packet transfer to the
RECEIVEing processors.

TASK 1

X
TASK 1
X

Figure 4-1:

TASK 2

33

TASK 2

Pipeline Communication

The

c. the RTE SENDs a packet message to each
RECEIVEing task naming the variable it
should expect to RECEIVE.

d. the PRM's of the RECEIVEing tasks match
the descriptor of the variable sent, with
the descriptor of the variable it expects
to receive and loads the variable into
the appropriate storage location.

. Communication through Data Channels

The PRM's of the SENDING and RECEIVEing tasks
must also be coordinated in the movement of
data along data channels. The Data Channels
will first try to use shared memories, but if
unsuccessful will use packets. The shared
memory implementation goes as follows:

a. the RTE sends a packet message to the
PRM's of the SENDing processors,
instructing them to move data 1into the
shared memory buffer associated with the
channel.

b. the PRM's attach the shared memory and
move the data to shared memory.

c. the PRM's (task group head) send a packet
to the RTE noting that the transfer is
complete and give the address of the just
loaded buffer.

d. the RECEIVEing tasks are sent a packet
message directing them to attach the
shared memory and fetch the oldest
occurrence of the named variable which is
in the shared memory buffer.

e. the PRM's of the RECEIVEing task move
data from the shared memory to the local
data storage for the named variable.

34

use of shared data objects requires coordination.

Execution of a memory vreference fo an address

in

a

35

non-attached shared memory will cause a trap to the PRM.
The PRM will attempt to attach the shared memory by
communicating th%s need to the JM. The requesting task
will be blocked until the JM signals the PRM of the task
that the required shared memory is available. The shared
memory will be released upon exit from the block using the
shared variable. The PRM will wuse the provided system
procedures RESERVE and RELEASE to attach and release the
shared memories holding the variables given as arguments.
Execution of RESERVE blocks the calling task uitil the

attach is made, as explained above.

4.2.2 WHEN/WITH Statements

During the execution of a Job, any of 1its tasks
may require the exclusive use of a shared object. This can
be requested with the use of the WHEN/WITH/DO statements
or the WITH/DO statements. The first will provide
exclusive use of a shared object WHEN some condition is
met, and the second gives unconditional exclusive wuse to

the shared object.

The occurrence of a WITH clause will cause the RTE
(which knows which shared variables are in which memories)

to place the request for the shared variables on a FCFS

36

queue. Whenever a given task reaches the head of the queue
the RTE notifies the task that it can attach the shared
memory which contains the desired variables. The PRM of
the processor executing the WHEN/WITH/DO statements
notifies the RTE of release of the shared variables when
it exits the block containing the statements requiring
exclusive use of the shared variables. The RTE then
selects another task to receive the shared memory,
notifies that task it can attach the shared memory and

notifies the holding task to release the shared memory.

4.3 Intra~task Communication

The basic unit of computation structure is a task
which is executed in a collection of processors, memory-I0
units configured to create a partition for the task. The
processors in the domain of a task operate in a SIMD mode,

thus providing synchronous parallelism.

During the Jlifetime of a task, processors within
the task will need to communicate with one another. This
communication will be done by sending packets through the

PRMs of each processor.

Since all processors operate in a SIMD mode, every

37

time there 1is a a need for communication, all processors
must stop. This communication among the PRM's must be
coordinated by oﬁe of the PRM's. This special PRM, called
the Task-head PRM (TH-PRM) will coordinate this activity
and, as we will see in the following sections, will also
be responsible for task-wide decisions. The main functions
of the TH-PRM are:
1. SEND/RECEIVE packets to/from other PRMs of the
same or other tasks.

2. Synchronize the processors of the tasx.

Intra-task packet communication (or non-interrupt
packet communication) differs from inter-task packet
communication (or interrupt packet communication) in that
interrupt packets will cause an interrupt upon arriving at
the receiving processors, while non-interrupt packets must
be expected by the receiving processor and do not cause

interrupts upon arrival.

The broadcast bus is used to broadcast a signal to
all processors of a task and is a good means for

establishing synchronization among processors of a task.

Interrupt packets will be sent and received only

by the TH-PRM of a task. In general, when a packet is

38

received by the TH-PRM, some information must be
distributed among the processors of the task receiving the
packet. This means that a one-to-many communication link
has to be established between the TH-PRM and the other
processors of the task [BAS 77]. In order to achieve this,
the processors must enter an asynchronous mode of
execution and later be synchronized again. There are two
basic problems related with realizing the one-to-many
communication link. First is the de-synchronization of
the processors so each one can execute its own <code, and
second, the communication mechanism to be used once the

processors are executing asynchronically.

1.- This first approach will take full advantage
of the existence of the broadcast bus, and will use it as
a means of processor communication as well as for
synchronization. To use the broadcast bus, priviieged
instructions for manipulating the bus are required;
namely, instructions for controlling the broadcast of
information through the bus. It should be possibie for the
PRM's first to inhibit the broadcasting of information and
also to be able to direct messages to specific processors
of the task. This way asynchronous execution and

communication among processors is achieved as follows.

39

When an external packet arrives at the head
processor (i.e. the processor where the TH-PRM executes)
an interrupt is‘ generated. The microcode will vector
execution to the External Packet Handler of the PRM. The
External Packet Handler will execute the necessary code to
inhibit broadcasting through the dinstruction bus. The
TH-PRM will continue to analyze the packet, while the
other processors of the task will enter a wait-broadcast--
signal Tloop. The TH-PRM can now distribute information as
required to the other processors of the task by being able
to communicate with each processo; individually through
the instruction bus. When all processors are ready for
re-synchronization the TH-PRM will signal all processors
of this event, full broadcasting is re-established and the

processors will initiate their synchronous execution.

2.~ This second mechanism does not take full
advantage of the broadcast bus, but will use it only as a
means to start asynchronous execution. Communication will
be accomplished through the use of non-interrupt packets.
This approach requires that the broadcast of information
through the bus may be inhibited when the fetch is done on
page zero, that is no broadcasting is done upon execution
of the operating system, if so required. The mechanism is

as follows:

40

When a packet arrives and the interrupt s
generated, the microcode vectors execution to the External
Packet Handler. Still executing in Jlockstep mode the
External Packet Handler will request for broadcasting to
be inhibited. The TH-PRM will analyze the packet while the
other processors will voluntarily enter a microcode
wait-local-packet where they are waiting for the arrival
of a non-interrupt packet. The TH-PRM 1is now free to
communicate with each processor on an individual basis
through non-interrupt packets. As each processor is ready
to be synchronized it will enter a microcode loop waiting
for a synchronization signal through the bus. When all
processors are vready, the TH-PRM will request full
broadcasting capabilities and the synchronization signal
is sent through the bus to all processors. Lockstep

execution is resumed.

3.-This third approach uses the reconfiguration
capability of the system. Since instructions fetched are
broadcast to all processors of a task, the only way to
realize asynchronous execution is to break the instruction
tree and re-configure the task into several one processor
tasks. By doing this a one-to-many communication link can

be established.

41

Reconfiguration 1is accomplished as follows. When
an external packet arrives at the head processor all
processors will ‘enter the microcode due to the interrupt
caused by the arrival. Control will be passed to the
External Packet Handler. Still executing in lockstep mode
the PRM's will de-activate the instruction tree, and all
processors will wait for the hardware to signal that
event. At this point all processors (except the head
processor) will enter a microcode wait-local-packet
expecting to receive a packet. The TH-PRM will analyze the
packet and can then communicaté with each individual
processor through non-interrupt packets. £Each processor
will signal the TH-PRM upon completion of the requested
task and will wait for a synchronization signal. The
TH-PRM will record this, activate the instruction tree and
then wait for the synchronization signal. When the
processors are signaled that the instruction tree has been

created lockstep execution resumes.

In the next sections we will discuss the three
situations where intra-task communication is required:
1. Channel signals for SEND/RECEIVE CSL
statements.
2. Paging situations.

3. Acquire/release of shared memories.

4z

4.3.1 Channel Signals

A packet coming from another task or from the JM,
will always be received by the TH-PRM. Before processing
the packet the TH-PRM must first stop the other processors
which ~are working in a SIMD mode. Once the TH-PRM has
decoded the information it knows the +type of action it
needs to take (SEND or RECEIVE). The channel through
which the information is to be SEND/RECEIVED and the type
of shared object to which reference is made is also known
since the PRMs have the descriptors for the shared

objects.

The packet 1is decoded and, by examining the
channel through which data is to be SEND/RECEIVED, the
TH-PRM can determine if the transmission is to take place
through a shared memory or by means of packets. Both cases

will now be discussed.
4.3.1.1. Through Shared Memories

If the channel to be used is a data channel, then
data will be exchanged through shared memories. The
following intra-task communication will take place:

1. The TH-PRM will know which shared memory module

to use since that information must have been
supplied by the JM. The PRM's which will

43

participate in the transfer of information will
be informed by the TH-PRM that they must
connect themselves to the shared memory.

2. Processors which are wunable to perform the
connection to the shared memory will so inform
to the TH-PRM.

3. The TH-PRM will tell the PRM's of +the shared
object they are about to SEND/RECEIVE.

4. The PRM's are idnstructed by the TH-PRM to
read/write from a specific location 1in the
shared memory depending on whether the
operation was a RECEIVE or SEND.

5. Once all processors have obtained their
information from the shared memory the TH-PRM
will read the information for those tasks which
were unable to connect to the shared memory and
send them the information via NIGM.

6. The PRM's will again be synchronized and
proceed in a SIMD mode.

Figure 4-2 shows the reception of a 32-bit word by
a 4 processor task where processor No. 4 is unable to

connect to the shared memory.
4.3.1.2. Through NIGM

In this case the TH-PRM will SEND/RECEIVE the
contents of the shared object through NIGM. The steps
involved in this procedure are the following:

1. The TH-PRM will inform the PRM's of the shared
object they are about to SEND/RECEIVE.
2. The TH-PRM will either

TH-PRM

a,

2y

a

3

32 bit word

Figure 4-2:

44

Packet Disassembly

45

a. receive 1information from the PRM's in
which case it must assemble the
information to produce an object of the
desired Tlength and send it to the
requesting task.

b. send information to each PRM, for storage

in the appropriate locations of their
local memory.

3. The processors may now be synchronized to
proceed in a SIMD mode of execution.

Figure 4-3 shows the assembly of a 32-bit word by
the TH-PRM, from data received from each of the 4

processors of the task.

4.3.2 Paging

When a paging situation occurs the task must be
reconfigured 1into smaller tasks so paging can be
accomplished. This 1is explained in detail 1in Section
5.3 and in Chapter 6. Communication is Tlimited to the
distribution of information required by each of these
smaller tasks in order for them to be capable of

performing the page out/in operations.

Upon detection of a paging situation, the TH-PRM
will obtain the type of page fault, the page causing the

fault and the pages to be swapped out. This information is

46

TH~-PRM

Q! 213 By 2 z 3

OUTGOING
PACKET

Figure 4-3: Packet Assembly

47

distributed among all processors of the task. After this
has been accomplished the task s reconfigured into

smaller units of execution so paging can take place.

Communication is 1imited under paging situations
because the required reconfiguration is done 1locally by
the task without dintervention of other Operating System
modules. This will be explained in detail in Section 5.3,

Local Reconfiguration.

4.3.3 Shared Memories

When processors of a task try to access a specific
location which is‘stored in a shared-memory module not
attached to the processor a page fault will occur. As
explained in the previous section the TH-PRM will take
control at this point. The TH-PRM is able to recognize
that the fault is due to the absence of an attached shared
memory module, since at locad time the JM had passed
information as to which modules are shared by different

tasks.

The TH-PRM will request the SM to the JM and the
task will be blocked until the SM is available. Once the

SM is available, the JM will assign the modules to the

48

task and inform the TH-PRM that the SM is available. If
there is one memory module for each processor in the task,
the acquisition of the SM can proceed in lockstep. If the
module must be shared by all or some of the processors,
the access will proceed as explained in Section 4.3.1.1.
As each processor completes its use of the SM, the PRM
will release the module and tell the TH-PRM that it has
finished using it. Once all the PRM's have completed their
transfer of information the TH-PRM will let the JM know
that the task no Tonger needs the shared memory modules.
The JM can now make this module available to other tasks.

The task can now resume jts execution in SIMD mode.

By having the TH-PRM do the negotiation with the
JM, the JM will not have to keep track of which processor
is currently using which shared memory module. The JM will
assign the modules to the task, and is the responsibility
of the TH-PRM to know which processor is currently using

which module.

4.4 Communication Failure

There are two instances where Process
Communication can fail 1in a Reconfigurable Network

Architectured System. The nature of the Operating System,

49

distributed among a network, will make deadlock and
process destruction potential communication failure
situations. The next sections will describe how these two

situations are handled by the Communication System.

4.4.1 Deadlock

The most common cause of communication failure s
that of deadlock. Deadlock occurs when a process is
waiting for an event that will never occur. A deadlock
would occur if an Operating System module should be

waiting to recejve a message which will never be sent.

There are two instances where a Processor Resident
Monitor would be blocked expecting to receive a message.
The first occurs when the TH-PRM is waiting for a reply to
a need-SM which was sent to the Job Monitor. The other
case would be when a Processor Resident Monitor enters a
micro-code wait loop expecting to receive a message from
the TH-PRM. It can be easily seen that neither case can
cause a Processor Resident Monitor to enter a deadlock

state.

Before a task 1is created the Job Monitor

negotiates a configuration for that task with the System

50

Scheduler. All the needs for shared memories are known a
priori by inspecting the user's needs declared at the Job
Control Language level. The user dictates the policies by
which shared memory modules are going to be wused by the
tasks and explicitly expresses the acquisition and release
of these modules. These two circumstances avoid the
deadlock due to shared memory vrequests by a Processor
Resident Monitor --first because a task is guaranteed to
have physical access through thé network to the shared
memory modules, and second because a task cannot hold a
shared memory module indefinitely, since tasks are forced
to release shared modules by the Job Monitor when

communication is to initiated.

These process by which a task is guaranteed access
to its shared memory modules is similar %o the deadliock
avoidance technique in which all rescurces a task will use
are assigned 1in advance [COF 71, HOW 73]. The only
difference is that the resource in this case 1is shared

among tasks of the Job.

The second instance of a blocked Processor
Resident Monitor occurs in the micro-code wait loop. A
Processor Resident Monitor enters this Jlocop through a

command given by th TH-PRM when it needs to communicate on

