51

an individual basis with each of its PRM's. The process
of individual communication always terminates with a
synchronization message to all PRM's of a task. This
message is sufficient to cause the PRM's to exit the
micro-code loop and re-synchronize with the other PRM's of

the task.

4. 4.2 Process Destruction

Another cause of communication failure is that of
process destruction, where a process is destroyed before

or during the attempted communication [GEN 81].

It can also be seen that this type of
communication failure cannot occur. The system provides
facilities for intra-task and inter-task communication.
Intra-task communication obviously present no problem
since tasks are basic units of execution and are treated
as one entity. Thus they are created or destroyed as a

whole.

The inter-task communication failure due to
process or task destruction cannot occur because tasks are
created and destroyed only by the Job Monitor. Thus fis

done at a job level. That is, all the tasks of a job are

52

created at the same time and later destroyed at the same
time at the end of Jjob. A task will Jlogically and
physically exist‘ throughout the lifetime of a job. There
is never a need for inter-job communication since, 1if it
arises, both Jobs can me merged 1into one Jjob and

commuriication will now be at the inter-task level.

4.5 Conclusions

We have described in this chapter the basic
Process Communication System for a Reconfigurable Network
Operating System. The varistructure and reconfiguring
properties of RNA'S make it necessary not only to support
Inter-task Communication but also Intra-task
Communication, and among processes or tasks whose
configuration is only known to the PRM at execution time.
By having one of the processes named the TH-PRM, process
communication becomes independent of task configuration.
Alsc we have explained the nature of possible
communication failure and how the system is capable of

resolving this situation

Chapter 5

Reconfiguration

5.1 Introduction

RNA's create togical computer systems from
primitive processors and memory units by binding
communication paths or sets of processor/memory
components. This binding may be changed during the
execution of a process. Programs executing in a physical
processor must execute correctly independent of
configuration. This implies that the PRM must be able to
map any communications between logical processors

correctly independent of physical configuration.

The concept of reconfiguring a logical computer
system permits the task to have a configuration which
reflects the natural computation structure of the problem

[BRO 82]. No longer will a problem be mapped on a
rigorous fixed architecture, but now the architecture can
be configured to conform as much as possible with the

structural demands of the problem.

53

54

The PRM will be responsible for performing
reconfiguration on a temporary basis. That is, the task
will eventual]y: reconfigure itself to 1its original
structure. Permanent reconfiguration cannot be
accomplished without the intervention of the upper-levels
of the Operating System since data global to the entire
system must be updated. In this respect the PRM will only
be able to detect the dinstances when this type of

reconfiguration is required.

This chapter will focus on the different types of
reconfiguration, namely lLocal and Global Reconfiguration,
as well as on the detection of situations where

reconfiguration of a task is needed.

5.2 Need for Reconfiguration

During the lifetime of a task there are three
situations 1in which reconfiguration 1is required. These

arise upon:

- occurrence of a page-fault.
- explicit request at JCL Tevel.

- hardware failure.

A page-fault will require that the task be

55

reconfigured so that page transfers can occur between the
backup devices and the corresponding memory module. The
reconfiguration %s needed since backup devices are not
directly accessible by all processors. Several processors
will share a backup device for page storing. The task has
to be reconfigured to group together the processors which
share such a backup device so paging operations can be
performed. Operations on different backup devices can be
carried out in parallel by different tasks. Once the
paging situation has been handled the task will be
reconfigured to its original‘ structure for normal
processing. This situation in which the task is broken up
into smaller tasks has duration only while the paging
situation is cleared. It 1is therefore a temporary
situation which can be handled locally by the TH-PRM. This

will be called Local Reconfiguration.

The other two situations, explicit requests at JCL
level and hardware failures, will require that the task be
reconfigured and the new structure will acquire a
permanent status, at least wuntil either of these two
events occur again. The fact that the new structure
acquires a permanent status will require the intervention
of the upper-levels of the Operating System since global

data and new resources are involved in the operation. For

56

this Global Reconfiguration situation the TH-PRM will
1imit its action to detect the events and communicate the

situation to the JM.

Figure 5-1 shows the situations in which
reconfiguration is required. In summary, Local

Reconfiguration is characterized by:

- reconfiguration can be done locally by the PRM

- upper-levels of the Operating System do not need
to know the task is being reconfigured

- there 1is no change in the physical structure of
the task (no resources are either added or
deleted from the task)

- the reconfiguration is temporary
Global Reconfiguration situations are characterized by:
- the PRM can only detect the need for such

requirements

- the upper-levels of the Operating System have to
perform the reconfiguring operation

- there will be a physical change in the structure
of the task (i.e. processor/memory modules will
either be added and/or deleted from the task).

- the new structure of the task is permanent

Reconfiguration
Lo cal/ Global
7) - / N

Break task Failure Construct
for paging
page fault memory processor memory processor

mapping configur. mapping configur,

info. info.

Figure 5-1: Reconfiguration situations.

58

5.3 Local Reconfiguration

As we mentioned in Section 5.2, Local
Reconfiguration is required when a page fault occurs. The
task will be broken into smaller tasks for the page-in,
page-out situation to be cleared. The principai
characteristic which distinguishes a Local Reconfiguration
is the non-intervention of the wupper-levels of the
Operating System, leaving the situation in total control

of the PRM.

Before discussing the actual reconfiguration
procedures let's examine how the TH-PRM recognizes and

detects the presence of a page-fault.

5.3.1 Page-fault Detection

Within a task all processors will operate in SIMD
mode. Memory allocation becomes more sophisticated in
parallel reconfigurable varistructured systems executing

in this mode [DeG 80].

In multi-width SIMD tasks, memory can be viewed as
a two dimensional matrix where each column has the same
bit width as the processors [DeG 81]. Each processor in

the task is responsible for managing one <column of the

59

matrix. Whenever a page must be swapped-out, that page
must be swapped-out of each column. Similarly data
swapped-in is ref]ected in changes taking place in all of
the columns. This is true for data memory, but not for
instruction memory which is linear even though it may be

distributed along several processors of the task.

For this reason it must be possible to distinguish
when a page fault occurred due to dinstruction or data
fetch. Even if the mechanism for paging in/out is the
same, we must differentiate betweeﬁ page faults occurring
in two-dimensional memories from page faults occurring in
one-dimensional memories, because the procedure for
determining if a page fault did occur is different for

each case.

Independent of the type of memory, all processors
generate their access requests in Tlockstep mode. The
memory module which has the requested address responds to
the processor while the other memory modules would respond
with a fault. A1l processors will broadcast their memory
module statuses to all other processors through the
broadcast bus along with any data if the fetch occurred in
the instruction fetch cycle. A non-fault signal received

through the broadcast bus will indicate that a page fault

60

did not occur since one of the processors did not fault.
If no non-fault signal is received, a page-fault occurred.
At this point it becomes necessary to distinguish if the
access was to a two-dimensional or to a one-dimensional

memory, for which hardware support is required.

For the one-dimensional «case, it s sufficient
that at least one processor did not fault. In this case
the processors can continue their execution 1in Tlockstep
mode. If a fault occurred, the TH-PRM must make a decision
as to which page, 1if any, must be swapped-out. It will
also search its tables to determine which processor owns
the backup device where the requested page resides. The
TH-PRM will try to reconfigure so that the processors
involved 1in the transfer (page-in and page-out operation)
will share a memory module. If the reconfiguration is
possible, the TH-PRM will send the necessary information
to both PRM's invoived and the transfer is initiated. If
reconfiguration is not possible, the transfer will have to
be made through NIGM. Once the transfer is made, the
TH-PRM will update 1its tables and normal execution

resumes.

If a fault occurs in a two-dimensional memory all

processors must have faulted and a page must be swapped-in

61

for every processor. All processors will stop upon
receiving the page-fault signal and the TH-PRM will take
control. The fH-PRM will again decide upon page-outs,
reconfiguration and page transfers. Normal execution will
resume once all the transfers have been carried out and
the TH-PRM has updated its tables. The actual paging
mechanism will be discussed in Chapter 6. The next
section will discuss how reconfiguration of the task s

accomplished.

5.3.2 Task Reconfiguration

After a page-fault occurs and the type of access
which caused it (j.e. one-dimensional or two-dimensional
memory fetch) has been detected as explained in Section
5.3.1, the TH-PRM will proceed to decide which page must
be swapped out. The actual page replacement is not of
interest here, but it will be assumed that there will be
hardware support to easily implement an LRU page

replacement algorithm [KAP 80].

It is not known a priori the availability of
backup devices. It is not known until Toad time how many
backup devices there are and with which processors they

will be associated. The number of backup devices assigned

64

DATA TREE
_____ INSTRUCTION TREE

Figure 5-2: A four physical processor task

65

00 O

DATA TREE

/
—- —— INSTRUCTION TREE

~~~~~ OLD INSTRUCTION TREE

SMSH

Figure 5-3:  Two paging tasks



66

they will update, in the shared memory module, the number
of active paging-tasks and will de-activate the local
instruction tree. The last paging task to complete will
set this counter to zero, meaning that all paging-tasks
are  through, and thus the original task must be
re-constructed. To do so, the last paging-task will
re—activate the original instruction tree and the original

task is ready to proceed as an SIMD task.

5.4 Global Reconfiguration

Global reconfiguration s required under two
circumstances --first, when the PRM detects a hardware
failure and, second, when there is an explicit request at
JCL Tevel. In either case the PRM will stop the execution
of the current task and the Job Monitor will be notified
of the situation. It is up to the upper Tlevels of the

Operating System to take the proper action.

5.4.1 Hardware failure

The PRM is capable of detecting a hardware failure
when either a page fault occurs on page zero or when an

invalid message is received by the TH-PRM.

Each processor has a private memory module where



67

the PRM resides in page zero. The PRM resides entirely in
this module and therefore a page fault should never occur
while performingla fetch on the PRM's address space. When
the PRM is in the process of determining the type of page
fault, the presence of a page fault on page zero is an
indication of a hardware error which the PRM is not
capable of resolving. The situation is communicated to the

JM which will take the proper actions.

The other instance of hardware failure detection
arises when an inconsistent messagé is received by a PRM.
In Chapter 3 the Communication System with its Upward and
Downward Consistency Checking mechanisms was introduced.
This system guaranteed that only valid messages would ever
Jeave a PRM, and therefore only valid messages should be
received. The arrival of an invalid message would imply
that somewhere during the transmission of the message an
error occurred in the network. This situation will
indicate the presence of a hardware failure in the System.
Again, the PRM is not able to resolve the situation and
must report the failure to the upper Tlevels of the

Operating System for proper action to be taken.



68

5.4.2 Explicit request at JCL

During the Tifetime of a job, a task may execute
to completion several times, and each invocation of the
task could require a different configuration. The hardware
requirements are explicitly declared at the Job Control
level [BRO 80b, FED 80]. Therefore reconfiguration of the
task is required. At the time reconfiguration takes place,
the task is inactive, so there is no possible intervention
of the PRM. This situation is mentioned here for
completeness of the discussion on Reconfiguration but its

details are out of the scope of this research.

5.5 Self-testing mechanisms

The ability of a task to reconfigure itself, and
the characteristics of RNA's of having the modules of the
Operating System replicated and distributed among several
processors, present a wide range  of self-testing
capabilities. In our context the self-testing mechanisms
fall into the category of those Operating System functions
capable of detecting hardware failures. By no means are we
claiming that these procedures are fail-safe mechanisms,
since, at the PRM level, action is limited to detecting
these anomalies and no attempt is made to solve the

problem and continue with the execution of the task.



69

One of the mechanisms will take advantage of the
intra-task communication capabilities of the system and
one will take aanntage of the ability of a task to break
jtself up into paging tasks (see Section 5.3.2). The Jlast
mechanism discussed will take into consideration the

replication and distribution characteristics of the PRM.

5.5.1 Time-out protocol

The first mechanism will rely on the Communication
System to test for the correct performance of  the
hardware. Section 4.3 discussed intra-task communication
where processors of the same task were able to communicate
among themselves. Of special interest is the NIGM
communication among processors. To check for hardware
failures the TH-PRM will dissue a SEND message to all
processors of the task. Each PRM will respond by sending
the contents of the object which was specified in the SEND
message. The TH-PRM should allow for a reasonable amount
of time to receive replies from all processors. If after
this timeout occurs there are some vreplies pending, the
TH-PRM can conclude that there is a hardware malfunction.
The execution of the task must then be stopped and

appropriate notice must be sent to the JM.



70

It  should be noted that this self-testing
mechanism does not have to be executed as such but can
form part of the Communication System since it s
expected, due to the nature of RNA's, that intra-task

communication will occur very frequently.

5.5.2 Task break up

To be able to handle a page fault the task has to
be broken into paging tasks. This implies the conversion
of instruction trees into shared memory trees and the

creation of new instruction trees for each paging task.

The TH-PRM can check for the <creation and
conversion hardware by breakfng the task into paging
tasks. Once the paging tasks have been created, the
original task will be restored. No actual paging will take
nlace, but only local task reconfiguration will occur.
Hardware failures are detected if the task cannot be
reconfigured to its original state. The TH-PRM can perform
this check at predefined intervals if actual paging has

not occurred.



71
5.5.3 TH-PRM rotation

The two self-testing mechanisms introduced in the
previous sections are valid if there is no failure in the
hardware where the TH-PRM resides. This is true because
the TH-PRM must initiate the test and must validate its
results. Any failure 1in the processor/memory where the
TH-PRM executes/resides can produce unpredictable results.
To avoid this problem the TH-PRM can be assigned to
another processor/memory pair of the task before any of
the tests is run or it can be -done at a predefined

interval of time.

The decisjon as to which PRM of the task will have
the functions of the TH-PRM is software controllable. An
arbitrary processor is selected at Jload time. Besides
additional functions the TH-PRM is characterized by its
ability to process IGM. This is so because at any time a
PRM can recognize itself as being a TH-PRM. PRM's who are
not TH-PRM's will mask their execution while processing

interrupts.

Since the assignment of the TH-PRM 1is software
definable, it is a trivial task to re-assign the TH-PRM to

another processor by simply modifying a specific memory



72

Tocation wused to designate the TH-PRM. Besides this the
JM must also be informed of the change so that new IGM can

be routed to the new processor.

For the re-assignment of the TH-PRM to another
processor to perform correctly the code for all PRM's must
be identical. This being true, only execution masking
during interrupt processing distinguishes between actual
execution of a PRM and the TH-PRM. Since code replication
throughout the processors is essential, so must be the
data structures which support the execution of the TH-PRM.
This motivates the wuse of a Message Table approach as
opposed to a Capability List for the message system. The
Message Table is independent of the type of software which
manipulates it, being up to the software to recognize
itself as a PRM or TH-PRM. The use of a Capability List is
dependent on it being accessed by a PRM or a TH-PRM so
rotating the TH-PRM among different processors could not
be accomplished without reflecting this change on the

Capability List.



73

5.6 Conclusions

In this chapter we have outlined the situations
when Reconfiguration is required on RNA's. Also, the two
types of possible reconfiguration have been introduced,
namely Local and Global Reconfiguration. Local
Reconfiguration 1is handled by the PRM's of the task while
Global Reconfiguration must be resolved by the
upper-levels of the Operating System since permanent

changes in the architecture are required.

The capability of RNA's to dynamically change the
topology upon which a task is executing, combined with the
intra-task communication facility, present a wide range of
possible self-testing mechanisms which can be carried out
by the TH-PRM. The three self testing mechanisms discussed
in this Chapter have the advantage that they use existing
Operating System functions to perform the diagnostics.
The time-out protocol 1is based on the Communication
System, the task breakup is based on the Paging System,
and the TH-PRM fully uses the execution masking of the

syste



Chapter 6

Paging

6.1 Introduction

The paging problem in traditional architectures is
bounded by the page selection and page replacement
algorithms. A page is selected for replacement, is swapped
out and a new page is brought in. In RNA systems the
paging problem is  augmented by the existence of
two-dimensional memories and by the availability of backup

devices.

A task does not know the topology of its
configuration until load time. Different execution
requests for the same task may execute on different
hardware configurations. Depending on the topology of the
hardware upon which a task is executing, processors may or
may not have access to backup devices where its pages are

stored. For this reason paging tasks must be created.

This Chapter will concentrate on the paging

74



75

problem for RNA systems. The paging mechanism and the
effects that different topologies have on it will be

discussed.

6.2 The Paging Problem

The scope of the paging problem in RNA systems is
amplified by the presence of two-dimensional memories and
by the availability of backup devices. The existence of
two-dimensional memories implies that more than one page
must be replaced. That 1is, more than one page must be

swapped out and more than one page must be swapped in.

The avai]gbi}ity of backup devices implies that
not all processors of a task will have access to such
devices. This means that some processors are not able to
replace pages in their memory modules. To be able to
transfer pages in these cases paging tasks are created. A
paging task was defined as the smallest execution unit
capable of performing page in and page out operations. In
practice a paging task is a one processor task with access
to a backup device. Paging tasks will execute in parallel
among them unless they share the same backup device, 1in

which case they must compete for the use of the device.



76

A paging task must perform the paging operations
for all processors which have their pages stored in the
backup device and who do not have access to the device. We
will define a paging group as a group of processors whose
pages are stored in the same backup device, but only one
of whose processors has access to the device. Therefore,
a paging task must preform all paging operations for the
paging group. A paging group could consist of only one
processor, being the paging task itself, or it may consist

of one paging task and several other processors.

The creation of a paging group is topology
dependent and therefore known until load time. The actual
determination of paging groups is done dynamically once

the task has been broken up as explained in Section 5.3.

To determine which processors constitute a group,
first the paging tasks must be established. Each processor
will consult its SMSMLOC byte. A one in this location will
indicate that the processor has access to a backup device,
and therefore will constitute itself as a paging task.
Figure 6-1 depicts the situation where processors 1,3 and
4 will constitute the paging tasks since they have access

to a backup device.



77

Figure 6-1: SMSMLOC of a 4 processor task

Processors with no access to a backup device
(processor 2 in Figure 6-1) must constitute a group with a
paging task. Each paging task will scan the PTASKGR table
to find if a group must be established with other
processors. The PTASKGR table will consist of two entries

for each processor in the task:

- <proc #><group>

where <group> will dindicate the group to which
<proc #> belongs. Figure 6-2 shows the case 1in which
processor 1 and 3 each form a group of only one paging

task each, while processors 2 and 4 constitute another



78

group. From the topology shown in Figure 6-3, groups 3 and
4 will share a backup device while group 1 will have

exclusive access to its backup device.

PROCESSOR NO., PAGING TASK

P~ WV S
R N

Figure 6-2: PTASKGR for a 4 processor task

Once the groups are formed each paging task is
responsible for the page transfer for all processors of

the group.



79

/ T
: /
Q0 O O O
\_ /
\\‘ /
\ /
N\ /
N\ /
\.
\,\ ','/ :
'\. /
HD00000 00 0
SMSHM SMSM
DATA TREE

————— INSTRUCTION TREE
: SHARED TREE

Figure 6-3: Paging tasks



80

The three basic steps dnvolved 1in the paging

procedure are:

- break up task
- transfer pages

- restore task

The task break up and restore have already been

discussed in Chapter 5

For  the page transfer mechanism to perform
correctly, a page buffer must be accessible to the paging
task. The location of this page buffer is not relevant to
our discussion. The status information (<page in><page
out><type of fault>) was made available to the paging task
before the task was broken up into paging tasks. For each
processor in the paging group the paging task will perform

the following steps:

a. Page out:
- copy <page out> into page buffer.

- transfer <page out> from page buffer tc backup
device.

b. Page in:



81

- transfer <page in> from backup device to page
buffer.

- copy <page in> to required memory module.

Upon completion of all page operations the
original task must be restored as explained in Section

5.3.

6.3 Paging Group Topology

A paging task is responsible for the transfer of
pages to and from the backup devices. The topology of the
network which conforms the paging task plays an important
role during paging. During a page-in operation (the same
holds for a page-out operation but in reverse order), a
page is brought from the backup device and placed in the
page buffer of the paging task. Once the page 1is 1in the
buffer it must be transferred to the appropriate memory
module. If the page belongs to the paging task a Tocal
transfer takes place (i.e. a copy operation within the
address space of the paging task). If the page belongs to
another processor of the group a non-local transfer must
be carried out (i.e. a copy operation involving an address
space in a memory module outside the domain of the paging
task). Since by definition of a paging group, only one

processor of the group has access to the page buffer and



82

backup device, the page must either be copied first to a
shared memory, or an instruction tree must have been
created among the two processors involved. The actual
procedure is architecture dependent and we will delay this

discussion for later.

Having defined local and non-local transfers we
will now see the three different topologies which might
arise in the forming of the paging groups. The three

different topologies are:

- Non shared backup devices.
- Shared backup devices with shared trees.

- Shared backup devices with no shared trees.

The different  topologies arise due to the
availability of backup devices. The ideal case is
encountered when there are as many backup devices as there
are processors in the task, and performance starts
decreasing as sharing of backup devices and non-local
transfers increase. Let's now discuss each of the

different topologies.



83

6.3.1 Non-shared backup devices

This situation arises when there are as many
paging groups as there are processors in the task and each
paging group has exclusive use of a backup device. In this
case a paging group contains only a paging task and

therefore only local transfers are required.

Since there is no device sharing, all paging tasks
can execute in parallel, hence throughput is maximized.

This is the ideal case. Figure 6-4 shows this situation.

6.3.2 Shared backup devices/shared trees

The case of shared backup devices with shared
trees 1s present when there are as many paging groups as
there are processors in the task and two or ﬁore paging
groups share a backup device. As in the previous case,
only local transfers are required since each paging group
is constituted by only one processor, namely the paging

task.

Since the backup device is shared, its use must be
coordinated by the different users by acquiring and
releasing the device. Even though at this time there are

no actual measurements as to what the impact of sharing



84

backup devices with shared trees has on paging, it is
apparent that performance will be degraded as the number
of paging-tasks which share the device increases. Figure

6-5 shows this situation.

6.3.3 Shared backup devices/no shared trees

This topology depicts the situation when there are
more processors in the task than there are paging groups.
In other words, at least one paging group is formed by two
or more processors. By definition of a paging group, the
backup devices are shared by the processors of the group
and hence there will be a need for non-local transfer of

pages. This topology is shown in Figure 6-6.

Again, there are no performance measurements at
this time, but it is also apparent that performance will

be degraded as group size increases.

6.4 One- and Two-dimensional Page Faults

So far we have discussed the paging problem and
the influence different topologies may have on it. Paging
tasks and paging groups are necessary because of
availability of backup devices. When a page fault occurs

on a two-dimensional memory, several pages must be



85

Backup Devices

Figure 6-4: Non shared backup devices

replaced. The number of pages is equal to the number of

processors of the task.

Page faults on a one-dimensional address space may
be simpler to handle since only one page must be replaced.
It is desirable, but not strictly necessary, that at load
time one-dimensional spaces be clustered on memory modules
which belong to a processor with access to a backup
device. In this way only local transfers are required. If

this 1is not possible, a paging group consisting only of



86

Backup Devices

Figure 6-5: Shared backup devices/shared trees

the two processors involved 1in the transfer must be
created and a non-local transfer must be accomplished.

Again, only one page must be replaced.

6.5 Input output

We have delayed the discussion of I/0 until now
because it can be expressed as a special case of paging.
The same problematic situations which appeared on paging
are present in I1/0, namely two-dimensional memories and
availability of backup devices, or I/0 devices in this

case.



87

Backup Devices

Figure 6-6: Shared backup devices/no shared trees

The 1/0 problem can be viewed as the collection of
information from a two-dimensional memory and its mapping
into a one-dimensional form through an 1/0 device. To
achieve this result the same mechanism which is used for
paging will suffice, with the restriction that now there
is only one I/0 device, and the information to be
transferred is one byte (as opposed to one page frame)
long. Only one paging task ( and therefore one paging
group) is required, the processor selected being the one

with access to the required I/0 device.



88

6.6 Conclusion

Paging 1in RNA's is complicated by the presence of
two-dimensional memories and by the availability of backup
devices. These two conditions require, first, that several
pages be swapped in/out and, second, reconfiguration of
the task 1is required since not all processors may have

access to backup devices.

The distribution of backup devices is responsible
for the different topologies that may arise. These
topologies determine the creation of paging tasks and
paging groups which must be handied dynamically by the

Operating System.

Finally, the I/0 problem can be viewed as a
special case of the paging problem. Simply by having only
one backup device (the I/0 device) with data being one

byte long as opposed to one page long.



Chapter 7

Conclusions

7.1 Summary

Several approaches have been proposed for the
design of Operating Systems for variable structure
multiprocessor systems [OUS 80, JON 7%9a, QUA 78, KAR 77].

These designs fall into one of the following categories:

1. One Operating System for each processor.

2. Operating System functions distributed among
available processors.

3. Centralized nucleus with repeated distributed
functions along computer modules.

4. Hierarchical-multiprocessor level structured
hardware.

The span of contrel of these Operating Systems are
specified by boundaries of physical processors. The
Operating System described herein is decomposed by jobs as
shown in Figure 1-1. Each job has a local Operating
System. The total Operating System is a collection of Jjob

Operating Systems which control resources of a partition.

89



The span of control is the set of tasks which comprise the
Job. Each 1logical processor has a local Operating System
which implements:
- those elements of the logical architecture not
realized by the hardware
- communication between tasks

- communication between {ts tasks and the job
Tevel component of the job Operating System

The task level component of the Operating System
is created by distributing functions across the PRM's of
the physical processors which compose the Togical
processor. This structure which partitions by job and
then partitions by task within jobs has the properties of
localized  communication and Jlocalized control. These
properties yield an Operating System structure where the
cost of system management is proportional to the number of
Jjobs executing on the system rather than to the number of
processors. Thus this structure seems practical even for
systems with very large number of processors. The cost of
virtualizing sets of physical processors into logical
processors can be seen to be constant with respect to the
number  of  physical processors composing a logical

processor



91

We thus conclude that the strategies of the
Operating System for network distributed multiprocessors
described herein is practical not only for moderate number
of processors but could be scaled to large number of
processors. An implementation of such an Operating System
in terms of the Texas Reconfigurablie Array Computer is

presented in the Appendices.

7.2 Future Research

Reconfigurable  Network  Architecture Systems

present an entire new field for Operating System research.

The concept of two dimensional address space is
beginning to emerge with the design of RNA's. The effects
that this address space has on paging requires further
work. Paging techniques and distribution of page frames
throughout the backup devices also present a challenge for

future research.

Intra-task communication and synchronization is
another area where research is Jjust in its beginnings.
Dynamic task break-up and re-synchronization 1is a new
concept and therefore further study should be pursuit in

this direction. Simulation and modelling studies should



92

give a better understanding on this subject as well as a

means of evaluating new mechanisms.

Thus, almost all aspects of software design for
reconfigurable computers are fertile areas for further

research.



Appendix A.

Synchronization in TRAC

A.1 Introduction

Paging, 1intra-task and inter-task communication
require that the TH-PRM carry out specific functions. To
do this the lockstep mode of execution must be abandoned.
When the task is ready to resume execution the processors

must be synchronized to proceed in Tockstep.

This Appendix will discuss three mechanisms for
synchronization. The first will use the capability of the
Control Port to dynamically create and delete 1instruction
trees. The other two will use the Carry Look-Ahead (CLA)

logic as a means of sending synchronization signals.

A.2 Control Port Algorithm

This mechanism is based on the ability of the
Control Port to create and delete instruction trees and to

send signals to the processors involved.

93



94

To delete an instruction tree, the TH-PRM wil]l
send a message to the JM requesting the deletion of a
particular instrﬁctéon tree. The instruction tree is
identified by the processors which make up the task

connected by that tree.

In a similar manner the TH-PRM will request the

creation of an instruction tree.

The following instructions are required:

- DINST{<param>): this dnstruction 1is actually
converted to an IGM to the JM requesting the
deletion of an idinstruction tree among the
processors bit-wise selected by <param>. Once
the tree has been deleted a TSP signal is sent
to the processors involved.

- CINST(<param>): this will be the DINST counter
instruction. It will reguest the creation of an
instruction  tree  among processors bit-wise
selected in <param>. A TSP signal is sent to the
processors involved except when <param> has all

processors of the task set. In this case an SSP
signal is sent to the processors.

To complement  these instructions two  more
synchronization primitives are reguired. The first is for
processors waiting on a TSP signal and the second for
processors waiting on an SSP signal. Actually both
instructions have the same function but they must be

distinct 1in the signal which awakes the processor because



95

an SSP signal will vector execution to a predefined
location. The two instructions are:
- WAIT(TSP): this instruction will cause a
processor to enter a microcode wait loop until
it receives a TSP signal. Execution will resume
at the next executable instruction after the
wait.
- WAIT(SSP): this dinstruction will cause a
processor to enter a microcode wait loop until

an SSP signal is received. Execution will vector
to a predefined location.

With these four instructions deletion and creation
of instruction trees can be accomplished when desired.
Therefore, synchronization of processors can be achieved.
An example of the use of this mechanism is discussed in

Appendix B.

A.3 CLA lLogic Algorithm

The CLA Tlogic over a shared tree can be used to
implement a synchronization mechanism to put the
processors at the leaf nodes 1in lockstep. This scheme
would be useful for any situation 1in which a single
processor controls the starting of the processors in the
ensembie. A shared tree is set up over a memory module and
the module is not made shared (i.e the shared flip flop in

the module status register is reset). If the shared flip



96

flop 1is reset in a memory module, the module always feeds
back the end around carry during phases 3 and 4 at the
bottom Tlevel switch. If a shared tree is set up with this
memory module as the root, a wire-ored ring of processors
is formed as shown in Figure A-1. Even 1if a single
processor sets its Generate to be true, each processor on
the ring will receive a true Carry. The Generate signal
will be called the Acquire and the Carry signal will be

called the Grant [DES 83].

To break lockstep execuéion the processors will
hold the Acquire signal to false. The processors may now
execute on their own. Any processor which is ready to be
synchronized will enter a microcode loop waiting for the
Grant signal to be true. When all processors are ready for
synchronization a processor, usually the TH-PRM processor
will set dits Acquire to true. As a vresult all the
processors see a true Grant simultaneously and start in

lockstep.

The following instructions are required:

- WAIT(GRANT): will cause the processors to enter
a microcode loop waiting for the Grant signal to
be true. '

- SET(ACQUIRE): will set the Acqguire signal to
true.



/N

97

PROCESSORS

Figure A-1: CLA logic over a shared tree



98

- RESET(ACQUIRE): will set the Acquire signal to
false.

A second synchronization mechanism is possible
when there dis a shared memory with its shared flip flop
set. In such case the CLA link is open at the top and the
memory behaves 1like a +true shared memory as shown in
Figure A-2. The number of processors to be synchronized is
maintained in the synchronization register in the memory

and forms a shared variable.

After  finishing asynchronous processing each
processor acquires the shared memory module and decrements
the count by 1. If the count is not zero the processor
simply creates its part of the instruction tree and sets
an arithmetic operation so that it asserts a true
propagate but does not produce a generate. The processor
then waits for the incoming carry to become true. The last
processor to acquire the shared memory module sees a zero
in the synchronization register. It will create the last
branch of the common instruction tree and executes an
arithmetic operation to assert its generate signal. It
will then vector to a predetermined location where every
other processor is expected to branch when it sees a true

Carry. Thus all processors start in lockstep.



99
The following instructions are required:
- SET(PROPAGATE): this instruction will generate a
true propagate signal.
- WAIT(CARRY): this instruction will cause the
processors to enter a microcode Tloop until a

true Carry signal arrives.

- SET(GENERATE): this instruction will generate a
true Generate signal.

- SETSEM(<param>): this instruction will set the
synchronization to the value specified by
<param>.

- GETSEM(<param>): this instruction will store the
value of the synchronization register in
<param>.

- DELBRNCH: deletes 1local branch of instruction
tree

- CREBRNCH(<color>): creates a local branch of an
instruction tree of color <color>.

A.4 Conclusions

Three synchronization mechanism were discussed.
One makes use of the ability to dynamically create and
delete instruction trees. The other two use the CLA logic
as a synchronization mechanism One when a single processor
is in control while the other the processors were

independent.



100

/N

PROCESSORS

Figure A-2: CLA Togic in a true Shared Memory



