Appendix B.

Paging in TRAC

B.1 Introduction
Paging in TRAC is accomplished in three steps:

- task break up
- page transfers

- task resynchronization

The first step prepares all necessary information
<o that the task can be broken into smaller tasks capable
of performing the page transfers. Next the paging tasks
and paging groups are formed and page transfers take
place. Recall that a paging task consists of a single
processor with access to an SMSM, and a paging group
consists of a paging task and all other processors whose
pages are stored in the SMSM in the domain of the paéing
task. It must also be clear that only one processor (the
paging task processor) of the group has access to the

SMSM. The last step of the paging process consists of the

101

102

re-activation of the task-wide instruction tree in order

to establish the SIMD mode of execution of the task.

B.2 Hardware suppbrt

To effectively accomplish paging several
hardware/microcode supported features are required. Each
of these will be discussed in terms of a "privilege

instruction.

Paging tasks will have to-communicate with the JM
in order to create and de-activate finstruction trees.
Communication with the JM is handled by IGM. Therefore the
paging task needs to constitute itself as a TH-PRM to be
capable of sending this type of message. Two instructions
are required to accomplish this task.

- TESTPRM(<param>): this instruction will test the
hardware TH-PRM bit and will store its value in
a location defined by <param>.

~ SETPRM(<param>): this instruction will set the
TH-PRM bit to <param>.

The purpose of the first instruction is to save
the status of the TH-PRM bit so the original task can be
reconstructed when paging is finished. The second

instruction will be used first to constitute the paging

103

task into a TH-PRM and then to reset the processors to

their original status.

The creation of paging tasks implies the deletion
of the task-wide instruction tree. Page 1in/out is
accomplished among two processors which must be connected
by an instruction tree. Therefore these trees must be
created and deleted dynamically at the request of the
paging tasks. The DINST and CINST instructions are used

for this purpose.

Both of these instructions will be used repeatedly
to create and delete instruction trees between the paging

task and a selected processor from the group.

Two types of synchronization primitives are
required. The first s for processors waiting on an
instruction tree and the second for processors waiting on
a SSP signal to resume lockstep execution. Actually both
instructions have the same function but they must be
distinct in the signal they receive because the SSP signal
will vector execution to a predefined Tlocation. The
WAIT(TSP) and WAIT(SSP) instructions are used for this

purpose.

104

The WAIT(TSP) primitive will be used to wait on an
instruction tree which will connect a processor of the
group with the paéing task, or when a paging task 1is
waiting to continue execution (after finishing a page
in/out operation) with another processor of the group.
The WAIT(SSP) is required to re-synchronize the task when
all pages have been transferred and the task is ready to

resume lockstep execution.

A semaphore register 1is present at the memory
module which is at the root of &he task's instruction
tree. This semaphore is used to count the number of paging
groups which have completed their paging operations. When
the semaphore reaches a value of =zero all paging
operations are completed. The SETSEM and GETSEM

instructions are used to manipulate the semaphore.

These semaphore instructions are used to read and
update the value of the semaphore register.
B.3 Data Structures

The following declarations define the data

structures required to support the paging algorithm:

CONST

MAXPROCESSORS = 16

105

VAR
PAGETABLE = ARRAY[MAXPROCESSORS*64*3,3] OF INTEGER;
PAGEGROUP = ARRAY[MAXPROCESSORS] OF INTEGER;

PAGINGTASK = BOOLEAN;
NOPAGINGROUP = 1. .MAXPROCESSORS;
PRMSTATUS = BIT;

PROCTASK = INTEGER*2;

<page-in> = integer;
<page-out> = integer;
<type> = integer;
<moretransfers> = integer ;

where:

MAXPROCESSORS : the maximum number of processors
which can make a group.

PAGETABLE : a table which contains the processor
number, page number, and the space type, for all
pages currently resident in memory.

PAGEGROUP : an array which indicates to which
paging group each processor belongs.

PAGINGTASK : a boolean variable set 1in those
processors which are paging tasks.

NOPAGINGROUP : number of paging groups (or
paging task processors) in the task.

PRMSTATUS : a bit variable to save the original
status of the processor,

PROCTASK : a MAXPROCESSORS bit variable whose
corresponding bits are set for those processors
which form part of the task.

<page=~in> : page causing the page fault.

<page-out> : page to be swapped out.

106
- <type> : type of space of page causing the
fault.

- <moretransfers> : the number of page transfers a
paging task has to perform.

Since this information must be accessed by the
processors after the task has been broken up it must
reside in Data Space, starting at page 0, and must be

initialized by the loader at load time.

Two restrictions must be imposed while loading a
task. First, a page buffer must be-reserved in each memory
module which has an SMSM and which will be page 63 of
Control Space. Second, page 62 of Control Space is also a
reserved page. These two pages are required for the

transfer of pages among processors.

B.4 Algorithm 1

This first algorithm is based on the
synchronization mechanism which relies on the Control Port
to dynamically create and delete instruction trees as
discussed 1in Appendix A. For the purpose of describing
the paging algorithm we have divided the process into five
levels as shown in Figure B-1. The filled lines represent

the execution flow of processors which are paging tasks,

107

while the dotted lines represent execution flow of
non-paging task processors. The fork in the execution
flow represents the de-activation of an instruction tree,
while a join in the execution flow represents the creation

of an instruction tree. See Figure B-2.

Ltevel I is the Page Fault Handler entry. The
following pseudo-code describes the actions taken at this

Tevel.

begin (* Level 1
Page Fault Hander

t

save PRM status

- find:
page causing fault (< page-in >)
page to swap by LRU (< page-out >)
type of space (< type >)

- de-activate instruction tree

all processors wait for tree deletion

t

*)

TESTPRM (PRMSTATUS) ;
FIND (< page-in >) ;
LRU (< page-out >) ;
if < type > = 'CS' OR 'PS'
then

SETSEM (1)
else

SETSEM (< NOPAGINGROUP >) ;

DINST (PROCTASK)
WAIT (TSP);

end; (* Level 1 *)

Bregk
Task

Determine
Paging Tasks

Select
Group

Create
Tree

Delete
Tree

Page
Transfer

Wait
Synch.

Figure

B-1:

Execution flow graph

108

L—_—

J

CE<EE em oy e

< E <

=

-

oo
bt

Iv

109

Figure B-2: Fork and join execution

Execution flow is now at Level II. The instruction
tree has been deleted. All processors are waiting for a
TSP signal. When the processors receive the TSP signal
execution resumes with each processor executing as a
one-processor task. At this level paging tasks will
determine the number of transfers required and will
perform any local transfer of pages. Non-paging tasks will
convert their <page-out> to (S-62 and will proceed to
Level IV. The following pseudo-code maps to Level II of

the execution flow graph.

begin (* Level I1

each processor starts executing this code
after the instruction tree has been deactivated
*
)
if < type > = 'PS' QR 'CS!
then
(* fault on one dimensional space
*
)
if < page-out > € Address-space
then
if PAGINGTASK
then
(* paging task owns page
*
)
begin
SETPRM (1) ;
LOCALTRANSFER ;
< moretransfers > :=
end

else
(* owns page but not a paging task

begin
CONVERT (< page-out > , (CS62) ;
(* drop to Level 1V
*)
PAGETRANSFER
end
else
if < page-out owner > & PAGINGROUP
AND PAGINGTASK
then
begin
(* processor is paging task of owner
*
)
SETPRM (1)
< moretransfers > := 1 ;
end
else
(* processor not required in one
dimensional fault
drop to Level V
*)
WAIT (SSP)

110

else

(* two dimensional page fault

*
)
if NOT PAGINGTASK
then
(* non-paging task, convert < page-out >,
and drop to Level IV

)
begin
CONVERT (<page-out > , CS62) ;
PAGETRANSFER
end
end; (* Level II *)

While non-paging tasks are waiting for a TSP
signal at Level IV (or waiting for a SSP signal at Level V
in one dimensional page faults) paging task processors
proceed to Level III. Each paging task will select a
processor from the group, will Join this processor at
Level IV to form a two processor task, and will then
return to Level III. This procedure is repeated until
transfers to all processors of the group are accomplished.
Once transfers are completed, the synchronization
semaphore is updated, the status of the processor is
restored, and the processor will proceed to Level V. The
following pseudo-code represents Level III of the

execution flow graph.

begin (* Level III
)

while < moretransfers > 3 0 do

112

begin
. select a processor from group
(* join selected processor at Level IV

~ *)
PAGETRANSFER ;
< moretransfers > := <moretransfers > - 1 ;
(*
delete instruction tree *)

DINST (< paging task and selected processor > } ;
WAIT (TSP)

end (* while moretransfers *)
(*

paging tasks complete transfers for the group

update synchronization semaphore and proceed to

Level V

*
)
GETSEM (< sem-value >) ;
< sem-value > := < sem-value > - 1 ;
SETSEM (< sem-value >) ; :
if (< sem-value >) % O
then
(* some paging task still active
*
)
begin
SETPRM (PRMSTATUS) ;
(* drop to Level V
*)
WAIT (SSP)
end
else
begin

(* no other paging task active
request creation of task-wide instruction
tree and proceed to Level V

*)
CINST (PROCTASK) ;
SETPRM (PRMSTATUS) ;
WAIT (SSP)
end
end (* Level III *)

At level IV the paging task joins the processor

113

selected at level III to form a two-processor task. when
the instruction tree is created the page transfers take
place. While the paging task return to level III the other
processor proceeds to Tevel V to wait for the
synchronization signal. The following pseudo-code

describes execution at level IV.

procedure pagetransfer; (* Level 1V *)

if PAGINGTASK
then
(* paging task requests new instruction tree and
then waits
*)

CINST (<paging task and selected processor>)
(* non-paging task goes directly to wait state

)
WAIT (TSP)
(* paging task joins selected processor in a two
processor task

)
NONLOCALTRANSFER
(* C$-62 => C(S$-63 => SMSM < page-out =
SMSM => (S$S-63 => (S$-62 < page-in >
)

CONVERT (CS62 , < page-in >) ;
. update PAGETABLE ;
(*
< page-in > is now resident
non paging task will proceed to Level V while
paging task return to Level 111

*)
WAIT (SSP AND NOT PAGINGTASK) ;
(* a wait (false) is equivalent to a NOP
)
end; (* pagetransfer Level 1V *)

At level V processors wait for the synchronization

114

signal when the task-wide instruction has been created. At
this point Tlockstep execution is resumed and control can

be returned to the executing task.

B.5 Algorithm 2

This algorithm uses the CLA Logic mechanism as
described 1in Appendix A. The difference between using the
CLA Togic mechanism and the Control Port mechanism is in
the way synchronization is accomplished. Since the paging
algorithm is the same the Pascal pseudo-code is omitted to

avoid repetition from the previous section.

Again the problem of paging in and out a

multi-byte wide space is considered.

After the page to be replaced is decided upon
(<page-out>) the task breaks into multiple paging tasks.
Again the processors that have access to SMSM's through
their data tree are designated as paging task heads. They
are responsible for paging their own pages as well as
those pages belonging to processors of the paging group.
Individual paging tasks execute independently of each
other and at the end of their operation are suspended

until the last of them reaches completion. In the end all

115

processors of the task are brought back in synchronism
after which they start executing in lockstep. The process
of paging a multi;byte wide space takes 9 steps. These are

described below.
Step 1: Delete the task-wide instruction tree.

The current task-wide instruction tree (which
overlaps the task-wide shared tree of color 0O by
convention) 1is deleted in lockstep. This is accomplished
by properly executing the DELBRNCH- instruction. At this

point the processors cease to be part of the main task.
Step 2: Set appropriate Acquires and Propagates.

The processors realign themselves into different
paging groups. Shared trees of color 1 are predefined
over paging task processors at task set up time. Also, the
total number of processors for its paging group is known
to each processors at Tload time. The paging head
processors negate their Acquires and assert their
Propagates through the RESET(ACQUIRE) and SET(PROPAGATE)
instructions. These processors then wait in a microcode

loop for the Grant signal to be true (WAIT(GRANT)).

116

Step 3: Wake up paging task processors.

The individual paging task head processors assert
their Acquires (SET(ACQUIRE)) and thus wake up their
subject processors by asserting their Grants. Thus the
whole paging group gets into lockstep. In Tlockstep they
create the paging task's instruction tree by converting

the shared tree into an instruction tree. of color 1.

Step 4: Mask Page.

Page 63 of Control Space is reserved for paging
out to the SMSM. It exists only in the paging task head
processors. C5-62 is similarly reserved for paging. This
page moves from processor to processor within a paging
task. The processors from which a page is to be swapped

rename that page to be (S-62.

The processors are also provided with a unique id
within their paging group. The following computation s

done to select the next processors for paging.

Let the number of processors in the paging task be

NUMSUB.

117

1. if NUMSUB <> paging-id then set mask.
2. under mask put <page-out> into ALU register.

3. convert <pa§e—out> to CS-62.

Step 5: Transfer CS-62 to CS-63.

Data is then transferred from CS-62 to CS-63
through the use of the broadcast bus. The data received
from CS-62 comes from the paging candidate and goes to
CS-63 which exists in the paging task head processor. A
complete page 1is transferred iﬁ lockstep but only two

processors are actually active.
Step 6: Transfer page to SMSM and read <page-in>.

The paging task head processor now has the page to
be swapped out in its CS-63. It transfers this to the SMSM
by executing an I/0 instruction. It then reads back

<page-in> from the SMSM into £S-63.
Step 7: Transfer page CS-62 to £S-63.
A reverse transfer of data takes place and the new

page, <page-in>, s placed in the memory of the current

candidate.

118

Step 8: Change page id and increment counter.

€S-62 is <changed to <page-in>. Again only one
processor actually does the modification, others simply
execute in lockstep mode without any side effects. The
number of processors (NUMSUB) is then decremented by one.
If there are any more candidates Jleft the process is

repeated from Step 4.

Step 9: Resynchronize task.

The instruction tree of <color 1 s destroyed
(DELBRNCH), and the processors are desynchronized. Each
non paging task head processor creates a branch of the
taskwide instruction tree, CREBRNCH(0), asserts its
Propagate, SET(PROPAGATE) and negate its Generate,
RESET(GENERATE). Finally all will enter a microcode loop

waiting for their Carry to become true, WAIT(CARRY).

Meanwhile the paging task head processor acquires
the shared memory module and decrements the
synchronization register. It releases the memory module
and goes into a Jloop T1like the other processors of the
group if the synchronization register is not zero. If the

synchronization register is zero it will assert its

119

Generate, SET(GENERATE), and will Join the rest of the

processors in lockstep.

Appendix C.

Intra-task Communication in TRAC

Chapter 4 described the instances where Intra-task
Communication was required. Communication among processors
of the same task is required as a follow up action of an
IGM. These messages arrive at the TH-PRM processor as

interrupt packets.

There are two steps involved. First, the packet
has to be analyzed by the TH~PRM and, second, information
may have to be distributed or collected from other

processors of the task.

Since the packet is stored in page zero of the
TH-PRM's Data Space, only the TH-PRM has access to this
information. Therefore it 1is required that while the
packet 1is analyzed by the TH-PRM, the other processors
must be in a wait state. To realize this lockstep mode of

execution must first be abandoned.

120

121

After the packet has been analyzed, the TH-PRM is
free to communicate on a one to one basis with each
individual processor. Any message passing is done through
NIGM. This 1is possible since processors are in a wait

local packet Toop.

Resynchronization is reinstated at the request of

the TH-PRM.

C.1 Hardware Support

The desynchronization and synchronization process
utilizes the CLA Logic mechanism as described in Appendix

A.

.2 Algorithm

The Interrupt Handler s activated when IGM (
interrupt packet) arrives at the TH-PRM's processor. The
task must be desynchronized for packet analysis and for
processors to communicate with each other via NIGM

(non-interupt packets).

Figure C-1 schematically shows the
desynchronization algorithm and the following pseudo-

Pascal code shows the structure of these process:

122

SETSEM(# Processors);
(* delete branch of instruction tree *)

DELBRNCH;
if THPRM
then (* TH-PRM *)
begin
(* analyze packet *)
(* one-to-one processor communication *)

(* send resynchronization NIGM SIGNAL *)

end

else (* non THPRM *)
begin
repeat

WAIT (NIGM);

(* process NIGM *)
until NIGM = "resynchronization";
end;

(* all processors will now wait for the instruction tree
to be activated *3
GETSEM(SEMVALUE);
if SEMVALUE <> 0
then
CREBRNCH(0)
SEMVALUE := SEMVALUE -1
SETSEM(SEMVALUE)
SET(PROPAGATE)
else
CREBRNCH(0)
SET(GENERATE);

WAIT(CARRY);

TH-PRM

ANALYZE
PACKET

4

1 TO 1
COMM.

SEND

SYNCH. V~

SIGNAL

Figure C-1:

BREAK TASK

ENTER

WAIT STATE

WAIT NIGM

SYNCH.

PROCL
NIGM

S8

WAIT FOR
SYNCH.
SIGNAL

Process desynchronization

123

Appendix D.

Shared Memories in TRAC

D.1 Introduction

Shared memories are wused to share information
among tasks. TRAC's architecture requires that a shared
memory module be connected to one shared tree at a time.
Therefore processors must cooperate in the wuse of the

shared memory.

The wuse of shared memories can be viewed as a
three step process:
- detection of the absence of a shared module (or
share memory fault).
- request for a shared memory.

- acquisition of a shared memory module.

This Appendix will describe the three steps and

their implementation in TRAC.

124

125

D.2 Shared Memory Fault

When a task executing in lockstep mode tries to
access a page, and a page fault situation is encountered,
two things could have happened. Either the page in
question is stored in a shared memory module currently not
attached to the task, or the page is stored in a backup

device.

To resolve the situation the PRM will search the
Shared Memory Page Table. The table, whose format is shown
in Figure D-1, contains an entry for every page stored in
a shared memory module along with the description of its
memory space and the color of the shared memory module in

which it resides.

If the page causing the fault is found in the
table, then the shared memory of the specified color must
be acquired. If the page in question is not in the table,
then a page fault has occurred and the PRM will proceed as

explained in Appendix B.

126

PAGE NUMBER SPACE COLOR

Figure D-1: Shared Memory Page Table

0.3 Shared Memory Request

It is not mandatory that pages with the same page
number of different processors of the task be stored in
shared memories of the same color. Colors are assigned at
load time and must be accurately reflected in the Shared
Memory Page Table. For example Figure D-2, shows the case
where page 10 of Data Space is stored in different color
shared memory modules for each of the three processors of

the task.

127

PAGE SPACE | COLOR

Processor 1 10 DS 2

PAGE SPACE | COLOR

Processor 2 10 DS L

PAGE SPACE | COLOR

Processor 3 10 DS 3

Figure D-2: Shared Memory Page Table Example

In order to avoid deadlock situations, the
acquisition of shared modules is under the control of the
Job Monitor. This means that the TH-PRM of the task must
request the shared modules to the JM. To handle this
situation each processor of the task will be requested to
send the color of the shared memory it needs to the
TH-PRM. The TH-PRM will 1in turn send a request for all
shared memories needed to the JM. The process of sending
the messages among the processors of the task is described
in Appendix C. Communication with the JM is discussed in

Appendix E

128

At this point the TH-PRM is waiting for a message

from the JM instructing it to acquire the shared memories.

D.4 Shared Memory Acquisition

When the JM sends the acquire message, the TH-PRM
will in turn send a message to the other processors of the
task. Each processor will issue an acquire instruction for
its shared memory module. The task is resynchronized as

explained in Appendix C.

Appendix E.

Messages in TRAC

E.1 Introduction

Inter-task and intra-task communication in TRAC is
done through a message system. Chapter 3 described the
Communication System while Chapter 4 discussed the
protocols needed for inter-task and intra-task

communication.

This Appendix will outline the messages necessary

to accomplish communication in TRAC.

E.2 Data Structures

The Communication System will require the support
of two basic data structures; one to define the message
jtself and a second one to define the message table. The
first will have the necessary information for the message
to be properly routed through the network and for the

communication system to process the message. The message

129

130

table <contains the necessary information for the Upward

and Downward Consistency Checking Mechanisms.

E.3 Message Format

Messages will consist of three logical fields:

- processor id. of destination processor.
- message id.

- contents.

The processor id of the destination processor s
the physical processor number to which the message must be
sent. The message id is an identification number
associated with the message and the contents 1is the
message itself. The first two fields are one byte long
while the contents field varies in length depending on the

message.

E.4 Message Table

The message table consists of two entries:

- message id.

- message type.

As before, the message id will ididentify the

131

message while the message type is a coded scheme used by

the Consistency Checking Mechanism (see Chapter 3).

The following messages are required for the TRAC

implementation:

MESSAGE: SEND OBJECT

MESSAGE ID: 1

TYPE: 56

DESCRIPTION: requests the PRM‘ to send a particular

object to another PRM or to a shared
memory module.

CONTENTS: channel through which the object is to be
sent

if packet the destination processor id
else shared memory module and address
within the module

type of object

address of type and var descriptors

MESSAGE: RECEIVE OBJECT

MESSAGE 1ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

132

76

tells the PRM to receive a particular
object

same as SEND OBJECT

GET OBJECT

55

this message will contain the actual
object the PRM is expecting to receive

processor id of sender

the actual object

ACQUIRE SHARED MEMORY

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

133

56

this message tells the PRM that it can
acquire a shared memory module.

shared memory modules which can be
acquired or null if TH-PRM had previously
requested the modules.

RELEASE SHARED MEMORY

14

tells the TH-PRM that it should release
shared memory modules

shared memory modules to release

RETURN SHARED MEMORY

42

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

134

tells the PRM's to release shared memory
modules

shared memory modules to release.

NEED SHARED MEMORY

55

the PRM's will request shared memory
modules to the TH-PRM which in turn will
request these modules to the JM

needed shared memory modules

WHICH SHARED MEMORY

42

after a shared memory module page fault
the TH-PRM will ask the PRM's for the
shared module they need. Each PRM will
respond with a NEED SHARED MEMORY message

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTICN:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

null

TERMINATE

14

135

tells the TH-PRM to terminate execution of

the task

null

STOP

10

14

tells

execution of the

the

TH-PRM to
task.

temporarily
The

stop

TH-PRM will

wait for an IGM while the other PRM's will
wait for a synchronization signal

null

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

136

CONTINUE

11

14

tells the TH-PRM to resume execution of
the task. A synchronization signal is sent
by the TH-PRM to the other processors of
the task.

null

VALUE

12

56

reguests the current value of a
conditional value to be sent to the JM

address of type

address of var descriptor

MESSAGE:

MESSAGE ID:

TYPE:

DESCRIPTION:

CONTENTS:

MESSAGE:

MESSAGE 1ID:

TYPE:

DESCRIPTION:

CONTENTS:

137

DELETE INSTRUCTION TREE

13

41

requests the deletion of an instruction
tree

processors which are nodes of the tree to
be deleted

CREATE INSTRUCTION TREE

14

41

requests the creation of an instruction
tree

processors which are nodes of the new
instruction tiree

[BAC 81]

[BAS 77]

[BRI 73]

[BRO 80a]

[BRO 80b]

[BRO 81]

References and Bibliography

Bacon J.

An Approach to Distributed Software
Systems.

Operating Systems Review 15(4):62-74,
October, 1981.

Basket F., Howard J., Montague J.

Task Communication in DEMOS.

In Proceedings of the Sixth Symposium on
Operating Systems Principles, pages
23-31. ACM-SIGOPS, November, 1977.

Brinch Hansen P.
Operating Systems Principles.
Prentice Hall, 1973.

Browne J.C., Charlu D., DeGroot D.,

Tripathi A.R.

Software and Programming Systems for TRAC.

Technical Report TRAC-19, Dept. Computer
Sciences and Electrical Eng., University
of Texas at Austin, 1980.

Browne J.C., Tripathi A.R., Fedak S., Kapur

R., Adiga A.

A Language for Definition and Control of
Reconfigurable Parallel Computation
Structures.

1980.

Browne J.C., DeGroot D., Tripathi K.,

Fedack S. Adiga A.

The Structure of an Operating System for a
Reconfigurable Network Architectured
System: TRACOS.

1981.

138

[BRO

[COF

[COF

[DeG

[DeG

[DES

[D1J

[ENS

[FED

82]

71]

73]

80]

81]

83]

68]

74]

80]

139

Browne J.C., Lipovski G.J.

Reconfigurable Network Architectured
Computer Systems: An Environment for
Parallel Computing.

1982.

Coffman E.G., Elphick M.J., Shoshani A.

System Deadlocks.

ACM Computing Surveys 3(2):67-78, June,
1971.

Coffman E.G., Denning P.J.
Operating Systems Theory.
Prentice Hall, 1973.

DeGroot D., Hunt W.A.

A Solution to the Paging Problem.

Technical Report TRAC-18, Dept. of Computer
Sciences and Electrical Eng., University
of Texas at Austin, 1980.

DeGroot D., Hunt W.A., Browne J.C.
Virtual Memory Management for Network

Architectured Vari-Structured Computers.
1981.

Desphante S., Canas D.A., Sejnowski M.C.
Synchronization and Paging in TRAC.
1983.

Dijkstra E.W.

The Structure of the THE Multiprograming
System.

Communications of the ACM 11(5):341-345,
May, 1968.

Enslow P.H., Editor.
Multiprocessors and Parallel Processing.
Wiley, 1974.

Fedack S.
Implementation of CSL for TRAC.
1980.

[GEN

[HAB

[HOW

[JON

[JON

[JON

[JON

[KAP

81]

76]

73]

771

79a]

79b]

80]

80]

140

Gentleman W.M.

Message Passing Between Sequential
Processes: The Reply Primitive and the
Administrator Concept.

Software Practices and Experiences
11:453-466, 1981.

Haberman A.N.
Introduction to Operating Systems Design.
SRA, 1976.

Howard J.
Mixed Solutions for the Deadlock Problem.
CACM 16(7):427-430, July, 1973.

Jones A.K., Chansler R.J., Durham I.,6Feiter

A., Schwares K.

Software Management of Cm*, A Distributed
Multiprocessor.

In Proceedings NCC, pages 657-663. ACM,
1977.

Jones A.K., Chasler R.J., Durham I.,

Karster S., Vegdahl S.

StarOs, a Multiprocessor Operating System
for support of Task Forces.

In Proceedings of the Seventh Symposium on
Operating Systems Principles, pages
117-127. ACM-SIGOPS, December, 1979.

Jones A.K.

The Object Model: A Conceptual Tool for
Structuring Software.

In Operating Systems: An Advance Course,
chapter 2, pages 8-16. Springer-Verlag,
1979.

Jones A.K., Schwartz P.

Experiences Using Multiprocessor Systems- A
Status Report.

ACM Computing Surveys 12(2):121-166, June,
1980.

Kapur R., Premkumar U., Lipovski G.J.

Organization of the TRAC Processor-memory
Subsystem.

In Proceedings NCC, pages 623-629. ACM,
1980.

[KAR

[LIP

[MAN

[MEH

[NUT

[ous

[PRE

[PRE

77]

79]

81]

80]

771

80]

79]

80]

Kartashev $.I., Kartashev S.P.

A Multicomputer System With Software
Reconfiguration of The Architecture.

In Proceedings of The Eight International
Conference on Computer Performance,
pages 271-286. IEEE, 1977.

Lipovski G.J.

The Architecture of the Banyan Switch for
TRAC.

Technical Report TRAC-7, Dept. of Computer
Sciences and Electrical Eng. University
of Texas at Austin, 1979.

Manning E.G., Wong J.W., Powell P.A., Radia

S.R., Tokuda H.

SOSHINI- A Testbed for Distributed
Software.

In Proceedings International Conference on
Communication. - IEEE, June, 1981.

Mehra S.K., Majitha J.C.

Software Issues for Reconfigurable
Architectures.

In Proceedings COMPSAC 80, pages 484-491.
IEEE, 1980.

Nutt G.J.
A Parallel Processor Operating System.
IEEE-TSE SE-3(6):467-475, November, 1977.

Ousterhout J.K., Scelza A., Scindler D.S.

MEDUSA: An Experiment in Distributed
Operating Systems Structure.

CACM 23(2):92-105, February, 1980.

Premkumar U.V., Kapur R., Lipovski G.J.

Interprocess Communication on the Texas
Reconfigurable Array Computer.

In Proceedings of the 1st. International
Conference on Distributed Computers,
pages 51-62. IEEE, 1979.

Premkumar U.V., Kapur R., Malek M.,

Lipovski G.J., Horne P.

Design and Implementation of the Banyan
Interconnection Network in TRAC.

In AFIPS Conference Proceedings, pages
643-653. AFIPS, 1980.

[QUA

[SEJ

[SEJ

[SHA

[SMU

[STO

[SuL

[TRI

78]

80]

81]

74]

79]

80]

777

79]

142

Quaynor N., Bernstein A.

Operating Systems for Hierarchical
Multiprocessors.

In Proceedings Seventh Texas Conference on
Computing Systems, pages 9-15. IEEE,
1978.

Sejnowski M.C., Upchurch E., Kapur R.,

Lipovski G.J.

An Overview of the Texas Reconfigurable
Computer.

In Proceedings NCC, pages 631-641. ACM,
1980.

Sejnowski M.

Packet Support in TRAC.

Master's thesis, Dept. of Computer
Sciences, University of Texas at Austin,
May, 1981.

Shaw A.C.
The Logical Design of Operating Systems.
Prentice Hall, 1974.

Smullen J.
Memory Management of TRAC.
Master's thesis, Dept. of Computer

Sciences, University of Texas at Austin,
May, 1979.

Stone H.S.
Introduction to Computer Architecture.
SRA, 1980,

Sullivan H., Bashkow T.R., Klappholz D.

The Node Kernel: Resource Management in the
Self Organizing Parallel Processor.

In Proceedings International Conference on
Parallel Processing, pages 157-162.
IEEE, 1977.

Tripathi A.R., Lipovski G.J.

Packet Switching in Banyan Networks.

In Proceedings of the 6th. Symposium on
Computer Architecture, pages 160-167.
IEEE, 1979.

143

[WAT 79] Watson R.W., Fletcher J.G.

An Architecture for Support of Network
Operating Systems Services.

In Proceedings of the 4th Berkeley
Conference on Distributed Data
Management and Computer Networks, pages
18,50. University of California at
Berkeley, August, 1979.

[WUL 81] Wulf W., Levin R., Harbeson S.D.
HYDRA/C.mmp: An Experimental Computer
System.

McGraw Hill, 1981.

