THE EQUIVALENCE PROBLEM AND CORRECTNESS
FORMULAS FOR A SIMPLE CLASS
OF PROGRAMS

Oscar H. Ibarral and Louis E. Rosier2
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78717

TR-83-23 December 1983

1Eepartment of Computer Science, University of Minnesota, Minneapolis, MN 55455,
This research was supported in part by NSF Grant MCS 83-04756

2This research was supported in part by The University Research Institute, The
University of Texas at Austin and the IBM Corporation.

Table of Contents

1. INTRODUCTION

2. THE RELATIONSHIP BETWEEN S, T AND U-PROGRAMS

3. THE EQUIVALENCE PROBLEM AND CORRECTNESS FORMULAS FOR U-
PROGRAMS

4. L,(BB)-Programs

5. L;(BB)-Programs

REFERENCES

i8

232
33
37

ABSTRACT

This paper is concerned with the semantics {or computational power} of very simple loop programs
over different sets of primitive instructions. Recently, a complete and consistent Hoare axiomatics for the
class of {x+0, x¢y, x+x+1, x+x—+1, do x...end} programs which contain no nested loops, was given, where
the allowable assertions were those formulas in the logic of Presburger arithmetic. The class of functions
computable by such programs is exactly the class of Presburger functions. Thus, the resulting class of
correctness formulas has a decidable validity problem. In this paper, we present simple loop programming
languages which are, computationally, strictly more powerful, i.e. which can compute more than the class
of Presburger functions. Furthermore, using a logical assertion Ianguage that is also more powerful than
the logic of Presburger arithmetic, we present a class of correctness formulas over such programs that also
has 2 decidable validity problem. In related work, we examine the expressive power of foop programs over
different sets of primitive instructions. In particular, we show that an {x+0, x+y, xex+1, do x ... end, if
x==0 then y+z}-program which contains no nested loops can be transformed into an equivalent {x+0, x+y,
x¢x+1, do x ... end}-program (also without nested loops) in exponential time and space. This translation
was earlier claimed, in the literature, to be obtainable in polynomial time, but then this was subsequently
shown to imply that PSPACE=PTIME. Consequently, the guestion of tramslatability was left un-
answered. Also, we show that the class of functions computable by {x¢0, x+y, xex+1, xex~=1, do x ... end,
i/ x==0 then x+c}-programs is exactly the class of Presburger functions. When the conditional instruction
is changed to ®if x=0 then x+y+1®, then the class of computable functions is significantly enlarged,
enough so, in fact, as to render many decision problems (e.g. equivalence} undecidable.

e}

1. INTRODUCTION

In the previous ten or so years there has been a tremendous interest in the topic of program
correctness—both from a theoretical and practical point of view[3,10,17,23]. Work in the theory of
program schemata has dealt with the concept of identifying classes of programs for which various asser-
tions about programs are mechanically verifiable. What actually needs to be verified is a correctness
formula. A correctness formula is a logical formula of the form {p}S{q}, where S is a program and p and
q are logical assertions about the variables in the program S. The interpretation is that, if p is true before
the execution of S, then q will be true following the execution of 5, assuming 5 terminates. Now once
results are established for a particular class of programs (a program schemata) the procedures developed
can be applied to any instance in the class. Much of the literature has concentrated on classes of simple
programming languages but with using general assertions from a particular logic. Unfortunately, this work
has produced mostly negative results. That is, for many classes of programs (and simple assertions) these
questions are computationally unsolvable.

A positive result in this area is the result of Cherniavsky and Kamin[3]. They present a simple
programming language and an assertion language for which they were able to provide a complete and
consistent axiom system. An axiom system includes the programming language, the assertion language
and a set of axioms or proof rules from which one can derive (or prove) certain logical assertions about the
programs. An axiom system is said to be consistent and complete if the true correctness formulas coincide
exactly with the provable ones. (We ignore here any discussion of a model for the assertion language as we
expect it to be implicitly defined within each system.)

The programming language of Cherniavsky and Kamin [3] is the loop language Ll(xﬂ), X+y, x¢x-+1,
x¢x--1). A program P in this language has the form:

P : input(x,,...x;)
A
output(y,,....y,)

where A is a block of instructions from the set {x+0, x¢y, x¢x+1, x¢x1, do x...end}, k and t are con-
stants and no nesting of loop structures is permitted in A. In general, a Li(BB)-program will be defined
similarly. In this case, however, the instructions in the block A must be taken from those in BB U {do
x...end} and the maximum level of nesting allowed for loop structures is i. Note then that Li{x+0, x+y,
x¢x+1) are the loop languages in the subrecursive hierarchy of Meyer and Richie[21]. In particular, L,{x+0,
x+y, x+x-+1) is the language shown to compute exactly the "simple® functions[24]. The assertion language
used in the system of Cherniavsky and Kamin[3] is composed of those formulas in the logic of Presburger
arithmetic. The computational power of LI(X“O, x+y, x¢x+1, x¢x-~1) is quite limited. In fact programs
over this language were shown to be capable of computing exactly those functions which are
Presburger|2,3,7]. Actually the decidability of correctness formulas is reduced to the problem of deciding
the validity of a formula in Presburger arithmetic. The equivalence problem for Ll(x‘-O, x+y, xeR+l,
x¢x-=1)-programs was also reduced to the same problem|[2,3,7].

In any class of programming languages where the equivalence problem is not decidable, finding inter-
esting correctness formulas whose validity is decidable is clearly not possible. In fact, for almost any class
of programs where the equivalence problem is undecidable, the validity of correctness formulas of the
form, {true}S{x==y}, cannot be mechanically verified. The equivalence problem for a class of programs is,
given two programs in the class, to decide if these programs produce the same outputs when they are

given identical inputs. Much is known about classes of simple programming languages and the correspond-
ing classes of functions which they compute, as well as the difficulty of the respective equivalence
problems. As mentioned earlier, Meyer and Richie[21] exhibited the hierarchy of simple programming lan-
guages L(x+0, x+¥, x+x+1) whose union is a class of programs, which is capable of computing exactly the
class of primitive recursion functions. The programming language classes, Ll(xﬂ), x¢y, x¢x+1} and Lz(x«O,
x+y, x¢x+1), constitute the lower two levels of this hierarchy. Programs in these classes compute the
"simple® functions of Tsichritzis[24] and the elementary recursive functions, respectively. The program-
ming language used by Cherniavsky and Kamin[2,3] is a slight generalization of the L,(x+0, x¢y, x¢x+1)
language. The class of L (x+0, x+y, x#x+1) (Ly{x+0, x¢y, x+x+1)) programs has a decidable (undecidable}
equivalence problem. Hence possible languages of interest, in terms of computational power, would include
those that reside somewhere between L (x+0, x¢y, x¢x+1, x¢x~~1) and Ly(x+0, x+¢y, x¢x+1). Many ex-
amples of programming languages are known whose computational power is equivalent to that of Ll(x+0,
X+y, Xex+1, x*x*l)[2,3,7,12]. Until recently, however, few examples of programming languages, whose
computational power lies properly within this range, appeared in the literature. Recent work by the au-
thors has contributed in this area[16]. A possible approach for further research in this area then would be
to examine various simple languages over different instruction sets. Programming languages of interest
would have computational power greater than the language of Cherniavsky and Kamin, and yet still have
interesting classes of correctness formulas that are mechanically verifiable. Additional work would be
required to find suitable assertions. Another approach would be to use a simple assertion language and
allow nontrivial, but limited, predicates. In[23], the predicate PERM{M,N), {indicating array M is a per-
mutation of array N), was added to the assertion language of a simple system, and the resulting system
still had interesting decidable correctness formulas.

In this paper we introduce simple loop programming languages S and T which are computationally
more powerful than L (x¢0, x+y, x¢x+1, x¢x-=1). Subsequently, we show that the classes of S and T
programs have a decidable equivalence problem. We also show a decidable class of correctness formulas
for such programs.

We begin by looking at the language Ll(x<~0, x¢y, x¢x+1, x¢x-1} and see what constructs we can
add and still have a decidable equivalence problem. Ll(x+0§ x+y, x¢x+1, x+x--1) computes exactly the
Presburger functions[2] and those are precisely the functions which are computable by straight-line
programs over the instruction set:

k is a positive integer constant.

(5) x+x mod k, where for positive integers x and y, x mod y
is defined to be x-y|x/y] if y 5% 0 and x
otherwise[19]. Again k is a positive integer
constant.

(6) 1f x==0 then I

where [denotes any instruction of type 1-5[12]. In fact, an L;{x+0, x+y, x*x+1, x+x~1} program can be
converted into an equivalent straight-line program over these instructions in polynomial time[7]. Thus
addition and proper subtraction are allowed but multiplication, division, and the modulo operation are
only allowed by positive integer constants (i.e., x+k*x, xex/k, x+x mod k). Now what we want is to extend
the language Ll(x+0, x+y, x¢#x+1, x¢x—1)} so that the resulting language becomes equivalent to a com-

putationally more powerful class of straight-line programs, but which still has a decidable equivalence
problem. Clearly, a more powerful class of straight-line programs would result if we allowed any one of
the following constructs: x+#x/y, x«x*y, x#x mod y. Unfortunately, it is known {see [13]) that programs
over {x+1, x+x+y, x¢x/y} or over {x¢1, x¢x+y, x¢x=y, x¢x*y} have an undecidable zero-equivalence
problem. {The zero-equivalence problem for a class of programs is deciding for a member of that class
whether the program outputs a zero for all possible inputs.} The only other case worth considering then is
the addition of the construct x+x mod y, and for this we can show that equivalence is decidable.

Throughout, U will denote the class of programs over the following instruction set:

where I denotes any instruction of type 1-5.

We now define the classes of loop programs S and T which are {polynomially) equivalent to U. For
ease of explanation we describe the programming languages S and T over the following seven instruction

types:

A
end
(6) x+y mod z
(7) if x|y then z¢0, where ’|" means 'divides’

where A is a block of primitive instructions (1-4, 6-7), ¢ is called the loop control variable and ¢ is a
constant. The interpretation is that ¢ is assigned the value of u on the 1st pass, u+c on the 2nd pass,.,
and v-{v-u) mod ¢ on the last pass, where changes to variables u, v and ¢ inside the loop do not affect the
number of loop executions or the assignment made to variable ¢ preceding each pass of the loop. (If v<u,
then the loop is not executed.)

The language S allows only the primitive instructions 1-4 and 6, and the language T allows only
primitive constructs 1-4 and 7. Restrictions are also placed on loop structures which are allowable in 5
and T programs. The restrictions are syntactic restrictions placed on the blocks of instructions A that are
allowed inside for loops. First, however, we need the following definitions.

Consider a block of instructions A==I,;..;1, where each Ij (1<j<l!) is an instruction of type 1-4 or
6-7. Then the functions p, and b, are defined to be for 1<j<|,

fy if Ij- is *x+y"® or "x¢x mod y*
. 1
palix) =
X otherwise

b,lix) = pA(l,...pA(j-l,p(j,x))...), 1<i<i.

Thus, pA(j,x) is the name of the variable before the execution of Ij, which is x after the execution of Ij {i.e.
the value of x, after the execution of L, is derived from the value of p,(j,x) before the execution of Ij), and
bA(j,x) is the name of the variable, before I, is executed, from which the value of x is derived, after the

execution of 11;“-;13-

Note that the functions p, and b, are defined with respect to a block of instructions, A. Consider a
loop structure of the form "for t=u to v by ¢ do A; end;®. Then this is an allowable loop structure for S
{or T}-programs if A contains only the instructions allowable in S (or T}-programs and restrictions 1 and 2
hold for A.

Restriction 1. If Ij is the instruction *if x|y then z+0® or "x¢y mod z", then bA(j,y)=:,.

Restriction 2. If Ij is the instruction "if x|y then z+0" or "z¢y mod x" then x may not be altered (appear
on the left hand side of an assignment statement) within A.

Note that for any block of instructions of types 1-4 and 6-7 restrictions 1 and 2 can be syntactically
checked. A S (T)-program is a program over instruction types 1-6 (1-5,7) that allows no mesting of loop
structures and where restrictions 1 and 2 hold for each block of instructions, A, which is enclosed within a

loop structure.

Clearly S (T)-programs are more powerful than L,(x¢0, x¢y, x¢x+1, x+x-=1)-programs since an S
(T)-program can compute x mod y. We shall show that the class of S {T)-programs has a decidable equiv-
alence problem. In each case, we illustrate a polynomial time procedure that converts an S {T)program
into an equivalent U-program.

One might question whether the restrictions are necessary for S and T-programs. While we are not
able to provide proofs in either case we provide evidence that indicates, probably so. For example, if
restrictions 1 and 2 were not imposed on S-programs then such programs would be capable of computing
the function ged(x,y). First, our proof that the equivalence problem is decidable seems to fail if such func-
tions as ged(x,y) are allowed. Secondly, suppose that the introduction of the ged function {i.e. the instruc-
tion z+ged(x,y)) adds no computational power to the class of U-programs. Then the ged function would not
be harder to compute than multiplication. This would answer an open question in [1] in a very surprising
way. In the case of T-programs we show that the removal of restriction 1 or 2 implies that the resulting
class of programs has a PSPACE-complete O-evaluation problem. (The O-evaluation problem for a class of
programs C is given a C-program P with one output variable, does P, when all input variables are initially
zero, output a zero?) See [14]. Clearly the class of T-programs has a polynomial time O-evaluation
problem by virtue of the polynomial time translation of a T-program to a U-program.

Another point of comparison for S and T-programs is the class of DL-programs introduced in [6]. In
[6] it was shown that the class of functions computable by DL-programs properly include the class of
Presburger functions and that the class of DL-programs has a decidable equivalence problem. The essential
difference between DL-programs and classes of programs that compute Presburger functions seems to be
solely that a DL-program can perform an unbounded number of 1/0 operations. {In fact it was shown in

[6], that any DL-program with a bounded number of inputs computed a Presburger function.) Thus, it is
clear that the class of functions computable by DL-programs is not comparable with the class of functions
computable by S, T or U-programs, although both properly include the class of Presburger functions.

In Section 3, we show that the class of U-programs has a decidable equivalence problem. We then
generalize this by looking at a class of unquantified correctness formulas. We show that this class of cor-
rectness formulas is decidable. Lastly we mention how this work can be used to extend the class of decid-
able correctness formulas in [17,23].

In the remaining sections of this paper, we investigate claims made (without proof) in [18], concern-
ing LI(BB)-programs where BB C {x+0, x¢y, xex+1, x¢x—~1, if x=0 then A else B}, and where A and B
are (finite blocks) of the other primitive instructions in the set BB. We paraphrase the following defini-
tions from [18]. Let L and L’ be classes of programs, and { and C’ the corresponding classes of functions
they compute. L is effectively translatable into L’ if for every program P in L there is a constructive way
to obtain a program P’ in L’ such that P and P’ compute the same function. If there is such a translation
we write L —-*-> L', where the "*¥ may be replaced by "C*, "%, *p" or "e", according to whether the
translation is the trivial inclusion map or produces a program P’ in L’ which is of length at most "linear”,
"polvnomial®, or "exponential®, in the length of P. Also for our results as well for the claims made in 18],
whenever the translation procedure given is *1*, ®p®, or "e®, it is also the case that it will take at most
ulinear®, "polynomial®, or "exponential® time, respectively (as a function of the size of the source program
P).

Let ®if* denote the instruction "if x=0 then A else B". Let BB1={x+0, x+y, x¢x+1}. Let BB2
denote the set BB1 U {x¢x—1}. The following theorem was claimed without proof in {18]. To make the
potation less cumbersome the set brackets have been dropped in expressing the sets BB, of primitive in-

structions.

Theorem. Let v, and 7, be subsets of {x+y, x+x—-1, if}. All possible translations from L, (x+0, xex+1,)
to L}(X*O, x¢x+1, 72) can be read off the following diagram:

L,(x+0, xex+1, x¢x-~1)

7 \

L, {(x¢0, x+x-+1) L,(BB2
,(BB1) J(x#0, xex+1, xex=1,if) | p
€ =
v

p L,(x+0, xex+1,if) L,(BB2, if)

[t

v
L,(BB1, if)

If an omitted arrow in the above diagram cannot be obtained by composition from the arrows already
drawn, then it is the case of non-translatability, which also requires some proof. 0

This theorem probably contains an error concerning the translations:

L,(BB1) —e-->

L, {x+0, x¢x+1, if) -C-->
L,(BB1, if) ~p->
L,(BB1)

and definitely contained an error concerning:

o

,,(BB2) —e-->

L, (x¢0, xex+1, xex=1, if) -C-->

L,(BB2, if) —pe->

L,(BB2)

The remaining claims of the theorem are correct. From results in [14], it can be noted that L (BB1, if}
--p--> L,(BB1) implies PSPACE=PTIME. In [16], it was noted that L,(x¢0, x¢x-+1, x#x—1, if}-programs
were computationally more powerful than LI(BB?,)-programs. This is an important jump in terms of com-
putational power for two reasons. First the class of functions computable by such programs is no longer
Presburger. Secondly, the jump is so great that most decision problems for such programs are now un-
decidable, e.g. the equivalence problem is undecidable and hence there no longer exists a decision
procedure to decide the validity of even very simple correctness formulas. For example, the validity of
correctness formulas of the form {true}S{x=y} is no longer decidable. Left unanswered then is the ques-
tion of translatability between L,(BB1, if) and L, (BB1).

In Section 4, we consider this problem as well as examine the computational gap between
Ll(BBQ)—programs and Ll(BBQ, if)}-programs. We concentrate on allowing the instructions "y+c" and

#yey=1% to be conditionally executed. That is, we introduce the constructs #if x==0 then y<y+1", "if
x=0 then yey——1" and *if x==0 then y+c", where ¢ is any nonnegative integer constant. We are then able
to show that:

L,(BBL, if) ~e~> L,(BB1)

which is perhaps not surprising but nevertheless had not been confirmed. This should be contrasted with
the corresponding situation for BB2, where the inclusion of the *if*® construct provides an increase in com-
putational power. We also show that:

L,(BB2, if x=0 then y+c) --e--> L,(BB2).

This should be contrasted with the result in [16], showing that L,(BB2, if x=0 then y+y+1) is strictly
more powerful than L,(BB2). L,(BB2, if x=0 then y+y-+1)-programs were shown to be computationally
equivalent to L,(x¢0, x¢x+1, xex—1, if)}-programs, in [16]. If both constructs, "if x=>0 then y+c" and v
x=0 then y+y—1" are concurrently considered it is easy to show that LI(BBQ, if x==0 then y+1, i x=0
then y¢y—1) is computationally equivalent to Lx(BB2, if x==0 then y+y+1). Unfortunately, we are unable
to resolve the computational power of LI(BBQ, if x=0 then y+y—1)-programs. The "if x=0 then
y+y-=1* construct seems similar to the i f x=0 then y+y+1" construct, but as pointed out in [14], func-
tions of one variable computed over BB2 U {if x=0 then y+y-=1} are monotonic. Thus the proof tech-
niques used in [16] do not seem to work with this language. This same problem was apparent in [14],
where the authors were able to show that the O-evaluation problem for this language is PSPACE-
complete. Unfortunately, these techniques do not seem to work either. Lastly we note that the addition of
the construct "if x==0 then y¢z* to the set BB2 poses a difficult question. (It is easy to show that
L,(BB2, if x=0 then y«z)-programs are computationally equivalent to L,(BB2, if}-programs.} If L,(BB2,
if x=0 then y¢z)-programs are computationally more powerful than L,BB2, if x=0 then
y+y-+1)-programs, then it would imply that 0{n} space bounded Turing machines are more powerful than
Turing machines operating simultaneously in 0(n) space and 0(2*") time, A<1. This problem seems very
difficult. The answer is not known even for the case when the time restriction is reduced to a polynomial.
(See [16].) Other corrections to errors in [18] are presented in the last section.

2. THE RELATIONSHIP BETWEEN S, T
AND U-PROGRAMS

In this section, we show that there is a polynomial time procedure which translates an S or T-
program into an equivalent U-program. Thus when in the next section we show that the class of U-
programs has a decidable equivalence problem, the same can be said for the class of § and T-programs,
respectively. The time required for the decision procedure is 0(21’(”)) for U-programs, and thus also for S
and T-programs, where p is a polynomial. The last part of this section is concerned with showing that if
we relaxed the class of T-programs by removing either restriction 1 or 2, then the resulting class of
programs would have a PSPACE-complete 0-evaluation problem.

We start with the following theorem.

Theorem 1. Given an S-program P, we can construct a U-program P, in time polynomial in the length
of P, such that P is equivalent to P.

Proof. Without loss of generality we need only consider how to convert a loop structure into an equiv-
alent sequence of U-instructions. Consider then the loop structure ® for 1==u to v by ¢ do; A; end;®.

We consider how to compute the final value for each variable mentioned in the loop structure.
Recall the functions defined earlier, p, and b,. We now define new functions s,, a, and q,. Let A =
I,;..51. Then for 1<j<i

QA(J"X) = pA(J“}’l»pA(l'l; pA(l7X)))
s,(ix) = a,(1,bo(i.x))
a,(i,ix) = sh(ix), i>0

Thus q,4(j,x) is the name of the variable after the execution of I; from which the variable x is derived after
the execution of Ijﬂ;...;%. 5,(ix) is the name of the variable from which x is derived after the execution
of Ij+1;”';li;11;"';lj or after one additional pass of the loop. a(i,j,x} is the name of the variable (after the
execution of Ij) from which x is derived after i passes of the loop.

Let wy,...,w be the variables mentioned in A. Let A’ be the code segment A with all instructions of
the form "x¢y mod z" removed. For a variable xe{w,,...,w_} find the least nonnegative integer, g(x), such
that there exists a j where Ij is the instruction "aA(g(x),j,qA(j,x)) «y mod z*. Note that a,(g(x).j,q,(,x)) is
the name of the variable, g{x) passes previous to the termination of the loop, from which the value of x
after the termination of the loop, will be derived. If g(x} exists, choose j to be as large as possible 1<i<l.
The reader can verify that if g(x) exists then g(x)<n. Furthermore, if q were the value of
“a,(g(x).j,q,(,&(x)))" after the execution of L, g{x) passes before the termination of the loop, then there is
a function f, computable by a U-program which can be found in O{(n+{)%) time such that given the value

of g, can compute the final value of x. (Note that if g(x) does not exist, then the final value of x will be
the same if we execute the loop structure # for t==u to v by ¢ do; A’; end;" instead.)

Now the value of q is the value of ¢ {g(x) passes before the termination of the loop) plus or minus
{proper subtraction) some nonnegative constant modulo z (which is not altered in the loop). Let q then, as

10

2 function of ¢ and z, be calculated by hx(o,z). Clearly, b is U-computable using a fixed number of instruc-
tions. The value of ¢, g(x) passes before the termination of the loop is u-+c{r——g(x)) where r is the total
number of times the loop will be executed. (Provided of course that r>g(x}). But r=({v+c)=—u}fc. Thus
the final value of x will be:

f (b (ute(r=g(x))2)),

providing the loop is executed more than g(x) times. Let this function be F (ur,c,z). Also for the variable
« there is 2 unique variable z involved. Let us denote this variable by z_.

We now construct the program to simulate " for t==u to v by ¢; A; end;®. Let wy,.,w_ {m<n) be
the variables mentioned in A for which g is defined. Let w,’ (1<i<n), w;" (1<i<m), r, s, and t be new
variables not mentioned in A. An equivalent program would be:

i1

r« ((ve)u)fe /* r = the number of times the loop will be executed */

s « max {g{w;}} /* s really is a constant depending only on A */
1<i<m

W e le(u,r,c,zwi) /* w* (1<i<m) is the final value of w; if r > s (i.e. t5£0) ¥/

m

Wy Wy

w, e w,

ter—s

L+ u

A
if r==0 then w, «+ w/’ /* restore old value of w; (1<i<n) if r=0 indicating
loop simulation is over */
repeat
S

times

if r==0 then w_+w,’
if 140 then w,’ ¢ w, /* save current value of w; (1<i<n) */

if 1540 then w '« w
rex -=1; ¢ ¢ itc

n

for t==u+s¥c to v by ¢ do;
A
end,;

if t 5% 0 then w, « w,*

if t 5 0 then w_ + w_"
The idea is to precalculate the final values of all w; (1<i<m) under the assumption that the loop
will be executed more than s times (these are the values in w;" (1<i<m)). If this was indeed the case then
the final values of w, (1<i<m) are set in the last m statements. If the loop is not executed s times, w,
(1<i<m) will already have the correct value. Note that the remaining variables w, (m+1<i<n) are also
given the proper values. Now since A’ contains no instructions of the form *x « y mod z" the remaining

12

loop structure can be converted to a sequence of U-instructions using results in [7]. The time complexity

for this is O((length{A’))!%). The remaining statements can also be replaced by sequences of U-instructions
in a straightforward manner. The total complexity is then O((length(A)}12). a

One might question whether the restrictions imposed are necessary for S-programs. We now indicate
why this is probably the case, although we are unable to prove it. If restrictions 1 and 2 were not imposed
on S-programs, then such programs would be capable of computing the function ged(x,y}. First of all it
does not seem likely that U-programs can compute gcd(x,y) and hence our proof for equivalence seems to
fail. Secondly if we added the instruction "z¢ged(x,y)* to U and this did not add computational power to
the language, then the ged function would not be harder to compute than maultiplication. This would
answer an open question in [1] in a very surprising way.

We now consider the case of T-programs.

Theorem 2. Given a T-program P, we can construct a U-program P’, in time polynomial in the length of
P, such that P’ is equivalent to P.

Proof. Without loss of generality we need only consider how to convert a loop structure into an equiv-
alent sequence of U-instructions. Consider the loop structure, * for 1==u to v by ¢ do; A; end;".

Case 1. Suppose A contains no instructions of the form "if x|y then z+0", then one can use the tech-
niques developed in [7] to convert A to an equivalent sequence of U-instructions. The time required is
then Of{length(P))'?). Note that the instruction "x¢y mod z" is not needed for this conversion.

Case 2. Suppose A contains an instruction of the form "if x|y then z+0". Recall the functions defined
i b : da,. Again w =I;..;L. uy " i .

;a}:}ler;\?A’ Ar Gas 54 2nd a,. Again we assume A=l L Let the "if x|y then z+ 0" instruction be I}.
en A is:

Ay

if x|y then 2+G;
Ay

where Alzll;...;lj_l and A2=Ij+1;...;li.

Since bA(j,y}=L, we have y=1u+k or ¢+=k for some nonnegative integer k whenever I. is executed. In
what follows we wish to assume that y will always contain a positive integer. Let r; (1<i<n) be the
variables mentioned in A. Let r;’ (1<i<n), uy, v, be new variables. Let h be the smallest positive integer
such that h*c¢>k. Then the code segment;

for 1==u to v by ¢ do;
A;
end;

can be replaced by;

13

Uy €U VgtV

Jor v=ug to ug+(h-1)c by ¢ do;
A;

end;

for t=ug+h¥c to vy by ¢ do;
A;

end;

The latter loop structure satisfies the requirement but the former loop structure must be replaced by the
code segment.

Lif ug > v thenr; « 1y (1<i<n)

e (1<i<n)

L=y + ¢
A
h é _ifuy+ ¢ > vgthenr e r) (1<i<n)

segments

AR & (1<i<n)
v=1uy+ (h-1) ¢
A

k if u, + (h-1)e > v then 1 « 7 (1<i<n)

In what follows then we may assume whenever Ij is executed thaty > 0.

Let ry,...7, be the variables mentioned in A. Let w,,...,w_ be new variables. Let ug and v, be the
values of variables u and v before the execution of the loop. For each variable r; (1<i<n), in turn, let 1
be the least integer such that

aA(ri,r j: QA (Ja rl)) == 1.
If there is such an 1y, r;’ < n. Let r;" be the least integer such that
a (" j,z) =1

If there is such an r,", then r;® < n.If either 1y’ or ;" do not exist (they either both exist or neither

exists), set w; == 0 and proceed to the next variable, r, ;.

The significance of 7’ and r;" is portrayed in Figure 1. The only times that instruction Ij can affect
the outcome of variable r; is when ¢ is set to vt -hy " 2>y, for some nonnegative integer h,. On any
other pass the execution of I.i does not affect the outcome of r;.

Since b,(j,y)=t, we have y=1+k for some {possibly negative} integer k. Note the earlier remark

#
§
L]

P Y,-iu ey o r-i” —p Y.‘ill - G r-i” —

Ij can only affect the outcome of ryo if before the
pass, 1 was set to VO'ril'hlri“ B for some nonnegative

integer hl‘

10 3 . Uo

from

|

: X
MVOMM@— X —p g X —p X -

-k

Ij only sets z to zero, on a pass, if before the pass,

1 was set to vy-vg mod x - k - h2x > ug, for some nonnegative

integer h2.

vomod

C
s —p g —% g~ - & c -5

A pass will occur only whent® is set to a value
Vo=V mod ¢ - h3c z Ugs for some nonnegative integer
h3.

Figure 1. Passes of the loop and the
respective values assigned to 1.

14

that we assume uy+k>0. Then it is the case that the predicate "x|y" is true only on passes when : was

set to values
Vo~ Vo mod X - k - hyx 2 u,

for some nonnegative integer h,. (See Figure 1.}

It is also true that the loop is only executed when ¢ is set to values
vﬁ-vomodc-hac 2y,

for nonnegative integer values of h,. (See Figure 1.)

Thus if the execution of Ij is to affect the outcome of variable r;, then the instruction Ij must be
executed on a pass when ¢ is set to a value greater than or equal to uy matching

. ’ La—

Voo T -h)=
vo-vomodx—k—h2x=
Vo= Vo mod ¢ - hy c.

In fact we need only find the value : is set to the last time this occurs. This amounts to finding the
smallest h, >0 such that

vomodx+k+h1x=ri’ mod r;*
and
vomodx+k+hlx=u0modc

If such an h, exists, ()Shlgc*ri“. If such an h, exists and
Vo~ Vo mod x -k -h, x 2 u,

then set w;=v-v mod x-k-h,(x), otherwise set w,=0. This means that the only pass of the loop affecting
the outcome of variable r; is when ¢ is set to w;. Now we can proceed to the next variable, ry ;.

When all variables r; 1<i<n have been considered we have the variables w,,...,w_ set to possible
values for ¢ on passes that affect the outcome of variables r,,...,r, . The reader can verify that a U-
program of length O(n) can be written to find the values of w; 1<i<n. Next we sort the values of wy,
1<i<n. This can be done with a U-program of length O(n logn). Now the entire loop structure

fori=utov byc do
A;

end;

can be replaced by the following segment of code where r.’, 1<i<n, are new variable names.

15

I+ rl;...;rn’ “ 1
Jor v == ugtow, = ¢ by ¢ do;
Ay
Al
end,
Ay
z¢+0
Ay
it w, = 0 then r; « 1y’ (1<i<n)
if w; = 0 thenw; + ¢ *u,
farL-—:wl—f-ctowz—'-cbycdo;
A
A
end;
Ay
72«0
Az?
if wy == 0 thenr; ¢ 1/ (1<i<n)
if w, == 0 then W, + ¢ « U,

t
o

fore=w_+clov, by ¢ do;
Ay
Ay

end;

The length of the above code segment is O({length{P))?). The process in step 2 may need to be
iterated for each instruction of type 7 in the loop structure. The resulting code then is of length
Of(length(P))?). The theorem then follows from the result in [7] mentioned in case 1. The time necessary

becomes Of{length(P))?®).

it 1s

One might question the necessity of the restrictions with respect to T-programs. We now show that
unlikely that such a polynomial time translation from T-programs to U-programs without both
restrictions. Note that this says nothing about the decidability of the equivalence problem for classes of

such programs.

1.

The first condition is met by Ll{xi-x—&-l)-prcgrams, hence we only concern ourselves with the second con-
dition. It should be clear that Theorems 1 and 2 imply that the O-evaluation problem for S and T-

In [14] sufficient conditions were given, with respect to loop programs that do not allow nesting of
loop structures that ensure that the O-evaluation problem is PSPACE-hard. The conditions were:

Given a constant ¢, that in a parameterless program of length O(n) one must be able to

produce a value greater than 2¢ in a variable.

_There must be an interpretation of variable values such that the logical functions "x.or.y®,
ux and.y” and *.not.x" can be computed in such a program utilizing only the primitive instrac-

tions.

programs can be done in polynomial time.

16

Proposition 1. The 0O-evaluation problem for T-programs without restrictions 1 or 2 is PSPACE-
complete.

Proof. The proof is by cases. It should be clear that the O-evaluation problem for such programs is in
PSPACE.

Case 1. Consider the absence of restriction 1. Let x being true be identified with the value of x being a
multiple of 2 {even), and let x being false be identified with x not being a multiple of 2 (odd). Define the

functions:
any odd number ifxisodd andy is odd
ix.or.y® =
Lany even number if x is even or y is even
(any odd number if x is even
® pot.x" ==
any even number if x is odd

™

Then the instruction "z¢.not.x" can be simulated by "z¢x+1" and the instruction "z¢x.or.y" can be simu-
lated by:

7+ 1
if 2|x thenz « 0
if 2y thenz « 0

The fact that the O-evaluation problem for such programs is PSPACE-complete follows from the results in
[14].

Case 2. Consider the absence of restriction 2. Let x=1 mean that x is true and x==0 mean that x is false.
Define the functions:

] fx=0Ay=20
ixory® =< 1 fx=1vy=1
don’t care otherwise
fo ifx =1
¥ potx® =< 1 fx=20

1d0n’t care otherwise
Then the instruction "z+.not.x® can be simulated by:

¢l
if x|¢ then z « 0 (whenever ¢ > 0}

The instruction *z+x.0r.y" can be simulated by

17

z+ 1

if x| then z « 0

il y|l¢ thenz « 0

z + .not. z (whenever ¢ > 0)

Again the fact that the 0-evaluation problem is PSPACE-complete for such programs follows from [14]. O

It is interesting to note that if T-programs allowed the instruction "if x|y then 1", where I is an
instruction of the form u+u+1, usu—1 or u+v, then the equivalence problem becomes undecidable {even
with both restrictions). This follows from the fact that such programs can compute integer division. For
example, the program

W+ X

for ¢ = 1tox by 1 do;
if y|e then w « w =1

end

WX W

computes x/y. The undecidability of the equivalence problem then follows from the undecidability of
Hilbert’s tenth problem[20]. The equivalence problem also becomes undecidable for either S or T-
programs if the increment (c) is not constrained to be a constant.

18

3. THE EQUIVALENCE PROBLEM AND
CORRECTNESS FORMULAS FOR U-
PROGRAMS

In this section we look at the decidability problem for the class of U-programs as well as the
decidability of a restricted class of correctness formulas. First we define a class of unquantified logical
formulas, 7 The formulas are unquantified because we do not permit quantifiers, either ¥V or 3 in any
formula. Such a formula is valid, however, if it is true for all possible assignments. This then amounts to
considering every variable to be universally quantified.

Definition. The class of logical formulas Fis composed of unquantified logical formulas of the form:

Flx,,....x;) where,

F(xl,...,xn) is any logical expression built up from integer constants and the variables x,...x such that:
1. The only arithmetic operators are -+ and -.
2. The relational operators are <, =, ¢, < and | {(divides).
3. The logical operators are A, V and —.

The following two lemmas show the relationship of the formulas of # to the class of U-programs
(and therefore S and T programs).

Lemma 1. Let F(xl,...,xn) be a formula in 7. Then there exists a U-program P such that P is equivalent

to the zero program on n-inputs® if and only if Vx,..Vx F(x,,..x) is true (i.e., F is valid). Furthermore,
P can be found in polynomial time and the length of P is linear in the length of F.

Proof. Left to the reader. 0O

Lemma 2. Let P, and P, be U-programs. Then there exists a formula F in #such that F is valid if and
only if P, and P, are equivalent. Furthermore, F can be found in polynomial time and the length of F 1s
linear in the lengths of P, and P,

Proof. Let P, and P, be U-programs, each with input variables x,,...,x and output variables y,,....y .. In
a straightforward manner one can construct a U-program P of the form;

3The gero program on n-inputs is the U-program with n input variables that outputs 0 for all possible inputs, e.g., the
program:

Input(xl,...,xﬁ)
z+0
Output(z)

19

P : Input(x,,....x,)

I

Il
Output{z)

where I,...]; are instructions in U, and P on inputs a,,...,a, outputs a zero (z==0) if and only if P, and P,
output the same values on inputs a,,...,a,. Hence P, is equivalent to P, if and only if P is equivalent to
the zero-program on n inputs.

Let v,,...,v; be new variables not used in P. Let f(j,x) (1<j<I-+1) be the largest integer such that
1<f(j,x)<j and where x is the variable to be altered by If(j e {The variable to be altered by the instruc-
tion "if x=0 then y « z" is y.) Let

Vi) if f(j,x) is defined

glix) =
X otherwise

Note that the range of g is the set of variable names in {xl,...,xn, "1’-""'1} and the domain of g is
{ij1<i<i+1} X {the variable names used in P}.

We now construct a program P’ of the form

P’ Input(x,,...x)
I’

Iy
Output{g(i+1,z))

where 1,

-] are each sequences of instructions in U.

The sequence of instructions 1.’ is defined by case according the instruction Ij. The transformation is
shown in the table below (Figure 2). In the last row, involving the case where Ij is the instruction #if x==0
then 1%, I is assumed to be a U-instruction of the form 1-5 and u is assumed to be the variable to be
altered by Ij if x=0. I’ is defined to be the instruction indicated by making 3 similar transformation on
instruction I, and I* is defined to be the logical formula generated by making a similar transformation on 1
as Ij’3 1s to EJ-.

x+0 v3-+0 (j=0)

Xex+y vitglix)+e(iy) (v;=geli.x)}+gliy))

(glix) = eliy) Avy =
Xex =y vieglix)=g(iy) glixrgliy)v
(glix)<gli,y)Av;=0)

x +x/k vi* glix)/k (k*g(ix)<v; <
k*(g(jx)+glix)
xex mod y vi+g(ix) mod g(iy) (g(iy)=0Av;=sg(ix) V
(g(.y)>0Agliy)l(glix)-v;)
if x==0 then 1 vi+ gli,u) (g(j,x)>0/\vj=g(j,u))
if glix)=0then T V (g(ix)=0 A I*)
Figure 2

Now after the execution of the sequence of instructions Ij’ in P’, the value of Vs is the value of the
variable on the left hand side of Ij after the execution of instruction Ij in P. The variable g{j,x) is just the
name of the variable in P’ which before the execution of Ij’, contains the same value as the variable x
before the execution of Ij in P. Note that the variables x,,....x are not altered by P’ and that once an
assignment to a variable A\ is made in P’, the variable A is not again altered. Clearly then P’ is equivalent
to P. Furthermore the length of P’ is linear in the length of P.

Now we construct a formula F in Fwhich is valid if and only if P’ (and hence P) is equivalent to the
zero-program on n-inputs. F is of the form

n . {
(A (x> 0)) A (_AIIJ-“) A (g(i+1,2) = 0)
Ju =
where the clauses Ij" are from the table in Figure 2. It is straightforward to show that F is valid if and
only if P’ outputs a zero for all inputs. The details will be left to the reader. O

Lemmas 1 and 2 have shown that the decidability of the equivalence problem for U-programs is
exactly that of deciding the validity of ¥ formulas. In [9] an algorithm to decide the truth of logical for-
mulas of the form 3x,..3x F(xl,...,xn) {over the nonnegative integers), where F is in %, was given. Since
any formula of the form Vx,..¥Vx, F(x;,...x,) is true if and only if 3x,..3x, = F(x,,...,x,) is true, this also
yields a decision procedure for the validity of formulas in 7 The procedure given in [9] runs in polynomial
space. This seems to be the best we can do at this time. It should be noted, however, that the inequiv-
alence problem is NP-hard and hence an exponential time algorithm is the best we can hope for. The
NP-hardness follows from results in [4].

Next we go a step further and explore the question of decidability for simple correctness formulas of
the form {p}S{q}, where p and g are formulas in Fand S is a U-program. Using the strongest post con-

dition calculus of [10], one can derive a formula F(x,...x,) such that ¥x,..¥x, F(x,,...x) is true if and
only if {p}S{q} is true. Unfortunately the length of F in general is exponential in the length of {p}S{q}.
This results since the strongest post condition (SPC) of *if x==0 then y+z* and the formula p(x,y,z), for
example would be:

(x=0 A SPC{y+z, p(0,y,2)})) V (x>0 A p{x,y,2))
Hence we provide an alternate proof.

Theorem 3. Let {p}S{q} be a correctness formula where p and q are in Fand S is a U-program. There
exist a formula F in Fsuch that F is valid if and only if {p}S{q} is valid. Furthermore, F can be found in
polynomial time and the length of F is linear in the length of {p}S{a}.

Proof. Let {p}S{q} be such a correctness formula. Let x;,.... X, Uy,...up, be the variables used in S. Using
Lemma 1 construct programs P, and P, such that P, on input a,,..a , outputs a zero if and only if
p(ay,...,a,) is true and P, on input a,,...,a,, by,....b, outputs a zero if and only if g{a,,...,a , by,....b) is
true. Let the input variables of P, be Xy yenesXy] and let the output variable be z’. Let the input variables of
P, be Xy, X, Ugpee Uy and let the output variable of P, be z". Let w be a variable not used in P, P, or
S. From P, P, and S we can construct a program 5’

S’ @ input(xy,....x)

[SR 1

3
.
X X n n

1 1
P
S;
P2;
w7
if 2= 0 thenw+ 0
output{w)

Clearly S' outputs a zero for all inputs if and only if {p}S{q} is valid. The theorem now follows from
Lemma 2. 0

Let P be a class of programs and L a class of assertions. Then the validity of correctness formulas
over Pand L is equivalent to the equivalence problem for 7, if it is the case that for each formula F in L,
that there is a program P such that I is true {for a given input) if and only if P outputs a zero {for that
input), and vice versa. This was actually the case in [3], since in the earlier paper [2] it was shown that the
class of Presburger formulas was realized by he class of LI(X“O, x+y, X+x+1, x¢x~~1)-programs. The size
of such a realizing program for a given Presburger formula, however, is at least doubly exponential in the
length of the formula. If in [3] only unquantified assertions were allowed, the problem of deciding the
truth of a correctness formula would be Co-NP complete. Hence an exponential time procedure would
more than likely be required.

The previous theorem can be generalized somewhat in that the formula p (g} can also be of the form
pAP or pVP (qAQ or qvQ) where P (Q) is a Presburger formula. It follows from results in [2] that one
can construct a U-program for a Presburger formula {(with n-free variables) that is equivalent to the zero
program on n-inputs if and only if the Presburger formula is valid. The constructed program need not
contain any instructions of the form "x¢x mod y*. This is almost Lemma 1. Unfortunately, the length of
the resulting program is at least double exponential in the length of the formulal2]. Hence the complexity

of this problem cannot be the same. This follows from the complexity of deciding the validity of Pres-

burger formulas|5].

Consider once again only formulas in 7 Then we can observe that for quantified formulas in 7 the
validity problem is undecidable even if we limit the formulas to a single occurrence of the 3 quantifier[22].
In fact, this is very easy to see using the strongest post condition calculus and adding the instruction
sz¢lem(x,y)* to U-programs.

SPC(z « lem(x,y), Q(xy,2)) =

Iw Qx,y, W) Az = lem(x,y) =

3w Qx,y,w) Ax|z Aylz AWV
((xlv A¥lv) D 2fv)

The undecidability of such correctness formulas follows in a straightforward manner from [20], since
multiplication can be simulated using the sz¢{cm(x,y)*. This follows since lem{x,x+1)=x2+x. Those
readers familiar with the SPC calculus should note that the logical formulas derivable from such correct-
ness formulas, {p}S{q} where p and q are formulas in Fand S is a U-program, are of the form,

v x[3 wW(w, %) D q(X)] =

It is then the universal quantifier appearing in the SPC(z+lem{x,y), Q(x,y,z)) that is the problem. An inter-
esting question then, is whether the same results for the instruction "z¢ged{x,y)* hold. The strongest post
condition calculus produces a similar formula as it did for the uz¢lem(x,y)® instruction but we are unable
to answer the decidability of the validity problem for such correctness formulas, at this time.

In [17,23], it was shown that unquantified Presburger array formulas have a decidable validity
problem. In fact it was shown that special predicates could be added to the formulas {in 2 limited way)
and the validity problem remains decidable. Such predicates considered were those concerning properties
of the arrays such as orderedness or the property that one array is a permutation of another. The logical
formulas in Presburger array theory are equivalent to correctness formulas of the form {p}S{q}, where p
and q are logical formulas similar to those in # although they allow array elements as terms and do not
allow the *|* predicate, and S is a {x+1, xex+y, xex—y, x<x/k, x«A(i), A(i)+x, if x=0 then I}-program (I
can be any of the other types of instructions). The proofs in [17,23] reduce the Presburger array formulas
to equivalent unquantified Presburger formulas. Thus the validity problem for such formulas is decidable.
The reduction is such that, even if an additional function f(x) were allowed in the Presburger array for-
mula, the resulting formula is unaffected except that it too contains occurrences of f{x). Hence it is the
case that even if we add the mod function to the theory in [17,23] it still yields a decidable validity
problem.

23

4. L (BB)-Programs

In this section, we consider the computational power of LI(BB)~programs over different sets of primi-
tive instructions, BB. Most of our results consider problems considered in [14-16,18].

Our first result shows that L (BB1) and L,(BB2)-programs can be converted into L {x+0, xex+1, if
x==0 then y+y-+1)-programs and L {x¢0, xex+1, x¢x—+1, if x=0 then y¢y-+1)-programs, respectively, in
polynomial time. This is an improvement over the exponential time needed in [18].

Theorem 4. Given a L;(BB1)-program P, one can construct in polynomial time, a L, (x+0, x¢x+1, if x=0
then y+y-+1)-program P’ such that P’ is equivalent to P.

Proof. Let P be a L,(BB1)-program. Using techniques in [7,12] one can construct a straight-line program
Q, in polynomial time, over the instructions:

x+0

x¢x+1

x¢x+y

x+x—1

yex/k
y+remainder(x,k)
x+(1-y)x,

where k represents a positive integer constant expressed in unary, such that Q is equivalent to P. The
result now follows since each of the Q instructions can be simulated by Ll(xf-(), x+x+1, of x=0 then
y+y-+1)-programs. Most of the encodings are straightforward. To illustrate the idea we provide the encod-
ing for the y+«x/k instruction. The remaining encodings are similar and are left to the reader.

Let v,,...,v), u, w, 1 and s be new variables. Suppose that v, (1<i<k) are 0/1 valued. Now v can be
considered to be a 0/1 valued vector of length k. The function SHIFT(v,j), 1<|j|<k is defined to be a
circular shift of the values in v by j places. For example, let k=3, v,=1, v,=1 and v,=0. Then
SHIFT(v,-1) sets v,=1, v,=0 and v,=1. Now if r and s are 0/1 valued variables, then r¢s is simulated
by:

we{)
1f s==0 then wew+1
r«0
if w=0 then rer+1

Now SHIFT(v,-1) can be computed in the usual fashion. Now then y¢x/k can be computed by the follow-
ing segment of code:

vy oL v ¢0; y+«0
do x
if v;=0then yey+1
SHIFT(v,-1)
end a

24

The proof for LI(BBQ)-programs is similar. One merely allows the intermediate program @ the use
of the additional instruction x+x-~y. The rest of the theorem is the same.

Our next result considers whether L,(BB1, if)-programs can be converted into equivalent
L,(BB1)-programs. In [18] it was claimed without proof that this could be done in polynomial time.
However in [14], it was shown that this was only possible if PSPACE=PTIME. Thus the question of
convertibility seems to be in doubt. Here we provide an exponential algorithm. This result should be con-
trasted with the corresponding case for the set BB2, where the addition of the ®if" construct provided an
increase in the computational power of the language.

Theorem 5. Let P be an L,(BB1, if)}-program. Then an equivalent L,(BB1)-program P’ can be con-
structed in exponential time (and space).

Proof. Without loss of generality we can consider P to be the program *do t A end®, where only instruc-
tions of the form "if x=0 then y+z" and *x¢x-+1* appear in A and the variable t is not referred to in
A Let vy,...v, be the only variables referred to in A and let A=I1;..;1, where each Ij (1Lj<m) is an
instruction. Let d;, p; (1<i<n) and u be new variables.

m)
First we construct a new segment of code A’=I};..;I| . where each IJ3 depends on the form of Ij.
Case 1. Ij is "vev 417 then 133 is:

d; « 1;
Vi eyt 1;

Case 2. Ij is "if vi=0 then v +v " then I_-; is:

u+l1;

if dj==0 then u «0;
if u==0then v_+ v
if u=0then d, « d;
if u==0then p_+ pg;

0ifv,==0
If initially d; = { ! and p;=i (1<i<n) the execution of A’ is equivalent to the execution of A with

1 otherwise
respect to the outcome of the values of variables vy,...,v . The value of d; merely keeps track of whether

;18 currently zero or positive {1<i<n). The p;s keep track of the exchanges made among the variables.
The value of p; is j whenever the value of v, is derived from the original value of A

Consider the form of A’. If there are k "if* statements in A’, then there are ok computational paths
in A’, since each conditional statement can either be executed or not depending on the truth of the con-
dition. We first note that the computational path taken upon the execution of A’ is entirely dependent on
the initial values of the d;’s and p;s {1<i<n). This is the case since variables may only be exchanged and
increased. The p;’s keep track of the exchanges while the d;'s keep track of whether a variable is zero or
positive. {Note there is no way for a variable to decrease other then through an exchange.)

25

Let the settings of the d;’s and ;s {1<i<n) be called the states of execution. The state at any time
then is <d,,....d,, Py-Py>- (Note that there are 2% * n® or (2" 108 241 states of execution.) For any
initial setting of the d.’s where each p;=i, 1<i<n, we can execute A’ 2 number of times in succession

until a state is repeated. This must occur before 2° * 0 executions of A’. Let q denote the state which
gets repeated. Let 1, be the number of times A’ was executed before q appeared for the first time, and let
1, be the number of tlmes A’ was executed after that until q reappeared. (Hence A’ was executed a total of

l1 + 1, times.)

Consider the execution of (A) o{=A"A’;..;A’) beginning in state q and ending in state q. The com-
putational path taken upon execution is total}y determined by q. Hence we can construct a segment of
code B, which contains only instructions of the form "x+y" and "x¢x-+1%, which is equivalent to {A)
when executing on any initial values of v ,.v, beginning in state q. The length of B is less than or equal

to the length of (A')e.

Define d-state (<d,,...d,, Py,--Py >) = <d,,...d,> and p-state (<d1, d, ppoPy>) =

n

<PyrensPy > Now for each possible initial state, q, where p-state (qh) = <1,2,...,0> {there are 2" such

states, hence 1<h<2") we can find the respective constants lh and lh denoting t;he number of executions

of A’ necessary until the first repeating state, say q;, occurs and then reoccurs again, respectively. From
(A’)‘z and qj, the code segment without "if* statements, B, is then constructed.

The program P’ can now be described. P’ is basically divided into three sections which perform the
initialization, the state determination and the actual simulation respectively. P’ then has the form:

P’: Initialization
State determination
Actual simulation

The initialization segment is of length 0(n?) and is composed of n segments of the instructions:

p; < i
d; « 1;
for 1<i<n.

The state determination segment is of length 0(n*2") and is composed of 2" segments of the instruc-
tion:

if d-state (<d,,....d_, py,...,p, >} = d-state {q,} goto fabel b
1 n’? ¥1 n h

for 1<h<2"

The actual simulation portion is composed of the segments labeled *label 1* through *label 27%.
There is also a label "end® at the very end of this section. The form then is:

label 2%:

end:

The instructions at "label h* (1<h<2") are now described. Let wgy, w,, w, be new variables.

label h: wy + s- I
wy ¢ wo/lj;
w, « rem{w, 1By
h
(A5
dow
Bh
end
(A)"2;
goto end

1

The length of this segment is O(m * 2® * pP). There are 0(2") such segments in P’. The total length of P’
then is 0(2¢1 108 1), where I=length(P).

Two things still need to be mentioned. First it should be clear from the earlier discussion that P and
P’ are equivalent. Second it is still perhaps not clear that P’ can be represented by a Ll(x«{), X+y,
x+x+1)-program. In order to see that it can, the reader should consult [24], to see that integer division by
2 constant and the remainder of an integer division by a constant can be computed by such programs.
The fact that such programs can simulate forward goto statements which are outside the scope of any
do-loop (and whose target is also outside the scope of any do-loop) is straightforward. [

Next we consider the computational power of LI(BBQ)-programs when allowing the instructions
syec® and "y+y=1"* to be conditionally executed, where ¢ can be any nonnegative constant. In our next
result, we show that LI(BBQ, tf x==0 then y*c)"-programs compute Presburger functions. For such a
program we construct a nondeterministic reversal bounded multicounter machine {hereafter CM) to, in
some sense, simulate the programs cemputatio_n. If the program has m input variables and n output vari-

1 H
ables then the CM will on input #all#...#agfnn, accept if and only if the program on input ij,..1
outputs im+1,...,im+n. The result pow follows from the results concerning nondeterministic reversal

bounded CM of [11]. See [11] for precise definitions.

Theorem 6. Every Ll(BB2, if x=0 then y+c}-program computes a Presburger function.

4Any constant can be substituted for ¢, In fact each instance of such a statement can have a different constant.

9’7
i

Proof. Without loss of generality we need only consider functions computed by programs of the form "do
z A end®, where A is an arbitrary sequence of instructions over BB2 U {1/ x=0 then y+c}. Using tech-
niques from [7], it can be shown that one can find a code segment BA (over the same set of instructions)
that is equivalent to A where the following is true. BA = B’ﬁ, Bg‘, where B’? contains only instructions of
the form "x+y* and BQ contains no instructions of the form *x¢y®. Furthermore it is the case that no

variable appears on the left hand side of a statement in Bf‘ more than once. The construction of BA can be
accomplished in polynomial time in a straightforward manner and its details are left to the reader.

Define the function g:{set of variable names} x {set of code segments over BB2 U {if x=0 then
yec}} » {set of variable names}, as follows. Let B be a (possibly null) segment of code and z a variable
name:

gly,B) if x==z
g(z, B; xty) =
g(z,B) otherwise

glz)) = 1z

Create the directed graph GA with a node for each variable mentioned in BA, which contains the
edge u+v, if and only if g(u,BA)———v. The reader can verify that GA is actually a collection of connected
subgraphs Gf,...,G; where each subgraph Gg} 1<i<m, has at most one cycle. The variables in G‘f‘can

then be partitioned into two sets, those which are contained within the cycle which we denote as x;;,...%;
1

and those not contained in the cycle which we shall denote as y;;,....¥ - For ease of illustration let the
H

statements, in B:? of the form *if x=0 then y+c* be labeled 1,...k. Let N be a constant greater than n;
and k; for 1<i<m (eg. N=1+ 1’%2“{111, k} willdo). LetD =2*N? max{|B2 |, max{the constants
used in BS}}.

We will construct a CM, M, that will {in a way) simulate the program "do z BA end®. If the

‘m+n
m-+n

1
program has m input variables and n output variables, then M will on input #all#...#a #, accept if

and only if the program on inputs i,,...,i outputs im+1,...,im+n.

M will have the following counters;

e<x, > 1<i

A
IA

m, 1<j<n,

<y iL,i> i

A
IA

m, 1<j<k,
c<<X,1,],8,t> 1<i<m, 1<jt<n;, 1<s k

e<<0> (the zero counter which is always set to zero),
each initially set to zero. In the finite state control of M there will be the following buffers;
b<x,i,i> 1<i<m, 1<j<ny
<<

b<y,ij> 1<i<m, 1<j<k,

28

each capable of containing any binary number between zero and a constant d which we will determine
later. Also there are the following pointers {or indicators);

p<x,i,j> 1<i<m, 1<j<n,

p<y.iji> 1<i<m, 1<j<k,

each capable of having a value denoting any of the aforementioned counters or the special value \. Thus,
it is possible for the value of p<x,i,j> (for some 1,j) to be <x,i,j,5,t> {for some 1,j,5,t), for example.

In addition, the finite state control contains the entities;

root<x,i,j> 1<i<m, 1<j<n;

B<x,1},8t> 1<i<m, 1<jt<m;, 1<s<k

Since the variables in a cycle can be switched about by instructions of the form "x«y", it is important to
the simulation which variable is operating under what name {or alias). Thus root<x,1,j> == t means that
Xj; is acting for x;, on this pass of the loop. Also at this time p<x,ij> must equal <x,,t>, unless the
execution of a conditional statement has changed the value of a variable acting for i, earlier in the
simulation. In this case the value of p<<x,i,j> will either be <0> or <x,i,h,s,t>, where in the Iatter case
the variable acting for x;, at the time the aforementioned conditional statement was executed, was x;. So
at that time, root<<{x,i,h> was t.

B<x,i,js,t> is a bounded counter, maintained in the finite state control, capable of containing any
number between zero and N. Before M simulates the loop of the program, the contents of B<(x,i,js,t>
will be "guessed®. Let the statement labeled s be "if u==0 then xij*c“. If the initial value of B<{x i j,s,t>
is not N, the M has guessed that the statement labeled s will cause the variable X5 to be set to the value
¢, while root<x,i,j> = t, exactly B<x,ij,s,t> times. If B<x,1,j,8t> is initially N, then M has guessed
the aforementioned conditional execution will happen at least N times and so M must also "guess" (at a
later time) the last N times this action takes place. if we are only concerned with the final values of ali
the variables then only the last N times the statement labeled s causes X35 to be set to ¢, for a certain
value of root<x,ij> is of consequence. The other occurrences are important only in determining which
conditional statements are actually executed {i.e. cause a variable to be set to a constant). But we shall
see that M need not remember the exact value of a variable to determine whether or not it will be zero at

any given time.

We will now describe the simulation performed by M, which can be viewed in three stages. In the
first stage M reads in the programs inputs and initializes M as follows:

1. p<x,i,j> and p<y,i,j> are set to <x,i,j> and <y,i,j>, respectively {for appropriate values

of i and j).

2. b<x,i,j> and ¢<x,i,j> are set so that the input value of X is equal to the value in b<x,1,j>
plus the value in ¢<x,i,j>, in a way such that b<x,i,j> = min{2 * D, the input value of xij}.

3. b<y,i,j> and c<x,1,j> are initialized similarly.

29

Intuitively at each instant of the program’s execution the current value of variable x;; (yij) is at the cor-
responding instant in the simulation, the value contained in b<x,1,j> (b<y,i,j>) plus the value contained
in the counter indicated by p<x,i,j> {p<y,i,j>). In reality this is not always the case, but it will be the
case that X;; can only have a value of zero at some instant, in the program’s execution, if and only if at
the corresponding instant of the simulation X5 has the value zero. The second stage will simulate the
execution of the loop structure, which is the program. If M has not rejected at the end of this stage, the
current values of each variable correspond exactly to their values when the program terminates. Hence the
third stage of M merely checks these values against the corresponding output values given for the

program as input to M. If they match M accepts otherwise M rejects.

We now describe the simulation performed in stage two. First M copies the value represented by the
loop control variable z, into a distinct counter (that is not mentioned above) to be used exclusively for the
number of iterations of the loop. The value of root<<x,i,j> is set to j, 1<i<m, 1<j<n;. A value between
zero and N, inclusive, is "guessed® for each B<x,1j5,t>, 1<i<m, 1<s<k, 1<j,t<n;

The simulation is then performed instruction by instruction as follows depending of course on the
type of instruction involved.

u+v The contents of the buffer, pointer and root for the variable v are copied
into the respective locations for variable u (if they exist).

g+tu-+1 The buffer for variable u is incremented by 1 unless the buffer contains
the value d (and the pointer value is \) in which case do nothing.

s:1f u= 0 then X € ¢ The buffer for variable u is checked for zero. If it is nof zero then do
nothing. If it is zero the following steps are performed.

(1) b<xij>isset toc
(2) if b<x,ijx,root<x,ij>> == 0 then reject;

/* M has previously "guessed” that the conditional statement s will not
alter X3; again for this value of root<x,1,j>. However, since the simula-
tion now rtequires this action, M has Pguessed® incorrectly. Hence M
must reject. ¥/

(3) if b<x,i,j,sro0t<x,1,j>> == N then do
etther
set p<x,1,j> to A

30

/* Here M *guesses” that during the simulation there will be at least N
more times when statement s alters X35 for this value of root<x,i,j> */

or
set p<x,i,i> to <x,i,j,8,100t<X,1i>>,
decrement B<x,i,j,5,ro0t<x,1,j>> by one and
reset ¢<{x,i,j,8,root<x,i,j> > to zero.

/¥ Here M has previously "guessed® that this is the
B<i,j,s,ro0t<x,i,j>> ~th to the last time statement s will alter X5 for

this value of root <x,i,j>.*/

s: 1f u=0 then Yt e The buffer for variable u is checked for zero. If it is not zero then do
nothing otherwise perform the following.

(1) b<y,ij> is set to c.
(2) p<y,i,j> is set to <0O>.

/* No variable will depend on the exact value of this variable after the
next k; passes, hence the buffer is sufficient to hold this value. */

After M simulates each pass of the loop the following is done, for each variable Xy whose root is]
(i.e. Toot<x,i,j> = j). (This will happen to all variables in a cycle at the same time.) Consider all vari-
ables whose pointer contents are equal to those of p<x,i,j>. The reader should note that the current
value of any two of these variables can differ by at most D, (unless p<x,i,j> is \}. The counter pointed
to by p<x,i,j> and the buffer b<x,i,j>> are adjusted so that their combined value is the same but that
b<x,i,j> = min{2*D, the current value of xﬁ}. Note that this step appears to require a counter reversal.
We will show later that this is not the case. For any other pointer p<y,ij> that points to the same
counter {other than X}, changes are made to b<y,,j> reflecting the change. These values are not so
important, since within the next N passes of the loop, they will be replaced. Also since they differ in value
by at most D from the current value of X3 this just entails updating the correct buffer.

Now we wish to make the following claims:
1. M is reversal bounded for the constant d == 4 * D.

2. That upon termination of the simulation of the loop (stage two), whenever M has not already
rejected and B<x,ijst> = 0, 1<i<m, 1<s<k, 1<j,t<n;, that the final values of X5 and
¥y can be obtained by addition of the respective buffer and the counter indicated by the
respective pointer.

We first must consider what transpires during a pass of the loop. The name of a variable is mislead-
ing due to the exchanges in B‘;‘. The root<x,i,j> keeps track of exactly what variable X35 represents with-
out regard to the variable being set to a constant by a conditional statement. Whenever root<x,i,j> = }
the loop has been executed 0 mod n; times. The reader can show that from one time this is true to the
next the value of X35 will always increase or always not increase. The only exception to this is when a

31

conditional statement affected the value of x;; at a point in between at a time when root<{x,it> =
j. Hence if d is large enough to hold any changes to Xy for n; passes the only counter reversals necessary
will be caused by the simulation of conditional statements. But the execution of each conditional state-
ment causes either the use of a new counter or the reversal of a fixed counter no more than N times.
Hence M is N reversal bounded.

It is the case, however, that when root<x,i,j> = j that some pointer p<y,r,s> might be the same
as p<x,i,j>. (The reader should note that this is not possible for another x variable in the cycle, unless
the value of p<x,i,j> is X\.) If this is the case the reader can show that the current values of the respec-
tive variables can differ by at most 2 * N * [BJ, which is less than D.

Now the simulation of the program is faithful except when a variable, say X0 is set to a constant by
one of the conditional statements, and p<x,i,j> is set to X. Even in this case the simulation of all vari-
ables which utilize this value will be simulated faithfully until the value exceeds 4*D. Now if such a vari-
able belongs to a cycle (which it must), and it is not reset by another conditional statement, then the
value must have increased since it was last reset. Thus the value must increase during n; passes of the
loop. The reader should be able to show that any variable (either in or out of the cycle) which utilizes this
value can never again be zero (when utilizing this value), unless another conditional statement intervenes.
Thus the execution of the conditional statements depending on the value of these variables will be faith-
fully simulated in spite of perhaps not sknowing” the exact values.

Lastly, the reader should note that the final value of a variable can depend not only on the faithful
execution of the conditional statements, but that value itself may actually only depend on the execution of
a conditional statement, labeled 1, which either:

1. changes the value of a variable ¥ij and the computation ends after at most k; passes. Hence
the final value of the variable in question is less than d.

or

2. changes the value of a variable X However, for the final value of any variable to depend on
this it must be the case that this change caused by statement | may happen at most N-1 more

times for the same value of root<{x,1,j>.

But these are exactly the cases where a counter is keeping track of the exact value. Hence the final values
are correct, whenever the last N such times are “gyessed® correctly.

Now it is the case that if M either does not "guess® the last N (or fewer) times such a conditional
statement sets a variable, M rejects. Note that M will terminate the second stage (without rejecting) with
only a unique set of final values for the variables, which can be reconstructed from a variables buffer and
the counter indicated by the variables pointer. |

This result should be contrasted with the result in [16], showing that Ll(BBQ, if x=0 then yey+1)} is
strictly more powerful than L,(BB2). If both constructs, 3{f x==0 then y+c® and "if x=0 then yey-—~1"
are concurrently considered it is easy to show that Ll(BBQ, if x==0 then y+c, if x=0 then y+y—1) is
computationally equivalent to L,(BB2, if x==0 then y+y-+1), since the instruction "if x==0 then y¢y-+1"
can be simulated by the following sequence of instructions from BB2 U {if x=0 then y«c, i x=0 then
yey——1}:

32

w<+ 0
ifx =0 thenw+1l
yey+1

ifw=0theny«y > 1,

where w is a new variable. (The converse was shown in [16].) Unfortunately we have been unable to
resolve the computational power of L (BB2, {f x=0 then y+y==1). The ®i{f x=0 then y«y—1" construct
seems similar to the *if x==0 then y+y+1" construct, but as pointed out in [14] functions of one variable
computed over BB2 U {if x=0 then y+y-=1} are monotonic. Thus the proof techniques used in [16] (as
well as those presented in the last theorem) do not seem to work with this language. This same problem
arose in [14], where the authors were able to show that the O-evaluation problem for this language 1s
PSPACE-complete.

33

5. L(BB)-Programs

In this section, we consider other problems that arose with the claims in [18]. In [18] the following
eleven primitive instructions were allowed. In what follows, the accompanying abbreviations are used in

place of the instructions.

Assignment Statement Abbreviation

(1)x+«0 0 (the constant zero)
(2)x+«y id (the identity operator)
B)xex+1 succ (successor)
4)xex—=1 pred (predecessor)

{5) x + suce¥(x) succ? {the y*h successor)
(6) x « pred¥{x) predY (the y*® predecessor)
(7) x + max(y,z) max

(8) x ¢ min{y,a) min

@)x+y+z +

(10)x«y =1z =
(11) ¢f x==0 then A else B if

The following are theorems given in [18] along with our accompanying comments. The numbering of
the theorems corresponds to that in [18] (e.g. Theorem IIL.4 in this paper corresponds to Theorem 4 in

Section 111 of [18]).

Theorem IIL.1. Let v be any subset of {id,pred,succy,predy,max,min,+,*‘-,if}. Then for all i>3,

ey

ST T

Li(O,SuCC) Li(O,SUCC,’Y},

'_5_/

where the degree of the polynomial translation depends on 7 and never exceeds 2

Comments:

This is not true when the operation of *+" is in 7. For a proof see [14].

Theorem IIL.2. Let 7, and 7, be non-empty subsets of {id,pred,succy,predy,max,min,+,;,if}. Then

— p

/’““N/""\

L,(0,succ) o{0,suce, 7y} o{0,5uce,7,),

Wv

where the degrees of the polynomial translations depend on 7, and 7,, but never exceed 2.

Comments:

This is not true for all possible choices of 7, and 7,. For example it is not true when v, = {id} and

= {id,+}. For a proof see [14]. The above theorem also states that L o(0,succ) @ L,(0,succ,y,) for any

nonempty Yy Although the result seems likely we have been unable to prove this result and would like to
see more details.

Theorem IIl.4.

0 suce,pred)
! T in
0 suce,pred,id)
o
0 succ) O ,suce,pred,if)
1 T In 1 T In
ol0,suce,id) o(0,suce,pred,if)
() suce,if}
11 1ln

L(0,suce,id,if)

Again here, if an omitted arrow is not obtainable by composition from the arrows in the diagram, then it
is a case of non-translatability.

Comments:

This theorem has two basic errors in the diagram. The following two tramslations are claimed.

W
ot

C

LO(O,succ,if) L(0,succ,id,if)

LR

LO(O,succ,pred,if) L4{0,succ,pred,id,if)
"N

The first is false since an LO(O,succ,if)-program over inputs X,,...,x; computes a function 1{xy,00%)
= cx; + d, where ¢ is 0 or 1, 1<i<k is fixed for a given program, and d belongs to a finite set of integers.

It follows that such a program cannot compute the function flx,y,z) = }z’;‘;g The function f can clearly
be computed by an LO(O,succ,id,if)-program, however. The second fails for a similar reason.

To finish the diagram it can be shown that Lg(0,succ,id,if}-programs and
LO(O,succ,pred,id,if)-programs are incomparable and that Ln(O,succ,pred,id,if)-programs are more powerful
than LO(O,succ,id,if)—programs.

Let f, f,,..., be number-theoretic functions. The class of all functions obtained through composition

from f,f,,..., will be denoted by: [f,.fs,..].

For the next theorem we need to define special functions 07, uf} [./k|, and w:

ul (XX,) = x;, with 1<i<n;

[x/k] = integer division of x by constant k;

Theorem IV.1. We have the following algebraic characterizations:

(3) €,{(0,5ucc,pred,if) = [o?,uf} suce,w,+,~,[./K]|.

Comments:

This was shown to be in error in [16]. If we substitute C (0 succ,pred,id) for C,(0,succ,pred,if) then
the theorem is true. In fact this was shown in [7] (see also [2,3,12]).

Theorem V.1. Let v be any subset of {O,id,succ,pred,succy,predy,max,min,%—,-",if}. Then for all i>2,
the equivalence problem of Li(O,succ,’y} is recursively unsolvable.

36

Comments:

This theorem says that the equivalence problem for Ly(0,succ) is unsolvable. We have been unable to
show this result ourselves and would therefore like to inquire about the details.

Theorem V.2. Let P, P’eL,(0,succ} and [P| and |P’| be the respective lengths of P and P". Then whether
P is equivalent to P’ is solvable in time proportional to |P| + [P’|; that is, the equivalence problem of
L,(0,succ) is solvable in linear time.

Comments:

For such programs over n-inputs, the problem can easily be seen to be NP-hard {use a reduction
from satisfiability).

Theorem V.5. The equivalence problem of L,(0,succ,pred,id)-and thus, by Theorem IIL3, that of
Ll(O,succ,pred,if) and that of L,(0,succ,pred,id,if) too--are each solvable in time exponential in the time
required by the decision procedure for Presburger arithmetic. (Proved by reduction to Presburger
arithmetic.)

Using the best known bound for a decision procedure of Presburger arithmetic, the time complexity
of the procedure in Theorem V.5 is:

e PHPD
o[22).

Although this complexity makes the decision procedure impractical, it improves by one exponential level a
similar result in Cherniavsky[2]. The next result shows that, if this bound can be improved further, then
it cannot be improved by more than one additional exponential level.

Theorem V.8. The problem of deciding the truth of Presburger formulas is polynomially reducible to the
equivalence problem of Ll(O,succ,pred,id). {(Proved by using the characterization of part {3} in Theorem

Iv.1)

Comments:

The discussion between Theorems V.5 and V.6 is also taken from [18]. Due to the errors in Theorem
1IL3 this theorem needs to be reconsidered. {The portion of Theorem II1.3 referred to here claimed that
L,(0,succ,pred,id}-programs and L,{0,succ,pred,id,if}-programs computed identical classes of functions.) In
[16], it was shown that if a function is computable by an 0{n) space bounded TM that runs in 0(2*") time,
for some A<1, then the function is also computable by an L,(pred,if x=0 then y+y+1}-program. It fol-
lows that the equivalence problem for L,(0,succ,pred,if) (and L,(0,succ,pred,id,if}) is undecidable. Also note
that L,(0,succ,pred,if) is equivalent to the language UL™ in [7]. Then Theorem 14 of [7] is exactly this
result. The discussion following Theorem 5 also needs attention. The bound mentioned can be improved
by 4 levels of exponentiation (see [7]}, and thus Theorem 6 is in error.

Other incorrect claims appear in [18], but they precipitate from those already mentioned. A full
accounting can be found in [15].

37

REFERENCES

[1] Alt, H,, Functions Equivalent to Integer Multiplication, Lecture Notes in Computer Seience,
No. 85: Automata, Languages and Programming (ICALP 80), Springer Verlag, 1980.

9] Cherniavsky, J., Simple Programs Realize Exactly Presburger Formulas, STAM J. Comput. 5
y P
{1976), pp. 666-677.

[3] Cherniavsky, J. and Kamin, S., A Complete and Consistent Hoare Axiomatics for a Simple
Programming Language, J. ACM, 26 (1979), pp. 119-128.

[4] Constable, R., Hunt, H. and Sahni, S., On the Computational Complexity of Scheme Equiv-
alence, Proc. 8th Ann. Princeton Conf. on Information Sciences Systems, Princeton, NJ, 1974,

[5] Fischer, M. and Rabin, M., Super-Exponential Complexity of Presburger Arithmetic, Project
Mac. Tech. Memo 43, MIT, Cambridge, 1974.

[6] Gurari, E., Decidable Problems for Powerful Programs, to appear in J. ACM.

[7] Gurari, E. and Ibarra, O., The Complexity of the Equivalence Problem for Simple Programs,
J. ACM 28, 3 (July 1981), pp. 535-560.

[8] Gurari, E. and Ibarra, O, The Complexity of the Equivalence Problem for Two Characteriza-
tions of Presburger Sets, Theor. Computer Science, 13 (1981) pp. 295-314.

[9] Gurari, E. and Ibarra, O., Two-Way Counter Machines and Diophantine Equations, J. ACM
29, 3 (July 1982), pp. 863-873.
[10] Hoare, C., An Axiomatic Basis of Computer Programming, CACM, Vol. 12, No. 10, pp.
576-580, 1969.

[11] Ibarra, O, Reversal-Bounded Multicounter Machines and their Decision Problems, J. ACM,
Vol. 25, Ne. 1, January 1978, pp. 116-133.

[12] Ibarra, O. and Leininger, B., Characterizations of Presburger Functions, SIAM J. Comput.,
Vol. 10, No. 1, pp. 22-39, February, 1981.

[13] Ibarra, O. and Leininger, B., On the Equivalence and Simplification Problems for Simple
Programs, J. ACM, 30, 3 (July 1983), pp. 641-656.

[14] Ibarra, O, Leininger, B. and Rosier, L., A Note on the Complexity of Program Evaluation,
accepted for publication in Math. Systems Theory.

[15] Ibarra, O. and Rosier, L., Some Comments Concerning the Analysis of Simple Programs over
Different Sets of Primitives, University of Minnesota, Department of Computer Science, Tech.
Rep. No. 82-10 (1982).

[16] Ibarra, O. and Rosier, L., Simple Programming Languages and Restricted Classes of Turing
Machines, Theoretical Computer Science, Vol. 26, No. 1 and 2, pp. 197-220, September 1983.

[17] Jefferson, D., Type Reduction and Program Verification (Ph.D. thesis), Department of Com-
puter Science, Carnegie-Mellon University, 1980.

[18] Kfoury, A., Analysis of Simple Programs Over Different Sets of Primitives, Tth ACM
SIGACT-SIGPLAN Conference Record, 1980, pp. 56-61.

[19] Knuth, D., The Art of Computer Programming: Vol. 1, Fundamental Algorithms, Addison-
Wesley, Reading, MA, 1973.

38

[20] Matijasevic, Y., Enumerable Sets are Diophantine, Dodl. Akad. Nauk., SSSR 191 (1970), pp.
279-282.

[21] Meyer, A. and Richie, D., The Complexity of Loop Programs, in Proc. 22nd Nat. Conf. of the
ACM, Thompson Book Co., Washington, DC, 1976, pp. 465-469.

[22] Robinson, J., Definability and Decision Problems in Arithmetic, J. Symbolic Logic, 14, pp.
98-114 (1949), MR 11, 15L1.

[23] Suzuki, N. and Jefferson, D., Verification Decidability of Presburger Array Programs, J. ACM
27, 1 (Jan. 1980), pp. 191-205.

[24] Tsichritzis, D., The Equivalence Problem of Simple Programs, J. ACM 17, 4 {Oct. 1970), pp.
729-738.

