CONSISTENCY MANAGEMENT IN DISTRIBUTED
DATA BASES: A SELECTIVE ANALYSIS
Mohan L. Ahuja
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

TR-231 May 1983

Table of Contents

1. Introduction
2. The Problem Definition
3. Basic Classification of the Protocols

3.1 The Locking Protocols:
3.1.1 Two-phase locking protocols
3.1.2 Non-two-phase locking
3.2 Protocols using timestamped transactions
3.3 Protocols that use multiversions of the entities
3.4 Token passing protocols

4. Summary of a Few Representative Protocols:

4.1 Locking protocols
4.1.1 The two-phase locking protocols.
4.1.1.1 [REI79a]
4.1.1.2 [MOL78]
4.1.2 The non-two-phase locking protocols.
4.2 Timestamped Transaction based protocols.
4.2.0.1 [BAD78]
4.2.0.2 [BER80¢]
4.3 Protocols that use multiversions of the entities.
4.4 Token passing protocols

5. Parameter Identification for Performance Evaluation of the Protocols.
6. Salient Results of the Performance Evaluation Work Done So Far.

7. Conclusions and Summary.
Bibliography

© O 00~ O N -

10

12

12
12
12
12
13
14
14
14
17
17

20
22
24
25

1. Introduction

This report develops a classification scheme for conmsistency management protocols for
distributed systems, describes and analyses a number of significant protocols in the context of this
classification. The second topic of the report is description and analysis of major papers dealing

with performance evaluation of consistency management protocols.

The report has 7 sections, the first being this introduction. The second section defines the terms
used in this report and summarizes the problem of consistency in distributed data bases. The third
section proposes a classification of the protocols proposed for achieving consistency. The fourth
section summarizes some of the many protocols surveyed by this author. It should be mentioned
that many protocols not summarized here are also important. We had to make a choice among
many, for illustrating the structure of each class defined in Section 3, and so those found to be the
best for this purpose were included. The fifth section identifies certain evaluation and system
parameters affecting performance of these protocols. Results of studies conducted, [REI79a],
[MOL78], and [LIN81], to evaluate the performance are presented in the sixth section. The
seventh section defines the need for further research in evaluation of consistency management

protocols.

2. The Problem Definition

Before stating the main problem of consistency management in distributed data base systems,

we shall define some terms used throughout this report.

Data Base: A Data Base(DB) consists of named data objects called entities. The terms
data objects and entities are used interchangeably. By the Data base definition
the value of these entities may have to be related in some way which must
always be satisfied. These relations are called Integrity Constraints . A DB
which satisfies the Integrity Constraints is said to be consistent.

Distributed Data Base:
In a Distributed Data Base (DDB) data resides on more than one site connected
through some network. Various sets of entities may reside at more then one
site, in which case the DDB is said to have data replications. One extreme case
could be the entire data replication.

Transaction: A transaction T, is a finite sequence {ai,l...ai’n} of atomic operations. An
operation could be a read(r; ,), write(w;), lock(l;), unlock(y; .} or in general
any other atomic step in the straight-line program T, Ha transaction is run by
itself on a consistent DB it leads to a consistent state. By induction if a series
of transactions S is run on a consistent DB, it transforms to another consistent
state. For the purposes of consistency management we can represent a
transaction T, by a series of read(r; ,j) and write(w; ;) actions, where subscript j
is the order of this action in the transaction.

Log: A log L is a sequence of atomic actions. A transaction log T, is a sequence of
transactions.
Equivalence: Two transaction logs T, and T, are logically equivalent if each of them when

executed upon a DB in the same state leads to the same final state.

Serial Execution:
If all the transactions execute strictly one after another the execution log is said
to be serial.

Concurrent Execution:
When many users initiate their transactions without being aware of each other,
the atomic actions of the transactions may be executed in an interleaved
fashion. This interleaved execution of atomic actions of different transactions
is referred to as concurrent execution as opposed to the serial execution defined
earlier.

Since the transactions are defined to be straight-line programs, even when
concurrent execution is permitted, atomic actions of any one of these
transactions are still executed in the serial order specified by the transaction.

Serializable Execution:
If an execution log has an equivalent serial execution it is said to be serializable.

Scheduler: A scheduler, as defined in this context, transforms a stream of requests for
. atomic actions into a schedule that preserves the consistency of the DB.

Certifier:

Protocol:

If we have a 'do nothing’ scheduler all the steps are scheduled immediately and
the resulting changes are kept in temporary copies. At the end of the execution
of each transaction a certifier checks whether or not the transaction ran
without creating any inconsistency. If the transaction is certified the changes
are made to the DB.

A protocol in its most general sense, as defined by Ullman, is simply a
restriction on the sequence of steps that a transaction may permit. In the case
of DDBS it may be thought of as a set of rules followed by each site in the
distributed network , which when followed, leads to implicit or explicit
communication required to maintain the consistency. For the purpose of
brevity we shall use the term protocol to imply protocols for concurrency
management. If the set of rules is checked by a scheduler the protocol is said
to be scheduler based. If after executing a transaction the certifier checks
that no rule was violated the protocol is said to be certifier based.

Fixed Point Set:

The fixed point set of a scheduler based protocol is the set of all the input
sequences, all steps of which would be executed by the scheduler without delay.
In certifier based protocols the fixed point set is the set of all the sequences
which would be certified to be correct.

The fixed point set is a comprehensive measure of performance of a protocol.
By the definition of a fixed point set, it lists all the sequences which will retain
the consistency, without adding any delay whatsoever.

The Problem:

A consistent state is one which satisfies the integrity constraints. It may however be impossible to
execute a transaction consisting of a sequence of atomic actions without temporarily violating the
integrity constraints. Now, if concurrent executions are permitted, one transaction may see an
inconsistent state created by another transaction. Interleaved execution may also lead to an
unintended state. One example of each-i.e. violation of integrity constraints and creation of an

unintended data base state-follows.

Consider a DB for a bank wherein a customer has two accounts: he submits a transaction to
transfer money from one account to the other account. This transaction while transferring money
from one account to another could create a state in which the money has been subtracted from
one account but still has not been added to another. This is so since the operation of subtraction
is an atomic action, while the sequence of subtraction and addition is not. The integrity constraint
requires that sum of the two balances should be equal at all times during the transaction
execution to the sum that existed before, which is being temporarily violated. Meanwhile another

transaction reading the sum of the balance of the two accounts may see this inconsistent state.

Another instance, where concurrent execution may lead to an execution log creating an
unintended state, is when one transaction T, is manipulating entities x & y and at the same time
another transaction T, is manipulating y. Suppose that T, does x=x+1 then y==y+1, while the
T, does y=y*y. Independent execution of both the transactions would run correctly: but the

interleaved execution log x=x+1, y=y*y, y=y+1 leads to an unintended state.

The two illustrations explain the consistency management problem in a simple manner, although
very complicated situations may arise. Hence care must be taken while permitting interleaved
executions. This is the concurrency control problem, which has been studied extensively in the

literature and is the main issue in this report.

Assuming that no semantic information is available about the transactions, it has been proved
that an interleaved execution log E will lead to a consistent state if it is serializable. The order of
transaction execution in the equivalent serial execution may be any permutation of the set {All
the transactions in E}. It is easy to see that this condition also ensures that no transaction will
see parts of different DB states. However, some weaker condition will suffice if some semantic

information about the transactions is available. In this report, we will assume that no semantic

information is available, hence serializability or serial equivalence is the minimum criterion for

preserving consistency.

In DDBS some additional issues arise. One of them is data replication management. If data
replication exists, some mechanism to enforce consistency between copies is required. The other
problem is that of providing immunity against lost messages. There are other issues, common with
operating systems, such as system failure, deadlocks and starvation, which take a different shade
in DDBS. Concurrency and consistency management protocols must deal with these issues. In this
report, we shall address the central issue along with the data replication management problem,

and touch upon the others whenever the need arises.

3. Basic Classification of the Protocols

Numerous protocols have been suggested for maintaining consistency in DDBS, which permit
concurrent execution of transactions. Some are applicable to specific network structures, others
are more general. Some of them apply to replicated data banks. Before discussing a few
protocols of the many surveyed, we shall define a classification of protocols which will be helpful

in studying them.

One criterion of classification is whether a protocol is scheduler based or certifier based. There
could be some protocols which use a mixed policy in which part of the work is done by the
scheduler and part by the certifier. In some cases the scheduler may decide that a transaction
needs to be resubmitted. For our further discussion we will presume all the protocols to be

schedulers, except when we describe the protocols in Section 4.

There are other ways of classifying families of protocols. We shall discuss one based upon the tool
used to achieve one of the most important tasks. The concurrency control problem basically
consists of four tasks. The first is to assign an order to all the transactions. The second is
identification of conflicting transactions and conflicts. The third is to realize the inter-site
synchronization required to achieve this order for the conflicting transactions. The fourth is to
achieve the required intra-site synchronization. We shall classify the protocols based upon the
tool for meeting the inter-site synchronization requirements. There are three basic tools to do so,
locks, timestamps and token. Timestamps can be used in two entirely different ways. We propose
the following four classes:

1.Locking Protocols.
2.Protocols using timestamped transactioms.

3.Protocols that use timestamped entities
i.e Multiversions of entities.

4 .Token passing protocols.
It is possible that a protocol may be classified under one of the four because of the tool used to
realize inter-site synchronization. Nevertheless, it may use other tools to perform the other three
tasks. For instance, the locking protocols use timestamped transactions to achieve global
ordering, which could be realized at each site using locks. The token passing protocols also use
timestamped transactions for global ordering. Token passing and timestamp based protocols use

locks for intra-site mutual exclusion.

Performance of each of these classes can be comprehensively measured by the fixed point set of all
the realizable schedulers/certifiers in that class. Many other parameters could be used to evaluate
the performance. These will be discussed in Section 5 of this report. In the remainder of this
section, we shall explain what these tools are and how they are used under each class. We shall

also classify various protocols without giving any details of the protocols.

3.1 The Locking Protocols:

A DB can be partitioned into entities, which can be locked. By locking an entity a transaction
can prevent other transactions from accessing it, unmtil it releases the lock. Various
implementations of locks are possible. The larger the entity, the less will be the overhead for
locking. But at the same time a larger entity size leads to a lower level of permissible concurrency.
Both the implementation of locks and the size of entities are irrelevant to the understanding of
the protocols, and will not be discussed further. The level of concurrency can be improved by
having various lock modes. These lock modes could be mutually permissible, they may be
compatible and/or convertible to one another. By identifying these properties, execution
sequences which would otherwise be forbidden could be permitted. This obviously increases the
concurrency and size of the fixed point set. Some of the terms related to these modes are defined
below to help in understanding the protocols summarized in Section 4.

Definition: A read mode lock held by a transaction T on an entity e allows it to read the value of e

and use it for computations, as often as it needs, till it releases the lock. We shall denote
this mode by R.

Definition: A write mode lock held by a transaction T on an entity e allows the transaction to read
and/or write and use the value of the entity for computations, as often as it needs, till it
releases the lock. We shall denote this lock mode by W.

Definition: A locking mode X is said to be compatible with a mode Y if a transaction may acquire
X on an entity while another transaction holds Y on it. For example a R lock an entity is
compatible with another R lock on the same entity but is incompatible with a W lock on
this entity.

Note that the compatibility relationship is asymmetric i.e. it may be possible that X be
compatible with Y but the Y may not is compatible with X.

The locking protocols use locks for the inter-site mutual exclusion in case of
conflicting transactions. Realizing locks in a distributed system is very expensive in terms of
the overhead involved. To reduce such overhead locks could be placed only on a specific site, 1.e. a

primary site, or on a specific copy for each entity i.e a primary copy.

Unless the logical data base is specified as having a specific structure (e.g. Directed Graph

Structure) all the transactions must follow two phase locking protocol to ensure serializability. A

two-phase locking protocol simply specifies that in each transaction all the locking operations
must precede any unlocking operation. Thus we have the following two subclasses under the
locking protocols.

1.Two-phase locking.

2 .Non-two-phase locking

3.1.1 Two-phase locking protocols
In the two-phase locking it is easy to see that deadlocks are possible. Consider the following

sequence of operations by two transactions T, and T, listed in order of their execution,

T,:Lock A (granted)
T,:Lock B (granted)
T,:Lock C (delayed till
T, releases it)
T,:Lock B (delayed till
T, releases it)

Here T, is waiting on T,, T, is waiting on T, and they will keep doing so, and deadlock results.
To avoid deadlocks we could set an order to all the entities and stipulate that all the transactions
request locks only in the said order. Alternatively, when a transaction has been permitted to start
executing, it may put intention locks on all the entities it would ever need. These locks may be
used to rule out the possibility of a deadlock before permitting any other transaction to put its
intention locks. Thus we need to superimpose a mechanism on top of the two-phase locking

protacol to ensure deadlock freedom.

As already mentioned there are two ways of achieving centralized locks. In the first case, one site
is designated to be primary and transactions running on all sites seek locks from it. It is clear that
the primary site protocols would have high communication requirements and that the primary site
would tend to be a bottle-neck. [REI79a] and [MOL78] evaluate performance of two somewhat
different primary site protocols and derived strikingly different results. The behavior is further

discussed in Section 6.

In the second case, one copy of each entity is designated to be primary and locks are sought only
on these copies. Here communication overhead tends to distribute over all the sites, since
different entities have their primary copy on different sites. An interesting variation of a primary

copy is 'a migrating primary copy’ proposed by [MIN79].

It can be seen that inter-copy inconsistencies are transparent to the transactions. However, since

the read only transactions may be permitted to read from the non-primary site/copy, we need

another superimposed mechanism.

3.1.2 Non-two-phase locking

As the name suggests these protocols do not use the two-phase locking policy. Very few
protocols have been suggested which belong to this class. One of these, proposed in [SIL81] is
applicable for hierarchically organized DB systems. A summary of this protocol is given in section

4.

3.2 Protocols using timestamped transactions

The concurrency control problem essentially that of achieving a total ordering between events.
An event could be the transaction initiation time at various sites. These sites have different
clocks. As already explained the concurrency control involves four steps. First ordering is
assigned to all the transactions. Having assigned the ordering, an analysis needs to be done to
identify conflicts. The worst case may require a serial execution of transactions. Then the
scheduler implements the ordering in two steps i.e inter-site and intra-site synchronization. In all
the protocols timestamps are used to globally order the transactions. For this class of
protocols timestamps are also used to mutually exclude the conflicting operations
initiated by the different sites. The actual communication sequences of different protocols in
this class may be different and so these sequences are discussed under specific protocols in Section
4.

Two schemes [REET78| and [LAMP78] have been proposed for generating system wide the unique
timestamps. In [REE78] all sites are assigned their site numbers, when an event occurs each site
reads its local time. The timestamp of each event is a tuple (local time, site number). For events

with identical local times their site numbers are used to break the tie.

In [LAMP78] all the clocks are event driven and the tie is broken as in [REET8]. Let us take the
diagrammatic representation of the problem as given in figure-1. The parallel lines represent the
time scales of different sites, in terms of the events. Each site j has an event clock Ej. All these
event clocks are initialized to a constant. They monotonically increase with the occurance of
events and may not be synchronized all the time. In our system there could be two type of
events, initiation of a transaction and receipt of a message from another site: these will be
explained shortly. When a transaction T; is initiated at site j, Ej is incremented , T, is assigned a
timestamp ts; ;, and a message M[(t-s(j’i)),j] is sent to all the other sites. Message transmission is

represented in the figure by an arrow directed towards the receiving site.

10

Site-1 *

Site-2 *

Site-3

figure-1

When a site k receives a message M[(ts(j’i)),j], it sets its clock to the maximum of the E, and the
!ts{j’i)+1]. This essentially is equivalent to tilting the directed edges just enough to make the angle
A a little more then a right angle. This ensures that no messages are received without
establishing the precedence of a send message event to the corresponding receive message event.
This gives us a total ordering for all the events except those carrying the timestamp of the same
value. However if each site is assigned a priority, say in the same order as its site number and this
number is tagged to each message the site sends, then the receiving site can independently break

the tie based on the site priority. Thus we get a total ordering.

3.3 Protocols that use multiversions of the entities

In this class of protocols the transactions are assigned a timestamp , as explained in 3.2. The
protocol proposed by [REE78] is presented here to explain the basic functioning of this class.
Each entity has a field which contains the timestamp of the transaction which created it and also
a field which contains the timestamp of the transaction which read it last. If a transaction T; is
trying to create a new version of an entity which has a ’last read ’ timestamp greater then ts;, it
will be rejected, since letting it write would mean going back in time. If an entity is to be
rewritten a new version is created while the earlier ones are retained. Hence when a version is
being written earlier ones are available for read operation by other transactions. This leads to
more concurrency. Since all the entities created by a transaction are committed simultaneously, it
ensures that all the operations in a transaction see the same state of the data base: thus the
inter-site synchronization requirement is practically obviated. These protocols permit a
very high level of concurrency. It has a disadvantage of requiring many copies of each entity:
hence a large memory is required. However, if laser technology is used we shall get non-erasable
copies and this disadvantage will no longer be a disadvantage. These protocols, by virtue of the

multiversions of an entity, are highly robust to system failures. In practice only a finite number

11

of old versions need to be retained. The representative protocols of this class are ones suggested
by Reed |REE78|, Bayer [BAY80a], and Stearn & Rosenkvatzs [ROST77]: of these, Reed’s protocol

will be summarized in Section 4.

3.4 Token passing protocols

These protocols require that there be an order for passing the token. Permission to access the
entities, requiring mutual exclusion between sites, is passed from one site to another in a
predetermined order. A token is used as a symbol of the permission. Since there is only one

token, inter-site mutual exclusion is ensured.

A system state table is also passed on along with the token. It contains all the information
required to ensure consistency. A detailed account of the information contents of the state table
is given in Section 4, while discussing the protocol proposed by [GRES81]. Here it would suffice to
say that the timestamps of the transactions and intention locks are the key to convey the required
information. These protocols have a high throughput achieved at the cost of a higher turnaround
time. The turnaround time will be high even if the transaction requires little or no processing.
The performance of these protocols deteriorates with reduction in the load level. This is so since
the token may have to be passed to many sites not requiring it before it reaches the site requiring
it.

12

4. Summary of a Few Representative
Protocols:

In this section we shall summarize some of the representative protocols of each class.

4.1 Locking protocols

As already said these protocols could be further classified depending upon whether or not they

use two-phase locking policy.

4.1.1 The two-phase locking protocols.

Under this class we shall cover only the primary site based protocols because the mechanisms
used by the primary copy based protocols are essentially the same. The protocols evaluated by
Reis [REI79a] and Molina [MOL78] are discussed here.

4.1.1.1 [REI79a]

Details of this protocol can be found in [REI792]. Reis basically addresses the problem of
evaluating performance of protocols, specifically merits of the centralized i.e the primary site
protocols, and the distributed algorithms. The gist of the two primary site protocols evaluated by
[REI?Qa] are given here. In both, 2 fixed ordering is placed on all the sites. All the locks are
exclusive i.e no distinction is made between read and write locks. Locks for a transaction are
granted in a fixed order of the locking granules within a site. Again for each transaction all the
locks on one site are granted before granting locks on another. This is done in a predetermined
order among all the sites. If locks required by a transaction T; on a site are already held by
another transaction, the T; would wait for release of these locks. When the locks for all the sites
have been granted the primary site would then send a 'locks granted’ message to the transaction
initiation site. The fixed order among sites is used to prevent deadlocks. The second protocol is
just like the first, except if the locks required by a transaction T; for a given site are held by
another transaction, all the locks granted for all the lower numbered sites would be released.
When the locks are available the acquisition is restarted. Here no transaction waits while it holds

any locks.

4.1.1.2 [MOL78]

A summary of the protocol proposed in [MOL78] follows. The protocol presumes a fully
replicated copy of the data base on each site. It goes as follows: a site S requests from the
primary site all the locks it needs for the transaction T,. The primary site locally checks for all

the locks and, when they can be granted, a message is sent to S. It also assigns a sequence

13

pumber to all the updates it grants. Then S goes ahead and executes the transaction. The update
generated is sent to all the sites along with its sequence number. The site S makes the updates in
its copy of the DB. When the other sites receive an update message they perform the update.
The primary site, in addition to performing the updates, releases the locks. The sites keep the

sequence number of the latest update performed and delay updates which are out of order.

4.1.2 The non-two-phase locking protocols.
We choose the first proposed protocol in this class of protocols. It is due to Silberschatz and

Kedem [SILSO]. It presumes a hierarchically organized data base as shown in figure-2.

figure-2

Unlike the two-phase locking protocols it is free from deadlocks. It locks an entity, i.e a node in
the tree, without implying any locks on its descendant in the tree. A transaction following this
protocol must satisfy the following conditions,

1. T, may lock any node to start-with.
2. T, may lock other nodes only if it already holds
its father in the data base.

3. After unlocking a node it may not lock it again.

4. It may access only those nodes on which it holds
a lock.

Note that the transaction need not be two phase. It has been proved that the schedules produced
by this protocol are serializable. An intuitive understanding of this fact is easy to see by the
following argument: each transaction has a frontier of lowest nodes in the tree on which it holds
the locks. The protocol guarantees (conditions 2 and 3) that these frontiers do not overlap. If the
frontier of T; begins above the frontier of T, , it will remain so, and every item to be locked by
both will be locked by Tj first.

14

4.2 Timestamped Transaction based protocols.

A large number of protocols have been suggested in this class. We shall choose the two
representative protocols, one due to Badal [BAD78] and the other titled SDD1 i.e the System for
Distributed Data BasesBER80c].

4.2.0.1 [BAD78]

The protocol presented here is due to Badal, D. Z., and Popeck, G. J., see [BAD78] for details.
For each write operation on an object A its new value is bound to a local object. Whenever the
next read is scheduled on A, all the other sites supply the local objects, if they have any, which
need to be bound to A in the global data base. Thus local objects are bound to the global data
base at the time of executing a read operation, hence this protocol is termed as 'read driven’
protocol. However, this read driven protocol makes the system failure recovery more difficult.

The authors have proposed several means for various degrees of recovery.

The protocol works as follows: each site has a directory giving a list of the objects on each site.
When a transaction is initiated at a site, all the entities to be read and written are identified. All
the sites involved in read and write operations are then determined and are termed as read and
write sites. The transaction initiation site sends a set up message, henceforth to be abbreviated as
SUM, to all the read and write sites and assigns a timestamp to the transaction. The SUM
contains the definition of the transaction including its timestamp, read and write sites involved,
and entities to be accessed. All the sites acknowledge the SUM and a preferred read site is
selected. The preferred read site then sends a request to each site asking for updates generated, if
any, for each of the entities to be read. All the sites either send the updates or a null message to
the preferred read site. The preferred read site then sends read commands to all the read sites
along with the updates to be done and SUMs not yet acknowledged. Each site performs the
update operations on the entity in the order of their timestamps and then does the read operation.
Each read site also prepares write messages and keeps them with itself until the next request
message by some preferred site demands these write messages. This protocol is remarkable by

virtue of its read-driven nature.

4.2.0.2 [BER8Oc]

The following protocol is titled *The System for Distributed Databases 17, abbreviated as SDD1.
It has been jointly suggested by Bernstein, P. A, Shipman, D. W. and Rothnie, J.B., Jr
[BER80c]. The SDD-1 suggests reduction of synchronization overheads by using pre-analysis of the
transactions with-respect-to other possible transaction classes. The system is presumed to be

architectured to have Transaction Modules (TMs) and Data Modules (DMs). TMs supervise user

15

transactions and simulate a non-redundant non-distributed Data Base (DB) for him. DMs are
abstract data types which perform their local scheduling. It also presumes a reliable network
(RELNET) for the network communication.

At System Creation time certain classes are defined, using simple predicates, in terms of their
read and write sets and are assigned to run at specific TMs. This pre-execution classification
covers most of the anticipated transactions. To cover all possible types of transactions a global
class (having all records in the DB as its read and write set) is defined. The protocol that each
transaction class should follow with-respect-to the other classes is determined statically by
analyzing the Conflict Graph (CG) of the system. At the time of initiation each transaction T, is
assigned a time stamp ts; and a class I based as its read set (ri) and write set (wi) . Now this
transaction follows protocols with-respect-to other classes as specified by the CG analysis for its
class. If transaction can fit in more than one class, it is assigned to the class requiring minimal

synchronization.

SDD-1 achieves higher concurrency by using the Write Message rule. The Write-Message rule
says, a data item is updated by a write message if and only if the data item’s creation time is less
than the write message’s time stamp. Otherwise it is not and the write is considered to be dead,

since it will not be seen by any other transaction.

The CG mentioned above has two nodes (rl, wl) for each transaction class L. It has vertical edges
<rl, wI> for all 1, horizontal edges <wl, wJ> and diagonal edges <tl, wi> , <wl, rJ> for
each pair (I, J) having some common data involved in the paired nodes of each of these edges.
Henceforth we shall denote a read and write operation on a DM x by a transaction T; by Ri,x and

Wi, respectively and the timestamp of T; by ts;.

Bernstein, et al define four protocols, P1, P2, P3, P4, catering in that order to higher
synchronization requirements. P1 ensures that for any il, i2 in I and j1, j2 in J, whenever le’a
precedes and conflicts with Ril,a’ at DM a, and Riz,b precedes and conflicts with sz,b at DM b,
and either ts;; < ts;, or i1==i21 then t;sjl < tsj,_,. If Ri,a precedes and conflicts with Wj,a’ then P2
ensures that if ts, > ts; then Ri,b precedes Wk,b for every b where both appear and conflict and if
t.sj > ts) then Ri,b follows Wk,b at every DM b, where they both appear and conflict. P3is a
stronger version of p2 and says that if Ri,a conflicts with a Wj,a then they must execute in order
of their timestamps. P4 is the most restrictive protocol and dictates that the transactions be

executed serially in the order of their timestamps.

16

CG analysis is done as follows. Transactions belonging to classes not on any diagonal edge do not
need any synchronization. For conflicting diagonal edges <rl, wK>, <wJ, rI> on a cycle such
that only read node of I is involved in the cycle, i follows P, with-respect-to jin J and K in
K. For two transactions belonging to two classes connected by a diagonal edge in a cycle, say
<rl, wi>, i in I follows P, with-respect-to j in J. For transaction i not belonging to any other

class but the global class protocol P is followed.

The protocols are implemented by attaching a read condition <ts, {J1 . .. Jn}>. Here ts is a
timestamp and J1 ... Jn are the classes of transactions. The read condition is considered to be
satisfied when all write messages originated before ts from each class in J1 ... Jo have been
executed and no more from the classes have been executed. Selection of ts and the classes
depends upon the protocol being used. Write pipelining ensures execution of write messages from
each class in their time stamp order. To avoid starvation the NULLWRITE and SENDNULL

mechanisms are used.

At the runtime, the Concurrency Monitor at each DM executes as dictated by the read conditions.
We would like to close this summary with the mention of the following salient points about the

protocol:

1. The architecture makes a strong separation between concurrency control (CC) issues and those
of query processing and reliability. One of its advantages is modifiability of the software and its

tunability.

2. Even if two transaction classes require synchronization relative to certain data, other classes
can concurrently access the data: in fact, other classes can be synchronized for this very data

independent of these two classes.

3. The maximum burden of having to provide for a global class is borne by the transaction
belonging to it by having them follow P4. Since they occur rarely, it seems to be the right

approach.

4. Value to local object binding is done during the execution phase which follows the read phase.
At the time of each read operation on an entity all pending local to global bindings of the entity

to be read are done. Write messages from classes specified in the read condition must be executed

17

anytime before the read is executed. This is also a 'read driven’ protocol. In the Read driven
model of Badal, write messages are attached with the read message enhancing reliability, here

Relnet ensures reliability. The recovery mechanism is basically Relnet and global clock based.

5. Whenever the load on the system is high, the performance will degrade. The variance of

waiting times before a transaction gets service will be very high, as confirmed by [LINS1].

4.3 Protocols that use multiversions of the entities.

The protocol proposed by Reed is presented next. Refer to [REE78] for details. This protocol
has the very important goal of maximizing the site autonomy i.e maintenance of the individual
data object should be the responsibility of the site containing it. Coordination of the transaction
accessing the same object is done as part of the accessing operations, and locally to the site
containing the object. Here many versions of a data object are kept. Each object has an object
header which points to the latest version of the object. Each version has a pointer to the next
version (in fact last in chronology), start field and end field. The start field contains the
timestamp of the transaction that created this version, and the end field contains the timestamp
of the transaction that read it last. Initially, the start and the end fields are identical. A read
operation reads the latest version written before this read. It also updates the end field. A
version is not available to a read operation till it has been committed a transaction has run to a
successful completion its possibilities are confirmed and made part of the data base. Note that a
read operation may cause rejection of a write operation and hence the transaction, if the write
arrives out of sequence. We have summarized just the mechanism for inter-transaction

synchronization. There is much more in this protocol which is unique.

4.4 Token passing protocols

One representative protocol of this class is presented next refer to [GRE81] for details. The
protocol proposes a concurrency control mechanism for a DDB constituted of a ring structured
petwork. The protocol is named "Cooperative Multi-thread Algorithm (CMT)®, "cooperative®
since control of the DDB passes in a predetermined order for a specific quantum of time and
smulti-thread® because each site processes the request in a multi-thread mode. The algorithm
suggested makes three assumptions. First, each site should be kept busy by a pool of waiting
requests. Second, inter-site communication is based on a logical ring network structure. Lastly

the DDB is fully replicated-i.e. all the data resides on each site.

The algorithm performs two functions: cooperative control migration and DDB state migration.

18

Two tables, a control table and an update table, maintained at each site provide the information
needed by the algorithm. The control table specifies the control cycle by a set of tuples giving
identity numbers of each site, its predecessor and successor. This table is modified in case of
contingencies. The update table contains the current state of the DDB. It has a sublist of locked
granules-i.e. data objects-and a modification sublist. This table is passed with the control token.
Each site repeatedly performs four steps: waiting, accounting, user and termination. During

waiting it just waits for the arrival of the control token.

Accounting commences with the arrival of the token. When a site receives the token it does the

following

1. Adds the writing list generated while the
token was with other sites.

2. Initializes the subcycle number of these
writes to zero.

3. Performs write operations specified and
decrements their subcycle number by one.

4. Puts the intention write locks the read
locks to be notified to the other sites.

Since the site originating a write initializes the writes subcycle to zero, when it becomes equal to
the number of sites in the DDB, it has been notified to all the sites and so can be removed from

the state table.

The user step involves reading. To avoid starvation of a site by its predecessor, an enhanced
allocation scheme may be required. Such schemes could be easily worked out, although for small

granule size, starvation rarely occurs.

The termination step commences at each quantum expiration. It involves migration of control to
the successor, along with the update table. After this the site can execute the user process, and
generates a new write list, which will be added to the update table when the control token arrives

again. If the processing takes longer than a cycle-time, locks will be renewed.

Note that the control table size (3n, where n is the number of sites in the DDB) remains fixed as
long as the number of sites remains fixed. The update table size, however, is more volatile. It
remains stable for a fixed transaction arrival rate and time quantum. Each lock and each
modification is circulated (n-1) times resulting in a minimum of 2*(n-1) messages per update. A

lock recirculation would lead to a higher number of messages.

19

Greene further proposes a node architecture having a front-end processor for communication
processing, a multi-processor for application processing and a back-end processor for data
management processing. He also suggests tuning of bandwidth of the communication channel,

depending upon the size of the update table.

The measure of mutual consistency-i.e. number of granules of one replication which differ with
counterparts in all the replications- will always be less than one (unless all activities cease for one
cycle). The algorithm is deadlock free, since a claim on all the required granules is required prior
to its execution. A failed site can be bypassed by modifying the control table. The problem of
recovery is not addressed. It ensures equal access opportunities at site level rather than user
process level. Allocation of incremental quantum is under local control, which provides another

tuning parameter.

20

5. Parameter Identification for
Performance Evaluation of the
Protocols.

The parameters can be classified as system and evaluation parameters. Those specifying
assumptions of a protocol or the mechanism that it uses would be classified as the system
parameters. Evaluation parameters are those which could be used as a metric to evaluate the
performance. System parameters are important because the proposed protocols are so diverse
that it may not be meaningful to judge them as a whole. However, if the dependency of the
evaluation parameters to the system parameters is established a better understanding could be
gained. Some of these parameters under each class are given below.

A. System Parameters.

1. Extent of preanalysis of transactions.

9. The class, as defined in Section 4, to vwhich
the protocol belongs.

Degree of centralization.
Assumptions about the network topology.
Time of data object to data base binding.

. Whether or not obsolete information is read.

4 o ;s W

. Work load parameters.
7.1 Degree of interference.
7.1.1 Average number of transaction conflicts.

7.1.2 Average number of transactions in a
conflict.

7.1.3 Average time between conflicts.
7.1.4 Average duration of conflicts.

7.1.5 Average number of data objects involved
in a conflict.

7.2 Degree of locality of transactions.

This could be measured either as
local v/s non-local or by

Average # of sites accessed by a transaction
DL = =m=—mmm e m e s e S S
Total # of sites in the network

7.3 Transaction arrival rate.

10.

21

7.4 Average I/0 requirement of a transaction.

. Locking granuality.

. Network communication speed or Slow v/s Fast

networks.

Number of nodes in the network.

B. Evaluation parameters.

1.

2
3.
4
5

Fixed point set.

. Transaction rejection rate.

A measure of delay introduced by concurrency.

. Number of messages.

. Extent of recovery, from system failure, inbuilt

in the concurrency control algorithm.

. Deadlock freedom.

. CPU utilization.

I/0 utilization.

. Average response time.

22

6. Salient Results of the Performance
Evaluation Work Done So Far.

We shall present the results of three papers-[REIS79a], [MOL78], [BAD80b]- in conjunction with
each other and then summarize the results of [LIN81]. Reis [REI79a] and Molina [MOLT78] derive
seemingly contradictory results about centralized or Primary Site based protocols, henceforth
referred to as PS, and Distributed Algorithm, henceforth referred to as DA. Molina concludes
that the centralized locking algorithms perform considerably better then DAs except in case of
very high I/O activities, while Reis concludes that DA does better. Badal [BAD78] provides a
plausible explanation of this contradiction. He points out that these results are applicable for
different domains of the system parameters, namely communication speed of the network, locality
of transactions and their arrival rate. Thus these results are complimentary to each other, as will

be clear from the following.

Reis considers four system parameters. These are type of transactions, % of non-local
transactions, locking granuality and speed of the communication channels in the network i.e
7,7.2,8,9, respectively of the system parameters in Section 4. The evaluation parameters that he
considers are CPU utilization, I/O utilization, and average response time: these are 7,89

respectively of the evaluation parameters listed above.

He finds that when most of the transactions are non-local and the network is slow then the PS
performs better then the DA. While if the most of the transactions are non-local and the network
is fast the DA does better. Intuitive feeling would also suggests that if the communication time is
small and the PS is followed the primary site tends to bottleneck. The PS also performs better
when most transactions are non-local and require a fixed pattern of locks and require to lock a

large number of granules.

When most transactions are local and the network is fast both do equally well, while if most

transactions are local and the network is slow the DA does better.

Molina considers the following system parameters: number of sites in the network (A.10),
interarrival time between transactions (A.7.5), mean base set size (A.7.1.5), average 1/O
requirements of transactions (A.7.4), and speed of the network (A.9). Among the evaluation

parameters in addition to the Reis’s list he considers number of messages. Note that Molina’s set

23

of parameters is a superset of Reis’s set, except for the locking granuality which Molina does not

consider. All the transactions here are non-local since each has at least one update operation.

Molina finds that for a low to moderate arrival rate the PS is better, while for a high arrival rate
the DA does better. He also finds that for a high probability of transaction conflicts the PS does
better while for low probability the DA outperforms the PS. Also for high I/O activities the DA

does better since I/O operations do not become a bottleneck.

Lin [LIN81] compares performance of SDD1 and Dynamic Time Stamping Method (DTM). The
DTM is an extension of SDD1 wherein the timestamp of a transaction is bumped to avoid certain
rejections. Also DTM does not tag to a Data Item the time stamp of the transaction that updates
the data item, so no dead-writes are permitted. The SDD1 presented in [BER80c| is different
from its actual implementation which has been used by Lin. He proposes a little more transaction
analysis-i.e.CG graph analysis- which helps in identifying cases where bumping of timestamps

would obviate rejections.

Though the comparison is valid only for a very narrow range of transactions, the results are
appealing. Average response time, abbreviated as ART, and standard deviation of response time
have been used as measure functions. High dependence of performance of one class, when P3 of
SDD1 needs to be followed, on arrival rates of transactions in the other classes is strongly
established. Contradictory behavior of rejection rate and ART with varying arrival rate of the
transactions in the controlling class is demonstrated. Utility of NULLWRITES for reducing

dependence of ART is confirmed.

24

7. Conclusions and Summary.

A large number of protocols have been proposed but little work has been done for evaluating
their performance. We feel that the first step for evaluating these protocols is to identity all the
system and evaluation parameters both as predicates and as metrics. The next step would be to
isolate the one-to-one dependency of the evaluation parameters on the system parameters and
their correlation. A sensitivity analysis may also be conducted. Lastly the protocols may be
evaluated, and complex dependencies may be inferred from these results. This report presented a
classification for studying these protocols and summarized a few protocols. Furthermore it
identified a quite exhaustive list of evaluation and system parameters. Lastly it summarized the

results of four performance evaluation studies.

25

Bibliography

[BAD78] Badal, D.Z, Popeck, G.J., "Proposal for Distributed Concurrency Control for
Partially Redundant Distributed Database Systems®, Proc. 3rd Berkeley Workshop on Dist. Data
Management and Computer Networks, p. 273-288 (1978).

[BAD8Ob] Badal, D. Z., *The Analysis of the Effects of Concurrency Control in Distributed
Database System Performance®, Proc. of the VLDB, p. 376-383 (1980).

[BAY80a] Bayer, R., Elhardt, Klaus, Heller, H. and Reiser, R., *Distributed Concurrency Control
in Database Systems®, Proc. VLDB, pp. 275-284 (1980).

[BAY80b] Bayer, R., Heller, H. and Reiser, A., *Parallelism and Recovery in Database Systems”,
ACM TODS 5, 139-156 (1980).

[BER78] Bernstein, P. A., Rothnie, J.D., Goodman, N.and Papadimitriou, C. A., ®The
Concurrency Control Mechanism of SDD-1: A System for Distributed Databases (the Fully
Redundant Case)®, IEEE Trans. on Software Engineering, p. 154-168 (1978).

[BER79] Bernstein, P. A., Shipman, D. W., and Wong, W. S., "Formal Aspects of Serializability
in Database Concurrency Control®, IEEE Trans. on Software Engineering, Vol. 5, p. 203-215
(1979).

[BER8OC] Bernstein, P. A., Shipman, D. W. and Rothnie, J. B., Jr., "Concurrency Control in a
System for Distributed Databases (SDD-1)", ACM Trans. on Database Systems, 5, 18-51 (1980).

[BERSOd] Bernstein, P. A. and Goodman, N., "Time Stamp Based Algorithms for Concurrency
Control in Distributed Database Systems®, Proc. VLDB pp. 285-300 (1980).

[GRES81] Greene, Richard J., "An Alternative Approach to Distributed Database Updating®, Proc.
NCC 50, 481-485 (1981).

[KEDSO] Kedem, Z. and Silberschatz, A., "Non Two-Phase Locking Protocols with Shared and
Exclusive Locks®, Proc. VLDB, pp. 309-317 (1980).

26

[KUN79] Kung, H. T. and Papadimitriou, C. H., "An Optimality Theory of Concurrency Control
for Databases®, Proc. ACM SIGMOD 79, p. 116-126.

[KUN81| Kung, H. T. and Robinson, J. T., *Optimistic Methods for Concurrency Control®, ACM
Trans. on Database Systems, 6, 213-226 (1981).

{LAMP’TS] Lamport L., "Time, Clock and the ordering of events in a distributed system’, CACM,
July 78, Vol.21,#7.

[LAM79] Lampson, B. W. and Sturgis, H. E., "Crash Recovery in a Distributed Data Storage
System®, Technical Report, Xerox Parc, April 1979.

[LEL78] Le Lann, G., "Algorithms for Distributed Data Sharing System Which uses Tickets®,
Proc. 3rd Berkeley Workshop on Dist. Data Management and Computer Networks, p. 259-272
(1978).

[LIN79] Lin, W. K., "Concurrency Control in a Multiple Copy Distributed Database System®,
Proc. 4th Berkeley Workshop on Distributed Data Management and Computer Networks,
p. 207-220 (1979).

[LINSI] Lin, W. K., “Performance Evaluation of Two Concurrency Control Mechanisms in a
Distributed Database System®, Proc. 1981 ACM SIGMOD Conf., p. 84-92 (1981).

[MEN783] Menasce, D. A. and Muntz, R. R., "Locking and Deadlock Detection in Distributed
Data Bases®, Proc. 3rd Berkeley Workshop on Distributed Data Management and Computer
Networks, p. 215-234 (1978).

[MIN79] Minoura, T., *A New Concurrency Control Algorithm for Distributed Database System?®,
Proc. 4th Berkeley Workshop on Distributed Data Management and Computer Networks,
p. 221-236 (1979).

[MOL78] Garcia-Molina, Hector, "A Performance Comparison of Two Update Algorithms for
Distributed Databases®, Proc. 3rd Berkeley Workshop on Distributed Data Management and
Computer Networks, p. 108-122.

[REE78] Reed, D.P., "Naming and Synchronization in Decentralized Computer Systems",
Technical Report MIT/LCS/TR205, September 1978.

27

[REE79] Reed, D. P., *Implementing Atomic Actions on Decentralized Data®, Proc. of 7th Symp.
on Operating Systems Principles, pp. 163-175 (December 1979).

[REI?Qa] Reis, D. R., "The effects of Concurrency Control on the Performance of Distributed
Data Management Systems®, Proc. 4th Berkeley Workshop on Dist. Data Management and
Computer Networks, p.75-112 (1979).

[ROS77] Rosenkrantz, D. J., Sterns, R. E. and Lewis, P. M., "A System for Concurrency Control
for Database Systems®, Proc. 2nd Berkeley Workshop on Distributed Data Management
Computer Networks, p. 132-145 (May 1977).

[ROS78] Rosenkrantz, D. J., Sterns, R. E., and Lewis, B. M., *System Level Concurrency Control
for Distributed Database Systems*, ACM Trans. on Database Systems, Vol. 3, p. 178-198 (1978).

[SIL80] Silberschatz, A. and Kedem, 7., "Consistency in Hierarchical Database Systems®, JACM,
p. 72-80 (1980).

[SKE81b] Skeen, Dale, "Non-Blocking Commit Protocols®, Proc. ACM-SIGMOD International
Conference on Management of Data, pp. 133-142 (1981).

[STES81] Stearns, R. E. and Rosentrance, D. J., "Distributed Database Concurrency Controls
Using Before Values®, Proc. 1981 ACM SIGMOD Conf., p. 74-83 (1981).

[STO79] Stonebraker, M., Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES®, IEEE Transactions on Software Engineering, 5, p. 188-194 (1979).

[THO79] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control*, ACM
Trans. on Database Management, Vol. 4, p. 180-211 (1979).

